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Abstract: The purpose of this paper is to define new classes of analytic functions by amalgamating
the concepts of q-calculus, Janowski type functions and (x, y)-symmetrical functions. We use the
technique of convolution and quantum calculus to investigate the convolution conditions which
will be used as a supporting result for further investigation in our work, we deduce the sufficient
conditions, Pólya-Schoenberg theorem and the application. Finally motivated by definition of the
neighborhood, we give analogous definition of neighborhood for the classes S̃x,y

q (α, β) and K̃x,y
q (α, β),

and then investigate the related neighborhood results, which are also pointed out.

Keywords: analytic functions; Hadamard product; (x, y)-symmetrical functions; q-calculus; (ρ, q)-
neighborhood

1. Introduction

Let F (k) denote the family of all functions that are analytic in the open unit disc
k = {w ∈ C : |w| < 1} and let F represents a subfamily of class h ∈ F (k) which has the
form

h(w) = w +
∞

∑
v=2

avwv, (1)

and suppose S̃ containing all the functions in F that are univalent k. The convolution
or Hadamard product of two analytic functions h, g ∈ F where h is defined by (1) and
g(w) = w + ∑∞

v=2 bvwv, is

(h ∗ g)(w) = w +
∞

∑
v=2

avbvwv.

In order to define new classes of q-Janowski symmetrical functions defined in k, we
first recall the necessary notions and notations concerning, Janowski type functions, the
theory of (x, y)-symmetrical functions and quantum calculus (or q-calculus).

Janowski in [1] introduced the class P [α, β], a given h ∈ F and h(0) = 1 is said to

be in P [α, β] if and only if p(w) =
1 + αs(w)

1 + βs(w)
, for −1 ≤ β < α ≤ 1 and s(w) ∈ ∆ where ∆

denote for the family of Schwarz functions, that is

∆ := {s ∈ F , s(0) = 0, |s(w)| < 1, w ∈ k}. (2)

Let y be an arbitrarily fixed integer and for ε = e
2πi

y , a domain G ⊂ C is said to be
y-fold symmetric domain if εG = G. A function h is called y-symmetrical function for each
w ∈ G if h(εw) = εh(w).

In 1995, Liczberski and Polubinski [2] constructed the concept of (x, y)-symmetrical
functions for (x = 0, 1, 2, . . . , y− 1), and ( y = 2, 3, . . . ). If G is y-fold symmetric domain
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and x any integer, then a function h : G→ C is called (x, y)-symmetrical if for each w ∈ G,
h(εw) = εxh(w). The family of all (x, y)-symmetrical functions will be denoted by F x

y ,
we note that F 0

2 , F 1
2 and F 1

y are families of even, odd and of y-symmetrical functions,
respectively.

Theorem 1 ([2]). For every mapping h : k 7→ C, and a y-fold symmetric set k, then

h(w) =
y−1

∑
x=0

hx,y(w), hx,y(w) = y−1
y−1

∑
r=0

ε−rxh(εrw), w ∈ k. (3)

Remark 1. Equivalently, (3) may be written as

hx,y(w) =
∞

∑
v=1

δv,xavwv, a1 = 1, (4)

where

δv,x =
1
y

y−1

∑
r=0

ε(v−x)r =

{
1, v = ly + x;
0, v 6= ly + x;

, (5)

(l ∈ N, y = 1, 2, . . . , x = 0, 1, 2, . . . , y− 1).

Recently the authors of [3,4] obtained many interesting results for various classes
using the concept of (x, y)-symmetrical functions and q-derivative.

In [5], Jackson introduced and studied the concept of the q-derivative operator ∂qh(w)
as follows:

∂qh(w) =

{ h(w)−h(qw)
w(1−q) , w 6= 0,

h′(0), w = 0.
(6)

Equivalently (6), may be written as

∂qh(w) = 1 +
∞

∑
v=2

[v]qavwv−1 w 6= 0,

where
[v]q =

1− qv

1− q
= 1 + q + q2 + ... + qv−1. (7)

Note that as q→ 1−, [v]q → v. For a function h(w) = wv, we can note that

∂qh(w) = ∂q(wv) =
1− qv

1− q
wv−1 = [v]qwv−1.

