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Abstract: The purpose of this paper is to define new classes of analytic functions by amalgamating
the concepts of g-calculus, Janowski type functions and (x, y)-symmetrical functions. We use the
technique of convolution and quantum calculus to investigate the convolution conditions which
will be used as a supporting result for further investigation in our work, we deduce the sufficient
conditions, Pélya-Schoenberg theorem and the application. Finally motivated by definition of the
neighborhood, we give analogous definition of neighborhood for the classes SNf; Y(a, ) and K;y («, B),
and then investigate the related neighborhood results, which are also pointed out.

Keywords: analytic functions; Hadamard product; (x, y)-symmetrical functions; g-calculus; (p, q)-
neighborhood

1. Introduction

Let F (k) denote the family of all functions that are analytic in the open unit disc
k= {w e C: |w| <1} and let F represents a subfamily of class 1 € F (k) which has the
form -

h(w) =w+ Z a,w’, 1)
v=2
and suppose S containing all the functions in F that are univalent k. The convolution
or Hadamard product of two analytic functions h, g € F where h is defined by (1) and
g(w) =w+ Y52, byw?, is
(h*g)(w) =w+ Y _ apbyw’.
=2

In order to define new classes of g-Janowski symmetrical functions defined in k, we
first recall the necessary notions and notations concerning, Janowski type functions, the
theory of (x, y)-symmetrical functions and quantum calculus (or g-calculus).

Janowski in [1] introduced the class Pla, B], a given h € F and h(0) = 1 is said to
be in P|u, p] if and only if p(w) = m, for -1 < B <a <1 and s(w) € A where A

denote for the family of Schwarz functions, that is

A:={s € F,5(0)=0,|s(w)| <1, we k}. ()

Let y be an arbitrarily fixed integer and for ¢ = e%, a domain G C C is said to be

y-fold symmetric domain if eG = G. A function  is called y-symmetrical function for each
w € G if h(ew) = eh(w).

In 1995, Liczberski and Polubinski [2] constructed the concept of (x, y)-symmetrical

functions for (x =0,1,2,...,y—1),and (y = 2,3,...). If G is y-fold symmetric domain
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and x any integer, then a function /1 : G — C is called (x, y)-symmetrical if for each w € G,
h(ew) = e¢*h(w). The family of all (x,y)-symmetrical functions will be denoted by F,

we note that 73, 7} and fyl are families of even, odd and of y-symmetrical functions,
respectively.

Theorem 1 ([2]). For every mapping h : k — C, and a y-fold symmetric set k, then

1 1
h(w) = yZ: hyy (W), hyy(w) = y! yZ: e "h(e'w), we k. 3)
x=0 r=0

Remark 1. Equivalently, (3) may be written as

hay(w) = Z Soxow’, a; =1, 4)
v=1
where )
y— 1 =1 .
Opx = 1 Z g0 — v v+ x,/ ®)
Y20 0, v#ly+x;

(leN,y=12,...,x=0,12,...,y—1).

Recently the authors of [3,4] obtained many interesting results for various classes
using the concept of (x, y)-symmetrical functions and g-derivative.
In [5], Jackson introduced and studied the concept of the g-derivative operator o,/ (w)

as follows: () k()
w)—h(qw
ogh(a) = w0 7O (6)
W' (0), w = 0.
Equivalently (6), may be written as
Igh(w) =1+ Y [v]gaew’ ! w #0,
v=2
where
1-¢° 2 v-1
[v]g = =4 =14qg+g°+..+g9". (7)

Then

lim 9;h(w) = lim [o];w’ ' = o' = I (w),
qg—1- q—1-

where I/ (w) is the ordinary derivative.
The g-integral of a function h presented by Jackson [6] As a right inverse as

w ¢
| h@dz=w-q) ¥ ahor),
v=0
provided that Y 5° ; g°h(wq") is converges.
Proposition 1. If n and m any real (or complex) constants and w € k, then we have

