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Received: 20 June 2022

Accepted: 7 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Distance Antimagic Product Graphs
Rinovia Simanjuntak 1,∗ and Aholiab Tritama 2,†

1 Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi
Bandung, Bandung 40132, Indonesia

2 Master’s Program in Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,
Bandung 40132, Indonesia; atritama@deakin.edu.au

* Correspondence: rino@math.itb.ac.id
† Current address: Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds,

Geelong, VIC 3216, Australia.

Abstract: A distance antimagic graph is a graph G admitting a bijection f : V(G)→ {1, 2, . . . , |V(G)|}
such that for two distinct vertices x and y, ω(x) 6= ω(y), where ω(x) = ∑y∈N(x) f (y), for N(x) the
open neighborhood of x. It was conjectured that a graph G is distance antimagic if and only if
G contains no two vertices with the same open neighborhood. In this paper, we study several
distance antimagic product graphs. The products under consideration are the three fundamental
graph products (Cartesian, strong, direct), the lexicographic product, and the corona product. We
investigate the consequence of the non-commutative (or sometimes called non-symmetric) property
of the last two products to the antimagicness of the product graphs.

Keywords: distance antimagic labeling; graph product; Cartesian product; strong product; direct
product; lexicographic product; corona product

1. Introduction

Let G = G(V, E) be a finite, simple, and undirected graph of order n.
In 1994, Vilfred introduced distance magic labeling in his Ph.D. thesis [1]. A distance

magic labeling of a graph G is a bijection f : V(G)→ {1, 2, . . . , n} such that at any vertex x,
the weight of x, ω(x) = ∑y∈N(x) f (y) is constant, where N(x) is the open neighborhood of
x, i.e., the set of vertices adjacent to x. In 2013, the notion of distance antimagic labeling of
a graph G was then introduced by Kamatchi and Arumugam [2]. A bijection f : V(G)→
{1, 2, . . . , n} is called a distance antimagic labeling of graph G if for two distinct vertices x and
y their weights are also distinct, i.e., ω(x) 6= ω(y). A graph admitting a distance antimagic
labeling is called a distance antimagic graph. In the same paper, Kamatchi and Arumugam
conjectured the following.

Conjecture 1 ([2]). A graph G is distance antimagic if and only if G does not have two vertices
with the same open neighborhood.

Some graphs supporting the truth of Conjecture 1 are, among others, the path Pn, the
cycle Cn (n 6= 4), the wheel Wn (n 6= 4) [2], and the hypercube Qn (n ≥ 3) [3]. In 2016, Llado
and Miller [4] utilized Combinatorial Nullstellensatz to prove that a tree with l leaves and
2l vertices is distance antimagic.

In 2017, Arumugam et al. [5] and Bensmail et al. [6] introduced a weaker notion
of antimagic labeling, called local antimagic labeling, where only adjacent vertices must
be distinguished. It was conjectured in both articles that any connected graph other
than K2 admits local antimagic labeling. This conjecture has been completely settled by
Haslegrave [7] using the probabilistic method.

A generalization of the distance antimagic labeling was proposed in [8]. Suppose
that D ⊆ {0, 1, . . . , diam(G)} is a set of distances and ND(x) = {y|d(x, y) = d, d ∈ D}
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is the D-neighborhood of the vertex x. A D-antimagic labeling of a graph G is a bijection
f : V(G) → {1, . . . , n} such that the weight ωD(x) = ∑y∈ND(x) f (y) is distinct for each
vertex x. It was conjectured that a graph admits a D-antimagic labeling if and only if it
does not contain two vertices having the same D-neighborhood.