Then
lim

q→1−
∂qh(w) = lim

q→1−
[v]qwv−1 = vwv−1 = h′(w),

where h′(w) is the ordinary derivative.
The q-integral of a function h presented by Jackson [6] As a right inverse as

∫ w

0
h(z)dqz = w(1− q)

∞

∑
v=0

qvh(wqv),

provided that ∑∞
v=0 qvh(wqv) is converges.

Proposition 1. If n and m any real (or complex) constants and w ∈ k, then we have

1. ∂q(nh(w)±mg(w)) = n∂qh(w)±m∂qg(w),
2. ∂q(h(w)g(w)) = h(qw)∂qg(w) + ∂qgh(w)g(w) = h(w)∂qg(w) + ∂qh(w)g(qw),
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3. ∂q

(
h(w)
g(w)

)
=

g(w)∂qh(w)−h(w)∂qg(w)

g(qw)g(w)
.

In recent years, using quantum (or q-calculus) for studying diverse families of analytic
functions. Srivastava et al. [7] found distortion and radius of univalent and starlikenss
for several subclasses of q-starlike functions. Naeem et al. [8] investigated subfamilies of
q-convex functions with respect to the Janowski functions connected with q-conic domain.
Govindaraj and Sivasubramanian in [9] found subclasses connected with q-conic domain.
In [10], we use the symmetric q-derivative operator to define a new subclass of analytic
and bi-univalent function. Srivastava [11] published survey-cum-expository review paper
which is useful for researchers and scholars.

Utilizing the ideas of q-derivative operator and the concept of (x, y)-symmetrical
functions we introduce a new subclass S̃x,y

q (α, β). This class is introduced by using the
q-derivative operator with the concept to (x, y)-symmetric points.

Definition 1. For arbitrary fixed numbers q, α, β and λ, 0 < q < 1, −1 ≤ β < α ≤ 1, let
S̃x,y

q (α, β) denote the family of functions h ∈ F which satisfies

<
{

w∂qh(w)

hx,y(w)

}
∈ P [α, β], w ∈ k, (8)

where hx,y is defined in (3).

For special cases of the parameters q, α, β, x and y the class S̃x,y
q (α, β) yield several

known subclasses of F , namely: S̃x,y
1 (α, β) := S̃x,y(α, β) introduced by the authors of [12];

S̃1,y
1 (α, β) := S̃y(α, β), introduced by the authors Latha and Darus [13]; S̃1,y

1 (1,−1) := S̃y

as defined by Sakaguchi [14]; S̃1,1
1 (α, β) := S̃ [α, β] which reduce to a well-known class

defined by Janowski [1]; S̃1,1
q (1 − 2κ,−1) = S̃q(κ) which was introduced and studied

by Agrawal and Sahoo in [15]; S̃1,1
q (1,−1) = S̃q which was first introduced by Ismail

et al. [16]; S̃1,1
1 (1− 2κ,−1) = S̃(κ) the well-known class of starlike function of order κ by

Robertson [17]; and S1,1
1 (1,−1, 0) = S∗ the class introduced by Nevanlinna [18], etc.

We denote by K̃x,y
q (α, β) the subclass of F consisting of all functions h such that

w∂qh(w) ∈ S̃x,y
q (α, β). (9)

We need to recall the following neighborhood concept introduced by Goodman [19]
and generalized by Ruscheweyh [20].

Definition 2. For any h ∈ F , ρ-neighborhood of function h can be defined as:

Nρ(h) =

{
g ∈ F : g(w) = w +

∞

∑
v=2

bvwv,
∞

∑
v=2

v|av − bv| ≤ ρ

}
, (ρ ≥ 0). (10)

For e(w) = w, we can see that

Nρ(e) =

{
g ∈ F : g(w) = w +

∞

∑
v=2

bvwv,
∞

∑
v=2

v|bv| ≤ ρ

}
, (ρ ≥ 0). (11)

Ruscheweyh [20] proved, among other results, that for all η ∈ C, with |η| < ρ,

h(w) + ηw
1 + η

∈ S̃∗ ⇒ Nρ(h) ⊂ S̃∗.
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Lemma 1 ([21]). Let φ be a convex and g a starlike, for F analytic in U with F(0) = 1, then

φ ∗ Fg
φ ∗ g

(U ) ⊂ CO(F(U )),

where CO(F(U )) denotes the closed convex hull of F(U ).