1. 9y(nh(w) £ mg(w)) = nogh(w) £ mozg(w),
2. 9g(h(w)g(w)) = h(qw)ogg(w) + 948h(w)g (w) = h(w)dsg(w) + gh(w)g(quw),
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h(w)) _ §(w)ogh(w)—h(w)dyg(w)
3 aq(g(w)) - qg(qw)g(w) =

In recent years, using quantum (or g-calculus) for studying diverse families of analytic
functions. Srivastava et al. [7] found distortion and radius of univalent and starlikenss
for several subclasses of g-starlike functions. Naeem et al. [8] investigated subfamilies of
g-convex functions with respect to the Janowski functions connected with g-conic domain.
Govindaraj and Sivasubramanian in [9] found subclasses connected with g-conic domain.
In [10], we use the symmetric g-derivative operator to define a new subclass of analytic
and bi-univalent function. Srivastava [11] published survey-cum-expository review paper
which is useful for researchers and scholars.

Utilizing the ideas of g-derivative operator and the concept of (x,y)-symmetrical
functions we introduce a new subclass §; Y(a, B). This class is introduced by using the
g-derivative operator with the concept to (x, y)-symmetric points.

Definition 1. For arbitrary fixed numbers q,a,fand A, 0 < q <1, -1 < < a <1, let
8,; Y (a, B) denote the family of functions h € F which satisfies

af e

Ty (0) } € Pla,Bl, wek, (8)

where hy,, is defined in (3).

For special cases of the parameters ¢, a, B, x and y the class 5,; Y (a, B) yield several
known subclasses of F, namely: §f Y(a, B) := §*¥(«, B) introduced by the authors of [12];
§1l’y(a, B) := gy(a, B), introduced by the authors Latha and Darus [13]; gll’y(l, -1):= gy
as defined by Sakaguchi [14]; 3’11’1(& B) := Sla, B] which reduce to a well-known class
defined by Janowski [1]; 5’;’1(1 —2k,-1) = gq(K) which was introduced and studied
by Agrawal and Sahoo in [15]; Sv,}’l(l, -1) = [S‘Vq which was first introduced by Ismail
etal. [16]; 311'1 (1 -2k, —1) = S() the well-known class of starlike function of order x by
Robertson [17]; and 811’1 (1,—1,0) = S* the class introduced by Nevanlinna [18], etc.

We denote by /G;‘y (a, B) the subclass of F consisting of all functions & such that

wdgh(w) € Sv;’y(ac,ﬁ). )

We need to recall the following neighborhood concept introduced by Goodman [19]
and generalized by Ruscheweyh [20].

Definition 2. For any h € F, p-neighborhood of function h can be defined as:

Ny(h) = {ge]—": gw)=w+ Y bw’, Y vlay— by Sp}, (p>0). (10)
v=2 v=2
For e(w) = w, we can see that
No(e) = {g € F:g(w) :w—i-Zbyw”, Zv|bv| Sp}, (p>0). (11)
v=2 v=2

Ruscheweyh [20] proved, among other results, that for all # € C, with || < p,

h(w) + nw

147 €S = Ny(h) C S
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Lemma 1 ([21]). Let ¢ be a convex and g a starlike, for F analytic in U with F(0) = 1, then

fowwxDGW»

where CO(F(U)) denotes the closed convex hull of F(U).

The goal of this research to give a convolution conditions for a function % to be in
the classes gg Y(a,B) and ’aﬁ;y («, B) which will be used to drive a sufficient conditions,
Pélya—Schoenberg theorem and application. In the next section be the motivation of the
Definition 2, we give analogous definition of neighborhood for the class S;” («, 8) and

IE;W (a, B), then investigate related neighborhood results.

2. Results

Theorem 2. A function h € I%;Cy («, B) if and only if
1 (w — qu®) (1 4 Be'®) (1 + aei®)w
w - <
w|:]’l* <(1—w)(1_qw)(1_q2w) (1_uxw)(1_uxqw) #0, |T/U| <R <1,

where0 < g <1, =1 < B <a<1,0< ¢ <2mand uy is defined by (14).
Proof. We have, h € /G;‘y (a, B) if and only if

dg(wdgh(w)) 1+ we?