In the rest of the paper, we shall prove that Conjecture 1 is true for some product
graphs. We consider the three fundamental graph products (Cartesian, strong, and direct
products), the lexicographic product, and the corona product. First, Section 2 provides
definitions and notations of the graph products under consideration. Next, Section 3
considers distance antimagic graphs obtained from Cartesian, strong, and direct products.
Then, in Section 4, we present distance antimagic lexicographic product graphs. Finally, in
Section 5, we present distance antimagic corona product graphs. Since the corona product
is not commutative (or sometimes called not symmetric) in general, we shall investigate
the consequence of that property to the antimagicness of the product graphs.

2. Graph Products: Definition and Notation

This section presents definitions of the graph products considered in this paper. We
start with the three fundamental graph products: Cartesian, strong, and direct. In all three
products, the product of graphs G and H is another graph whose vertex set is the Cartesian
product of sets V(G)×V(H). However, each product has different rules for adjacencies.
All notations of the fundamental graph products are taken from [9].

Definition 1. The Cartesian product of G and H, denoted by G2H, is the graph with V(G2H) =
V(G)×V(H) and two vertices (u, u′) and (v, v′) are adjacent if and only if either

1. u = v and u′ is adjacent to v′ in H, or
2. u′ = v′ and u is adjacent to v in G.

Definition 2. The direct product of G and H, denoted by G×H, is the graph with V(G×H) =
V(G)×V(H) and the two vertices (u, u′) and (v, v′) are adjacent if and only if u is adjacent to v
and u′ is adjacent to v′.

Definition 3. The strong product of G and H, denoted by G� H, is the graph with V(G� H) =
V(G)×V(H), and the two vertices (u, u′) and (v, v′) are adjacent if and only if either

1. u is adjacent to v, and u′ is adjacent to v′, or
2. u = v and u′ is adjacent to v′ in H, or
3. u′ = v′ and u is adjacent to v in G.

Note that G2H and G× H are subgraphs of G � H. The Cartesian, the direct, and the
strong products are both commutative (or sometimes called symmetric) and associative.
Thus we can omit parentheses when dealing with products with more than two factors.
Refer to Figure 1 for examples of the three fundamental graph products.

Figure 1. Examples of fundamental graph products: P32P4, P3 × P4, and P3 � P4.

The next product, the lexicographic product, although associative, is not commutative‘[9].
An example for the lexicographic product is presented in Figure 2.

Definition 4. The lexicographic product of graphs G and H, denoted by G ◦ H, is a graph
with V(G ◦ H) = V(G)×V(H) and the two vertices (u, u′) and (v, v′) are adjacent if and only
if either

1. u = v and u′ is adjacent to v′ in H, or
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2. u and v are adjacent in G.

Figure 2. Examples of lexicographic product: P3 ◦ K3 and K3 ◦ P3.

The final graph product under consideration is the corona product, which is generally
not commutative and is never associative. For examples of the corona product, refer to
Figure 3.

Definition 5 ([10]). The corona product of G and H, denoted by G� H, is the graph obtained
by taking a copy of G and |V(G)| copies of H and joining the i-th vertex of G to every vertex in the
i-th copy of H.

Figure 3. Examples of corona product: K3 � P3 and P3 � K3.

In the upcoming sections, we frequently use the following property of graphs.

Definition 6. A graph G is called monotone if there exists a vertex labeling λ, i.e., a bijection
λ : V(G)→ {1, 2, . . . , n}, such that λ(u) < λ(v) implies ω(u) ≤ ω(v) for every pair of distinct
vertices u, v in G.

It is obvious that every distance magic graph is monotone. An example of a non-
distance magic but the monotone graph is the even path P2k = v1v2 . . . v2k−1v2k, where
vertices v1, v2, . . . , vk are labeled with consecutive odd integers and v2k, v2k−1, . . . , vk+1 are
labeled with consecutive even integers. On the other hand, every complete graph of order
at least 2 is non-monotone.

3. Distance Antimagic Graphs Obtained from Fundamental Graph Products

This section studies the distance antimagicness of graphs produced by three funda-
mental graph products: the Cartesian product, the strong product, and the direct product.