The goal of this research to give a convolution conditions for a function h to be in
the classes S̃x,y

q (α, β) and K̃x,y
q (α, β) which will be used to drive a sufficient conditions,

Pólya–Schoenberg theorem and application. In the next section be the motivation of the
Definition 2, we give analogous definition of neighborhood for the class S̃x,y

q (α, β) and
K̃x,y

q (α, β), then investigate related neighborhood results.

2. Results

Theorem 2. A function h ∈ K̃x,y
q (α, β) if and only if

1
w

[
h ∗
(

(w− qw3)(1 + βeiφ)

(1− w)(1− qw)(1− q2w)
− (1 + αeiφ)w

(1− uxw)(1− uxqw)

)]
6= 0, |w| < R ≤ 1,

where 0 < q < 1, −1 ≤ β < α ≤ 1, 0 ≤ φ < 2π and ux is defined by (14).

Proof. We have, h ∈ K̃x,y
q (α, β) if and only if

∂q(w∂qh(w))

∂qhx,y(w)
6= 1 + αeiφ

1 + βeiφ , |w| < R,

which implies
∂q(w∂qh(w))(1 + βeiφ)− ∂qhx,y(w){1 + αeiφ} 6= 0. (12)

Setting h(w) = w + ∑∞
v=2 avwv, we have

∂qh = 1+
∞

∑
v=2

[v]qavwv−1, ∂q
(
w∂qh

)
= 1+

∞

∑
v=2

[v]2qavwv−1 = ∂qh ∗ 1
(1− w)(1− qw)

.

∂qhx,y(w) = ∂qh ∗ 1
(1− uxw)

=
∞

∑
v=1

[v]quv
xavwv−1, (13)

where
uv

x = δv,x, and δv,x is given by (5). (14)

The left hand side of (12) is equivalent to

∂qh ∗
(

1 + βeiφ

(1− w)(1− qw)
− 1 + αeiφ

1− uxw

)
, (15)

simplifying (15) we obtain

1
w

[
w∂qh ∗

(
(1 + βeiφ)w

(1− w)(1− qw)
− (1 + γeiφ)w

1− uxw

)]
6= 0, (16)

since w∂qh ∗ g = h ∗ w∂qg, we can write the Equation (16) as

1
w

[
h ∗
(

(w− qw3)(1 + βeiφ)

(1− w)(1− qw)(1− q2w)
− (1 + αeiφ)w

(1− uxw)(1− uxqw)

)]
6= 0.
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Remark 2. For q → 1− and spacial values of x, y, α and β, we have following result proved by
Ganesan and et al in [22] Silverman and et al in [23].

Theorem 3. A function f ∈ S̃x,y
q (α, β) if and only if

1
w

[
h ∗
(

(1 + βeiφ)w
(1− w)(1− qw)

− (1 + αeiφ)w
1− uxw

)]
6= 0, |w| < 1,

where 0 < q < 1, −1 ≤ β < α ≤ 1, 0 ≤ φ < 2π and ux is defined by (14).

Proof. Since h ∈ S̃x,y
q (α, β) if and only if g(w) =

∫ w
0

h(ζ)
ζ dqζ ∈ K̃x,y

q (α, β), we have

1
w

[
g ∗
(

(w− qw3)(1 + βeiφ)

(1− w)(1− qw)(1− q2w)
− (1 + αeiφ)w

(1− uxw)(1− uxqw)

)]

=
1
w

[
h ∗
(

(1 + βeiφ)w
(1− w)(1− qw)

− (1 + αeiφ)w
1− uxw

)]
.

Thus the result follows from Theorem 3.

Note that we can easily from Theorem 3 obtain that the equivalent condition for a
function h ∈ S̃x,y

q (α, β) in the following Corollary.

Corollary 1. For q ∈ (0, 1),−1 ≤ β < α ≤ 1 and φ ∈ [0, 2π), then

h ∈ S̃x,y
q (α, β)⇔ (h ∗ g)(w)

w
6= 0, , w ∈ k, (17)

where g(w) has the form

g(w) = w +
∞

∑
v=2

tvwv,

tv =
[v]q − δv,x + ([v]qβ− δv,xα)eiφ

(β− α)eiφ . (18)

By using Corollary 1 we drive the sufficient condition theorem.