—  |w| <R,
which implies ' ‘
9 (wdgh(w)) (1 + Be'?) — Ighyy(w) {1+ we'?} #0. (12)
Setting h(w) = w + Yo, a,w", we have
(o) (o) 1
oh =1+ 0l pa,w? 1, 0y (wosh) =1+ oPayw’ ' =ophk —
q 21;2[ ]qv ‘7( q ) v;Z[ ]qv q (l—w)(l—qw)
Ighyy(w) = 9gh * ) =Y [olulasw®, (13)
X v=1
where
uy = dpx, and d,y is given by (5). (14)

The left hand side of (12) is equivalent to

(15)

ip i
ah * 1+ Be ~ L+we
1-w)(1l—qw) 1—uw
simplifying (15) we obtain

1 (1+ Be'®)w (1+ e w
o[ (T2~ 1)) 2O 1o

since wdgh x ¢ = h * wd,g, we can write the Equation (16) as

1, (-1 pe) (1 +aetw
wPl(Owawlq%ﬂ u—wma—wwﬂ}#g
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Remark 2. For g — 17 and spacial values of x,y, a and B, we have following result proved by
Ganesan and et al in [22] Silverman and et al in [23].

Theorem 3. A function f € ‘SN’; Y (a, B) if and only if

w

1@*(0“;ﬁf%;)—@jﬁifj}¢a|w<1,

where0 < g <1, =1 <B<a<1,0<¢ < 2mand uy is defined by (14).

Proof. Since h € g;’y(uc,ﬁ) if and only if g(w) = [ @dqg € ﬁ;’y(a,ﬁ), we have

w

il (w — quw®) (1 + Be'?) (14 ae'®)w
{g(O—MO—WMLw%O ﬂwwﬂwwﬂ}

w

1—w)(1—qw) 1—uw

1, (1+ Be'®)w (1+ ae'®)w '
i )

Thus the result follows from Theorem 3. O

Note that we can easily from Theorem 3 obtain that the equivalent condition for a
function h € S;¥(w, B) in the following Corollary.

Corollary 1. Forg € (0,1),-1 < B <a <1land¢$ € [0,27), then
hegg"y(a,/s)@%;éo, ,wek, (17)

where g(w) has the form

g<w) =w + Z tvwvl

v=2
— _ i
py = s 5”(; %Z Pt 18)

By using Corollary 1 we drive the sufficient condition theorem.

Theorem 4. Let h(w) = w + Y o apw®, be analyticink, for —1 < < a <1land0 < g <1, if

Z ([v}q - 5v,x) + ’“50,x - ,B[v}q’ |ﬂv| <1, (19)
=2 |DC - IB‘

then h(w) € g;’y(oc,ﬁ).

Proof. For the proof of Theorem 4, it suffices to show that % # 0 where g is given by

(18). Let h(w) = w + Y o p ap,w® and g(w) = w + Y 5, t,w”. The convolution

()@ _ 5

w

tya,w’ L, w € k.
v=2

From Corollary 1 that h(w) € [S'V; Y (a, B) if and only if % # 0, for g given by (18).
Using (18) and (19), we obtain

|ay||w|°~t >0, w € k.

* X o]y — 0y x 0B — Op x&
‘(f fv)(w)‘21_£[]q ,|—g£ifﬁ x|
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Thus, h(w) € gg’y(a,ﬁ). O
Theorem 5. Let f be a convex function and let h(w) € Sv,; Y (a, B) and satisfies inequality
o - S —
Z ([v]q U,x) + ’“ v,x ﬁ[”]q| ‘av| <1, (20)

then (hx f) € 5{;”(0(,/3).