In [2], Kamatchi and Arumugam posed whether the Cartesian product G2K2 is dis-
tance antimagic. A partial positive answer was given in [11], where it was proven that
Cn2K2 is distance antimagic. In the next two theorems, we answer the previous question
for the cases of G ∈ {Pn, Kn,n}.

Theorem 1. Pn2K2 is distance antimagic if and only if n 6= 2.

Proof. It is obvious that P22K2 ' C4 is not distance antimagic. For the remaining values
of n, we define a vertex labeling λ.

Let V(K22Pn) = {(xi, yj)|xi ∈ K2, yj ∈ Pn} and use the following notations λij =
λ(xi, yj) and ωij = ω(xi, yj).
Case 1. For n ≡ 0 mod 3:

λ1j =

{
2j− 1 , j odd
2j , j even
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λ2j =

{
2j , j odd
2j− 1 , j even.

The weights induced by the labeling as mentioned above are:

ω1j =


6j , 1 ≤ j ≤ n− 1, j odd
6j− 3 , 1 ≤ j ≤ n− 1, j even
4n− 2 , j = n odd
4n− 4 , j = n even

ω2j =



4 , j = 1
6j− 3 , 2 ≤ j ≤ n− 1, j odd
6j , 2 ≤ j ≤ n− 1, j even
4n− 4 , j = n odd
4n− 2 , j = n even

Case 2. For n ≡ 1 mod 3:

λ1j =

{
2j− 1 , 2 ≤ j ≤ n− 1
2j , j = 1, n

λ2j =

{
2j , 2 ≤ j ≤ n− 1
2j− 1 , j = 1, n,

and thus

ω1j =


4 , j = 1
6j− 2 , 3 ≤ j ≤ n− 2
6j− 1 , j = 2, n− 1
4n− 4 , j = n

ω2j =


6 , j = 1
6j− 1 , 3 ≤ j ≤ n− 2
6j− 2 , j = 2, n− 1
4n− 2 , j = n

Case 3. For n ≡ 2 mod 3, n 6= 2:

λ1j =


2 , j = 1
2j− 1 , 2 ≤ j ≤ n− 2
2n− 1 , j = n− 1
2n− 3 , j = n

λ2j =

{
1 , j = 1
2j , j ≥ 2,
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which lead to

ω1j =



4 , j = 1
11 , j = 2
6j− 2 , 3 ≤ j ≤ n− 3
6j , j = n− 2
6j− 4 , j = n− 1
6n− 1 , j = n

ω2j =



6 , j = 1
10 , j = 2
6j− 1 , 3 ≤ j ≤ n− 2
6j + 1 , j = n− 1
4n− 5 , j = n.

In all three cases, the weight of each vertex is distinct. Examples of the labelings for
Pn2K2, n = 3, 4, 5 can be seen in Figure 4.

2 3

1 4 5

6

3 5

4 6

2 8

71 1 4 6 8 10

2 3 5 9 7

4 12 8

6 9 10

6

4

14

12

10

11

16

17

6

4

15

19

10 17 25

201811

Figure 4. Examples of distance antimagic labeling for Pn2K2, n = 3, 4, 5. The vertices’ labels are
written in black, while their weights are blue.

Theorem 2. Kn,n2K2 is distance antimagic if and only if n 6= 1.

Proof. Suppose that X and Y are the natural bipartition sets of V(Kn,n). Let λ′ be a vertex
labeling of Kn,n where the vertices in X are labeled with 1, 2, . . . , n and those in Y are
labeled with n + 1, n + 2, . . . , 2n. Define a labeling λ for Kn,n2K2 by λ(v, 1) = λ′(v) and
λ(v, 2) = λ′(v) + 2n.