Theorem 4. Let h(w) = w + ∑∞
v=2 avwv, be analytic in k, for −1 ≤ β < α ≤ 1 and 0 < q < 1, if

∞

∑
v=2

{
([v]q − δv,x) +

∣∣αδv,x − β[v]q
∣∣

|α− β|

}
|av| ≤ 1, (19)

then h(w) ∈ S̃x,y
q (α, β).

Proof. For the proof of Theorem 4, it suffices to show that (h∗g)(w)
w 6= 0 where g is given by

(18). Let h(w) = w + ∑∞
v=2 avwv and g(w) = w + ∑∞

v=2 tvwv. The convolution

(h ∗ g)(w)

w
= 1 +

∞

∑
v=2

tvavwv−1, w ∈ k.

From Corollary 1 that h(w) ∈ S̃x,y
q (α, β) if and only if (h∗g)(w)

w 6= 0, for g given by (18).
Using (18) and (19), we obtain

∣∣∣∣ ( f ∗ g)(w)

w

∣∣∣∣ ≥ 1−
∞

∑
v=2

[v]q − δv,x + |[v]qβ− δv,xα|
|β− α| |av||w|v−1 > 0, w ∈ k.
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Thus, h(w) ∈ S̃x,y
q (α, β).

Theorem 5. Let f be a convex function and let h(w) ∈ S̃x,y
q (α, β) and satisfies inequality

∞

∑
v=2

{
([v]q − δv,x) +

∣∣αδv,x − β[n]q
∣∣

|α− β|

}
|av| < 1, (20)

then (h ∗ f ) ∈ S̃x,y
q (α, β).

Proof. Let f (w) = w + ∑∞
v=2 bvwv is a convex and h(w) = w + ∑∞

v=2 avwv ∈ S̃x,y
q (α, β) and

satisfies inequality (20), therefore

1−
∞

∑
v=2

[v]q − δv,x + |[v]qβ− δv,xα|
|β− α| |av| > 0. (21)

To prove that (h ∗ f ) ∈ S̃x,y
q (α, β) it is enough to show that (h∗ f ∗g)(w)

w 6= 0 where g is
given by (18). Consider∣∣∣∣ (h ∗ f ∗ g)(w)

w

∣∣∣∣ ≥ 1−
∞

∑
v=2
|av||bv||tv||w|v−1.

Since w ∈ k and g is convex, we obtain |bv| ≤ 1. Using (21), we obtain∣∣∣∣ (h ∗ f ∗ g)(w)

w

∣∣∣∣ ≥ 1−
∞

∑
v=2

[v]q − δv,x + |[v]qβ− δv,xα|
|β− α| |av| > 0, w ∈ k.

Thus, h ∗ f ∈ S̃x,y
q (α, β).

3. Applications

Corollary 2. Let h ∈ S̃x,y
q (α, β), and satisfies the inequality (20). Then

Fi(w) ∈ S̃x,y
q (α, β), (i = 1, 2, 3, 4),

where

F1(w) =
∫ w

0

h(t)
t

dt, F2(w) =
∫ w

0

h(t)− h(zt)
t− zt

dt, |z| ≤ 1, z 6= 1,

F3(w) =
2
w

∫ w

0
h(t)dt, F4(w) =

m + 1
m

∫ w

0
tm−1h(t)dt,<m > 0.

Proof. Since

F1(w) = φ1(w) ∗ h(w), φ1(w) =
∞

∑
1

1
v

wv = log(1− w)−1,

F2(w) = φ2(w) ∗ h(w), φ2(w) =
∞

∑
1

1− zv

v(1− z)
wv =

1
1− z

log(
1− zw
1− w

), |z| ≤ 1, z 6= 1,

F3(w) = φ3(w) ∗ h(w), φ3(w) =
∞

∑
0

2
v + 1

wv =
−2[w + log(1− w)]

w
,

F4(w) = φ4(w) ∗ h(w), φ4(w) =
∞

∑
0

1 + m
v + m

wv,<{m} > 0.
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We note that φi, i = 1, 2, 3, 4. can easily be verified to be convex. Now, using Theorem 5
to obtain Fi(w) ∈ S̃x,y

q (α, β), (i = 1, 2, 3, 4).

4. (ρ, q)-Neighborhoods for Functions in the Classes S̃x,y
q (α, β) and K̃x,y

q (α, β)

By taking motivation from Definition 2 and to find some neighborhood results for
our classes, we introduce the following concepts of neighborhood that analogous to those
obtained by Ruscheweyh [20].