Proof. Let f(w) = w+ Yoo, byw” is a convex and h(w) = w+ Y52, a,w’ € g;,y(a, B) and
satisfies inequality (20), therefore

[v]g — Su.x + | [0]gB — Su ]
v=2 |:B - D‘|

agk

1—

lay| > 0. (21)

To prove that (h* f) € Sv,; Y(a, B) it is enough to show that % # 0 where g is
given by (18). Consider

hxfxg)(w > _
\”g)”\ >1— Y Jas|[bol o]l
w v=2
Since w € k and g is convex, we obtain |b,| < 1. Using (21), we obtain

o)),y 5 o ot lhp =

w =2 |:B_1X|

lay| >0, w € k.
Thus, h* f € g;’y(tx,ﬁ). O
3. Applications
Corollary 2. Let h € 5; Y (a, B), and satisfies the inequality (20). Then
Fi(w) € S3¥(a, B), (i =1,2,3,4),

where

Fl(w):/ow @dt, B (w) :/Ow%dt,w <1241,

w w
= E/ h(t)dt,  Fy(w) = LH/ " (t)dt, Rm > 0.
w Jo m 0

Proof. Since

F(w) = ¢1(w) x h(w), i%w =log(1—w)7},
1
> 1 1 1—zw
Bw) = ga(w) #h(@), @) = Yo et = g g M 1z A,

FB(w) = ¢p3(w) xh(w),  ¢3(w) = i 2 = —2[w + log(1 — w)],

U+ w

1+
v+

Fy(w) = ¢g(w) * h(w), 2 w ,R{m} > 0.
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We note that 431, i =1,2,3,4. can easily be verified to be convex. Now, using Theorem 5
to obtain F;(w) € S, («, ), (i =1,2,3,4). O

4. (p, q9)-Neighborhoods for Functions in the Classes ‘SN',J;y («, B) and ﬁ;’y(w, B)

By taking motivation from Definition 2 and to find some neighborhood results for
our classes, we introduce the following concepts of neighborhood that analogous to those
obtained by Ruscheweyh [20].

Definition 3. For any h € F, p-neighborhood of function h can be defined as:

(e )

Ny o(h) = {f EF:f(w)=w+ i b,w?, Yolay — by| < p}, (p>0). (22
=2

v=2

For e(w) = w, we can see that

Nr)/,p(e) = {f eF:fw)=w+ i b,w", 3 Yolbo| < p}, (p>0). (23)

=2 v=2
Remark 3.
1. For 7, = v of Definition 3 we obtain Definition 2 of the neighborhood concept introduced by
Goodman [19] and generalized by Ruscheweyh [20].
2. For vy = [v] of Definition 3 we obtain the definition of neighborhood with q-derivative
Nq’}p(h),NqA,p(e), where [v], is given by Equation (7).

([v]q—év,x)‘ﬂolflv,x—g[y}q| of Definition 3 we obtain the definition of the neighborhood

for the classes S‘;’y(zx, B) and E;’y(zx, B) which is /\/'q)f'py(vc, B;h).

3. Forvy, =

Theorem 6. Let h € F, and for all complex number y, with |u| < p, if

h(w) + yw

Tty © Sy (a,B). (24)

Then N
Nyi (w, B;1) € S (a, B).

Proof. We assume that a function f defined by f(w) = w + Y37, byw” is in the class
./\/'; ;,y (a, B; ). In order to prove the theorem, we only need to prove that f € S; Y(a, B). We
would prove this claim in next three steps.

From Theorem 3 we have

= 1
he &t p) e —[(hxgw)] #0, wek, (25)

where .

2, [0]g — 0o + ([0]gf — S xa)e’

g(w)=w+ . w",

L (6 — )
where 0 < ¢ < 271, —1 < B < o < 1. We can write g(w) = w+ Y o, t,w?, where f;, is
given by (18).

Secondly, we obtain that (24) is equivalent to

w

KOEECIEN 26
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because, if h(w) = w + Y o , a,w” € F and satisfy (24), then (25) is equivalent to

he Sy (ap) e % {h(wl)ji(w)} £0,  |nl<p.