We denote it by K1 = {(x, 1)|x ∈ X}, K2 = {(y, 1)|y ∈ Y}, K3 = {(x, 2)|x ∈ X},
and K4 = {(y, 2)|y ∈ Y} (see Figure 5). Let ka be the sum of all labels in Ka, which are
k1 = (n+1

2 ), k2 = k1 + n2, k3 = k1 + 2n2, and k4 = k1 + 3n2. Then the vertex-weights in
Kn,n are

ω(v) =


k2 + λ(v) + 2n , v ∈ K1,
k1 + λ(v) + 2n , v ∈ K2,
k4 + λ(v)− 2n , v ∈ K3,
k3 + λ(v)− 2n , v ∈ K4.

Let u and v be two arbitrary vertices in Ka and Kb, respectively. If a = b then ω(u)−
ω(v) = λ(u)− λ(v), which is not zero. If a 6= b, it is easy to check that ω(u)− ω(v) 6= 0
by considering 1− n < λ(u)− λ(v) < n− 1.

X Y

K1 K2

K3 K4

Figure 5. The bipartition sets of V(Kn,n) (left) and the product graph Kn,n2K2 (right).

In the next theorem, we change the factor K2 into K3 and study the antimagicness
of Pn2K3.



Symmetry 2022, 14, 1411 6 of 15

Theorem 3. For n ≥ 1, Pn2K3 is distance antimagic.

Proof. Let V(Pn × K3) = {(xi, yj)|xi ∈ V(Pn), yj ∈ V(K3)}. In the following four cases, we
define a vertex labeling λ and denote it by λij = λ(xi, yj) and ωij = ω(xi, yj).
Case 1. For n even:

λ1j =

{
3j− 2 , j odd
3j , j even.

λ2j = 3j− 1, 1 ≤ j ≤ n.

λ3j =


3j , j ≤ n− 2, j odd
3j− 2 , j ≤ n− 2, j even
3n− 2 , j = n− 1
3n− 3 , j = n.

Therefore, for n = 2, ω11 = 12, ω12 = 9, ω21 = 10, ω22 = 11, ω31 = 6, and ω32 = 15.
For n ≥ 4,

ω1j =



11 , j = 1
12j− 1 , 2 ≤ j ≤ n− 2, j odd
12j− 7 , 2 ≤ j ≤ n− 2, j even
12n− 13 , j = n− 1
9n− 8 , j = n

ω2j =


9 , j = 1
12j− 4 , 2 ≤ j ≤ n− 2
12n− 15 , j = n− 1
9n− 7 , j = n

ω3j =



7 , j = 1
12j− 7 , 2 ≤ j ≤ n− 3, j odd
12j− 1 , 2 ≤ j ≤ n− 3, j even
12n− 24 , j = n− 2
12n− 20 , j = n− 1
9n− 3 , j = n.

Case 2. For n ≡ 1 mod 4, n 6= 5:

λ1j =

{
3j− 2 , j odd
3j , j even

λ2j = 3j− 1, 1 ≤ j ≤ n

λ3j =


3j , j ≤ n− 2, j odd
3j− 2 , j ≤ n− 2, j even
3n , j = n− 1
3n− 5 , j = n,
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and so

ω1j =



11 , j = 1
12j− 1 , 2 ≤ j ≤ n− 2, j odd
12j− 7 , 2 ≤ j ≤ n− 2, j even
12n− 14 , j = n− 1
9n− 9 , j = n

ω2j =


9 , j = 1
12j− 4 , 2 ≤ j ≤ n− 2
12n− 10 , j = n− 1
9n− 11 , j = n

ω3j =



7 , j = 1
12j− 7 , 2 ≤ j ≤ n− 3, j odd
12j− 1 , 2 ≤ j ≤ n− 3, j even
12n− 26 , j = n− 2
12n− 18 , j = n− 1
9n− 3 , j = n.

Case 3. For n = 5 or n ≡ 3 mod 4, n 6= 3:

λ1j =

{
3j− 2 , j odd
3j , j even

λ2j =

{
3n , j = 1
3j− 1 , j ≥ 2

λ3j =


3j , j odd
3j− 2 , j even
2 , j = n.