Definition 3. For any h ∈ F , ρ-neighborhood of function h can be defined as:

Nγ,ρ(h) =

{
f ∈ F : f (w) = w +

∞

∑
v=2

bvwv,
∞

∑
v=2

γv|av − bv| ≤ ρ

}
, (ρ ≥ 0). (22)

For e(w) = w, we can see that

Nγ,ρ(e) =

{
f ∈ F : f (w) = w +

∞

∑
v=2

bvwv,
∞

∑
v=2

γv|bv| ≤ ρ

}
, (ρ ≥ 0). (23)

Remark 3.

1. For γv = v of Definition 3 we obtain Definition 2 of the neighborhood concept introduced by
Goodman [19] and generalized by Ruscheweyh [20].

2. For γv = [v]q of Definition 3 we obtain the definition of neighborhood with q-derivative
N λ

q,ρ(h),N λ
q,ρ(e), where [v]q is given by Equation (7).

3. For γv =
([v]q−δv,x)+|αδv,x−β[v]q|

|α−β| of Definition 3 we obtain the definition of the neighborhood

for the classes S̃x,y
q (α, β) and K̃x,y

q (α, β) which is N x,y
q,ρ (α, β; h).

Theorem 6. Let h ∈ F , and for all complex number η, with |µ| < ρ, if

h(w) + ηw
1 + η

∈ S̃x,y
q (α, β). (24)

Then
N x,y

q,ρ (α, β; h) ⊂ S̃x,y
q (α, β).

Proof. We assume that a function f defined by f (w) = w + ∑∞
v=2 bvwv is in the class

N x,y
q,ρ (α, β; h). In order to prove the theorem, we only need to prove that f ∈ S̃x,y

q (α, β). We
would prove this claim in next three steps.

From Theorem 3 we have

h ∈ S̃x,y
q (α, β)⇔ 1

w
[(h ∗ g(w))] 6= 0, w ∈ k, (25)

where

g(w) = w +
∞

∑
v=2

[v]q − δv,x + ([v]qβ− δv,xα)eiφ

(β− α)eiφ wn,

where 0 ≤ φ < 2π,−1 ≤ β < α ≤ 1. We can write g(w) = w + ∑∞
v=2 tvwv, where tv is

given by (18).
Secondly, we obtain that (24) is equivalent to∣∣∣∣h(w) ∗ g(w)

w

∣∣∣∣ ≥ ρ, (26)
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because, if h(w) = w + ∑∞
v=2 avwv ∈ F and satisfy (24), then (25) is equivalent to

h ∈ S̃x,y
q (α, β)⇔ 1

w

[
h(w) ∗ g(w)

1 + η

]
6= 0, |η| < ρ.

Thirdly, letting f (w) = w + ∑∞
v=2 bvwv we notice that∣∣∣∣ f (w) ∗ g(w)

w

∣∣∣∣ = ∣∣∣∣h(w) ∗ g(w)

w
+

( f (w)− h(w)) ∗ g(w)

w

∣∣∣∣
≥ ρ−

∣∣∣∣ ( f (w)− h(w)) ∗ g(w)

w

∣∣∣∣,
by using (26),

= ρ−
∣∣∣∣∣ ∞

∑
v=2

(bv − av)tvwv

∣∣∣∣∣
≥ ρ− |w|

∞

∑
v=2

[v]q(1 + |β|)
|β− α| |bv − av|

≥ ρ− ρ|w| > 0.

This proves that
( f ∗ g)(w)

w
6= 0, w ∈ k.

In view of our observations (25), it follows that f ∈ S̃x,y
q (α, β). This completes the

proof of the theorem.

When q → 1−, x = y = α = 1 and β = −1 in the above theorem we obtain the
well-known result proved by Ruscheweyh in [20].

Theorem 7. Let h ∈ S̃x,y
q (α, β) , for ρ1 < c. Then

N x,y
q,ρ1(α, β; h) ⊂ S̃x,y

q (α, β).

where c is a non-zero real number with c ≤
∣∣∣ (h∗g)(w)

w

∣∣∣, w ∈ k and g is defined in Remark 1.