Thirdly, letting f(w) = w + Y_5., byw” we notice that

‘f(W) *g(W)‘ _ ‘h(W) +g(w) | (f(w) = h(w)) *g(W)‘
w

w

S

s - [ =)+ g0)
w
by using (26),
=p— Z(bv — ay)tpw®
v=2
< [0lg(1+1B])
>p—|w by, —a
Zp | |U;2 |IB—IX| | v U‘
> p—plw| > 0.
This proves that

w € k.

(F29)0) 4

In view of our observations (25), it follows that f € g; ¥(a, B). This completes the
proof of the theorem. O

Wheng - 17,x =y = « = 1 and B = —1 in the above theorem we obtain the
well-known result proved by Ruscheweyh in [20].

Theorem 7. Let h € §;W(a//3) ,for p1 < c. Then
Nop(, Bih) € 5Y (a, B).
where c is a non-zero real number with ¢ < ‘U’Luz(w) ‘, w € kand g is defined in Remark 1.

Proof. Let f(w) = w+ Y o, byw" € qupyl («, B; h). For the proof of Theorem 7, it suffices
to show that % # 0 where g is given by (18). Consider

w

‘f(w) +8(w) ‘ > ’h(w) *8(w) ‘ N ‘ (f (@) = h(w)) *g(w) | 27)
w w w
Since h € 5‘; Y (a, B), therefore applying Theorem 4, we obtain
’(’1*8)(”’)‘ >e 28)
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where ¢ is a non-zero real number and w € k. Now
) M) 28] _ [,
w v=2
= (Mq — o) + |"‘5vx - ,B[UM
< ! ! b, —a
© 1
S Z [U]q( + |IBD |bv _av|
olB —af
< =y, (29)
ol 1+ 180~ !
using (28) and (29) in (27), we obtain
ORI
w
where p; < c. This completes the proof. [
Theorem 8. Let h € I%g’y («, B), and for all complex number 1, with || < %, we have
_ h(w) +nw _ sy
Hy(w) = - € 857 (a, B). (30)

Proof. Leth € E;’y(w,/%) , for p; < c. Then

Hy(w) = h(al))++;717w

where

1—
Using the principle of convolution we obtain

h(w) * p(w) = wdgh * (w(w) . log<1_1w>>.

Since h € l%g’y(zx,ﬁ), wdgh € g;’y(zx,ﬁ) and for |57] < 1, ¢ is in the class of starlike
functions S, applying the convolution we obtain

p(w) stog (11 ) = [ EE @1

Applying the Alexander relation in (31), we obtain ¢(w) * log(

) is in the class of

xy(oc B). Hence

Hy (w) = wd,h + (¢(w) *log<1_1w>> € & (w,B), | < 411'

This completes the proof. [

convex functions K. Using Lemma 1 one can prove that K * S Y(a, B) C

Theorem 9. Let h € I%f;’y (a, B). Then

N;'py(a,ﬁ;h) C g;’y(zx, B).
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where p = 17—

Proof. Leth € l%;’y(oc,ﬁ), then by Theorem 8 H¢(w) € §;"y(a,‘3), 7| < 4. Choosing p = 1
and applying Theorem 6, we obtain our required result. [

5. Conclusions

Applications of the g-calculus have been the focal point in the recent times in various
mentioned branches of mathematics and physics [11]. In this paper, we have applied the
g-calculus for classes of analytic functions with respect to (x, y)-symmetric points. The
new classes have been defined and studied. In particular, we have investigated some
of its geometric properties such as a convolution conditions for the functions / to be
in the classes Sv,; Y(a,B) and ,’C;cy (a, B) and a sufficient conditions, application of Pélya—
Schoenberg by spatial examples and the neighborhood results related to the functions in
the classes 5,; Y (a, B) and I%;y (a, B). The idea used in this article can easily be implemented
to define several subclasses of analytic (odd-even-k-symmetrical) functions connected with
different image domains. This will open up a lot of new opportunities for research in
this and related fields. The generalized Janowski class and symmetric functions or using
symmetric g-derivative operator, basic (or g-) series and basic (or g-) polynomials, especially
the basic (or g-) hypergeometric functions and basic (or g-) hypergeometric polynomials
are applicable particularly in several diverse areas.
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