Thereforem

ω1j =


3n + 9 , j = 1
12j− 1 , 2 ≤ j ≤ n− 1, j odd
12j− 7 , 2 ≤ j ≤ n− 1, j even
6n− 2 , j = n

ω2j =


9 , j = 1
3n + 18 , j = 2
12j− 4 , 2 ≤ j ≤ n− 1
6n− 4 , j = n

ω3j =



3n + 5 , j = 1
12j− 7 , 2 ≤ j ≤ n− 2, j odd
12j− 1 , 2 ≤ j ≤ n− 2, j even
9n− 11 , j = n− 1
9n− 8 , j = n.
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Case 4. For n = 3, define a vertex labeling λ11 = 1, λ12 = 4, λ13 = 3, λ21 = 8, λ22 = 7,
λ23 = 5, λ31 = 9, λ32 = 2, λ33 = 6. Thus we obtain the following weights ω11 = 21,
ω12 = 13, ω13 = 15, ω21 = 17, ω22 = 19, ω23 = 16, ω31 = 11, ω32 = 26, ω33 = 10.

It is clear that the weights of the vertices are different in all cases. Examples of the
labeling for Pn2K3, n = 6, 7, 9 can be seen in Figure 6.

1 6 7 12 13 18 19

2 5 8 11 14 17 20

3 9 154 10

11 17 4135 59

9 20 32 44 56

7 23 29 47 16 21

23

24 25

26

222753

65 83 94 72

68 80 97 70

71 82 90 78

1

2

3 4

5

6 7

8

9 10

11

12 13

14

15 16

17

18

7

9

11 17

20

29

32

35

44

47 53

56

59 46

48

50

41

23

6

5 8 11 14 17 2021

12 18 191371

3 4 9 10 15 16 2

30 17 35 41 59 65 40

9 39 32 44 56 68 38

26 23 29 47 53 52 55

Figure 6. Examples of distance antimagic labeling for Pn2K3, n = 6, 7, 9. The vertices’ labels are
written in black, while their weights are blue.

In [12], it was proven that for any odd integer n ≥ 3, Cn2K3 is distance antimagic. The
same paper also asked whether Cn2K3 is distance antimagic when n is even. We then ask a
more general question as in the following.

Problem 1. Is G2K3 distance antimagic?

Our result is for distance magic instead of distance antimagic for the direct product.

Theorem 4. Let G and H be regular distance magic graphs, then G× H is also distance magic.

Proof. Let λG and λH be distance magic labeling of G and H, respectively. Assume that G
is on n vertices, rG and rH are the degree of vertices in G and H, respectively.

Define a labeling λ for G× H as follows.

λ(u, v) = λG(u) + (λH(v)− 1)n.
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Then, we obtain the following vertex-weight for any vertex (u, v).

ω(u, v) = ∑
u′∈N(u)

∑
v′∈N(v)

λ(u′, v′)

= ∑
u′∈N(u)

∑
v′∈N(v)

(λG(u′) + λH(v′)n− n)

= rH ∑
u′∈N(u)

λG(u′) + rG ∑
v′∈N(v)

λH(v′)n− rGrHn

= rHωG(u) + rGωH(v)− rGrHn.

Since rH , ωG, rG, ωH , and n are constant, then ω(u, v) is constant for every vertex
(u, v).

We conclude this section by presenting some sufficient conditions for the strong
product G � H to be distance antimagic.

Theorem 5. Let G be rG-regular and H be rH-regular, with rG ≥ rH . If G is distance magic and
H is monotone, then G � H is distance antimagic.

Proof. Let λG be a distance magic labeling of G with weigh ωG, and n be the order of G.
Let λH be a monotone labeling of H with weight ωH .

Define a labeling λ for G � H as λ(u, v) = λG(u) + (λH(v)− 1)n. Thus for any vertex
(u, v), we obtain the following vertex-weight.