Proof. Let f (w) = w + ∑∞
v=2 bvwv ∈ N x,y

q,ρ1(α, β; h). For the proof of Theorem 7, it suffices

to show that ( f ∗g)(w)
w 6= 0 where g is given by (18). Consider∣∣∣∣ f (w) ∗ g(w)

w

∣∣∣∣ ≥ ∣∣∣∣h(w) ∗ g(w)

w

∣∣∣∣− ∣∣∣∣ ( f (w)− h(w)) ∗ g(w)

w

∣∣∣∣. (27)

Since h ∈ S̃x,y
q (α, β), therefore applying Theorem 4, we obtain∣∣∣∣ (h ∗ g)(w)

w

∣∣∣∣ ≥ c, (28)
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where c is a non-zero real number and w ∈ k. Now∣∣∣∣ ( f (w)− h(w)) ∗ g(w)

w

∣∣∣∣ =
∣∣∣∣∣ ∞

∑
v=2

(bv − av)tvwv

∣∣∣∣∣
≤

∞

∑
v=2

([v]q − δv,x) +
∣∣αδv,x − β[v]q

∣∣
|α− β| |bv − av|

≤
∞

∑
v=2

[v]q(1 + |β|)
|β− α| |bv − av|

≤ ρ|β− α|
[v]q(1 + |β|)

= ρ1, (29)

using (28) and (29) in (27), we obtain∣∣∣∣ f (w) ∗ g(w)

w

∣∣∣∣ ≥ c− ρ1 > 0,

where ρ1 < c. This completes the proof.

Theorem 8. Let h ∈ K̃x,y
q (α, β), and for all complex number η, with |µ| < 1

4 , we have

Hη(w) =
h(w) + ηw

1 + η
∈ S̃x,y

q (α, β). (30)

Proof. Let h ∈ K̃x,y
q (α, β) , for ρ1 < c. Then

Hη(w) =
h(w) + ηw

1 + η

= (h(w) ∗ ψ(w)), w ∈ k.

where

ψ(w) =
w− η

1+η w2

1− w
.

Using the principle of convolution we obtain

h(w) ∗ ψ(w) = w∂qh ∗
(

ψ(w) ∗ log
(

1
1− w

))
.

Since h ∈ K̃x,y
q (α, β), w∂qh ∈ S̃x,y

q (α, β) and for |η| < 1
4 , ψ is in the class of starlike

functions S̃ , applying the convolution we obtain

ψ(w) ∗ log
(

1
1− w

)
=
∫ w

0

ψ(ζ)

ζ
dqζ. (31)

Applying the Alexander relation in (31), we obtain ψ(w) ∗ log
(

1
1−w

)
is in the class of

convex functions K̃. Using Lemma 1 one can prove that K̃ ∗ S̃x,y
q (α, β) ⊂ S̃x,y

q (α, β). Hence

Hη(w) = w∂qh ∗
(

ψ(w) ∗ log
(

1
1− w

))
∈ S̃x,y

q (α, β), |η| < 1
4

.

This completes the proof.

Theorem 9. Let h ∈ K̃x,y
q (α, β). Then

N x,y
q,ρ (α, β; h) ⊂ S̃x,y

q (α, β).
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where ρ = |β−α|
4(1+|β|) .

Proof. Let h ∈ K̃x,y
q (α, β), then by Theorem 8 Hς(w) ∈ S̃x,y

q (α, β), |η| < 1
4 . Choosing ρ = 1

4
and applying Theorem 6, we obtain our required result.

5. Conclusions

Applications of the q-calculus have been the focal point in the recent times in various
mentioned branches of mathematics and physics [11]. In this paper, we have applied the
q-calculus for classes of analytic functions with respect to (x, y)-symmetric points. The
new classes have been defined and studied. In particular, we have investigated some
of its geometric properties such as a convolution conditions for the functions h to be
in the classes S̃x,y

q (α, β) and K̃x,y
q (α, β) and a sufficient conditions, application of Pólya–

Schoenberg by spatial examples and the neighborhood results related to the functions in
the classes S̃x,y

q (α, β) and K̃x,y
q (α, β). The idea used in this article can easily be implemented

to define several subclasses of analytic (odd-even-k-symmetrical) functions connected with
different image domains. This will open up a lot of new opportunities for research in
this and related fields. The generalized Janowski class and symmetric functions or using
symmetric q-derivative operator, basic (or q-) series and basic (or q-) polynomials, especially
the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials
are applicable particularly in several diverse areas.
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