ω(u, v) = ∑
u′∈N(u)

∑
v′∈N(v)

λ(u′, v′) + ∑
u′∈N(u)

λ(u′, v′) + ∑
v′∈N(v)

λ(u′, v′)

=(ωG(u) + (λH(v)− 1)n) + ∑
v′∈N(v)

(ωG(u) + rG(λH(v′)− 1)n)

+ ∑
v′∈N(v)

(λG(u) + (λH(v′)− 1)n)

=(ωG(u) + λH(v)rGn− rGn) + (rHωG(u) + ωH(v)rGn− rHrGn)

+ (rHλG(u) + ωH(v)n− rHn).

Let (u1, v1) and (u2, v2) be two distinct vertices in G � H, with λH(v1) > λH(v2). Then

ω(u1, v1)−ω(u2, v2) =λH(v1)rGn + ωH(v1)rGn + rHλG(u1) + ωH(v1)n

− λH(v2)rGn−ωH(v2)rGn− rHλG(u2)−ωH(v2)n

≥rGn + 0 + rH(1− n) + 0 > 0.

In Theorem 5, H must be monotone for G � H to be distance antimagic. In the
following, we present an example of a non-monotone graph H, that is nP2, where G � H is
distance antimagic.

Theorem 6. If G is regular and distance magic, then G � nP2 is distance antimagic.

Proof. Let λP be a labeling of nP2 with the vertex labeled i adjacent to the vertex labeled
i + 1 for i = 1, 3, . . . , 2n− 1. Let m be the order of G, r be the degree of vertices in G, and
λG be a distance antimagic labeling of G.

Define a labeling λ for G � nP2 as

λ(u, v) = λG(u) + (λP(v)− 1)m.

Suppose that v′ is the neighbor of v in P2, then,
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ω(u, v) = ∑
u′∈N(u)

∑
v′∈N(v)

λ(u′, v′) + ∑
u′∈N(u)

λ(u′, v′) + ∑
v′∈N(v)

λ(u′, v′)

= (ωG(u) + (λP(v)− 1)rm) + (ωG(u) + (λP(v′)− 1)rm) + (λG(u) + (λP(v′)− 1)m)

= 2ωG(u) + λG(u)− 2rm + (λP(v)− λP(v′))rm + (λP(v′)− 1)m.

Let (u1, v1) and (u2, v2) be two vertices in V(G � nP2) with λP(v′1) > λP(v′2). Then,

ω(u1, v1)−ω(u2, v2) =λG(u1)− λG(u2) + (λP(v1) + λP(v′1)− λP(v2)− λP(v′2))

+ (λP(v′1)− λP(v′2))m

≥1−m + m > 0.

4. Distance Antimagic Graphs Obtained from the Lexicographic Product

This section studies distance antimagic labelings of graphs obtained from the lexico-
graphic product. We start with two lemmas on the vertex-weight.

Lemma 1. Let G be an r-regular graph on n vertices and let f be any vertex labeling of G. Then,
for two vertices u, v in G, ω f (u)−ω f (v) + n2 − rn > 0.

Proof.

2(n− r)2 > 0

2r2 + 2n2 − 4rn > 0

r + r2 − (2nr− r2 + r) + 2n2 − 2rn > 0
1 + r

2
r− n + n− r + 1

2
r + n2 − rn > 0.

Since 1+r
2 r ≤ ω(v) ≤ n+n−r+1

2 r for v ∈ V(G),

ω(u)−ω(v) + n2 − rn > 0.

Lemma 2. Let G be an r-regular graph on n vertices and let f be any vertex labeling of G. Then,
for two vertices u, v in G, ω f (u)−ω f (v) + rn > 0.

Proof.

2r2 > 0

r + r2 − (2nr− r2 + r) + 2rn > 0
1 + r

2
r− n + n− r + 1

2
r + rn > 0.

Since 1+r
2 r ≤ ω(v) ≤ n+n−r+1

2 r for v ∈ V(G), we have

ω(u)−ω(v) + rn > 0.

Definition 7. Let G be an r-regular distance antimagic graph of order n and H be a graph. Suppose
λG is a distance antimagic labeling of G and λH : V(H)→ {0, 1, . . . |V(H)| − 1} is labeling of H.
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For a ∈ V(H), let Ga be the subgraph of H ◦ G induced by {(a, v)|v ∈ V(G)}. Define a labeling
λ for H ◦ G by λ(a, v) = λG(v) + λH(a)n for (a, v) ∈ V(H ◦ G).

An illustration for the notation of Ga is given in Figure 7.

0 1

23

G0 G1

G2G3

Figure 7. Graph C4 with its distance antimagic labeling (left) and graph C4 ◦ G with its induced
subgraphs Gas (right).

The following properties hold for the labeling of λ in Definition 7.

Lemma 3. Let k0 = (n+1
0 ). If ka is the sum of all labels in Ga, then ka = k0 + λH(a)n2 and

ω(a, v) = ωG(v) + λH(a)rn + dH(a)k0 + ωH(a)n2.

Proof.

ω(a, v) = ∑
u∈NG(v)

λ(a, u) + ∑
b∈NH(a)

kb

= ( ∑
u∈NG(v)

λG(u) + λH(a)n) + ( ∑
b∈NH(a)

k0 + λH(b)n2)

= (ωG(v) + rλH(a)n) + (dH(a)k0 + ωH(a)n2).

Definition 8. Let H be a graph with V(H) = {a1, a2, ..., an}. Define a vertex labeling λH for H
as follows.

λH(ai) =

{
2i− 2 , i ≤ n+1

2

2n− 2i + 1 , i > n+1
2 .

Now we are ready to prove our main result for the lexicographic product.

Theorem 7. Let G and H be regular graphs. If G is distance antimagic and H is monotone, then
H ◦ G is distance antimagic.

Proof. Label vertices in H by λH in Definition 8. Let (a, vi) ∈ V(Ga) and (b, vj) ∈ V(Gb).
If a = b, then Ga is distance antimagic. If λH(a) > λH(b), then

ω(a, vi)−ω(b, vj) = ωG(vi)−ωG(vj) + (λH(a)− λH(b))rGn + (rH − rH)k0

+ (ωH(a)−ωH(b))n2

≥ ωG(vi)−ωG(vj) + rn.

By Lemma 2, ω(a, vi)−ω(b, vj) > 0.

If H is non-regular or non-monotone, in general, we do not know whether H ◦ G is
distance antimagic or not. However, there exists a class of regular graphs H that is not
monotone, where H ◦ G is distance antimagic, as presented in the next theorem.

Theorem 8. If G is a regular distance antimagic graph, then Km ◦ G is also distance antimagic.
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Proof. Let r and n be the degree of a vertex in G and the order of G, respectively. Label the
vertices in H = Km by λH in Definition 8 and denote it by S = ∑

a∈V(Km)
λH(a).

Choose two vertices (a, vi) ∈ V(Ga) and (b, vj) ∈ V(Gb). If a = b, Ga is distance
antimagic. If λH(b) > λH(a),

ω(a, vi)−ω(b, vj) =ωG(vi)−ωG(vj) + (λH(a)− λH(b))rn

+ (dH(a)− dH(b))k0 + (ωH(a)−ωH(b))n2

=ωG(vi)−ωG(vj) + (λH(a)− λH(b))rn

+ 0 + (S− λH(a)− (S− λH(b)))n2

=ωG(vi)−ωG(vj) + (λH(b)− λH(a))(n2 − rn)

≥ωG(vi)−ωG(vj) + n2 − rn.

By Lemma 1, ω(a, vi)−ω(b, vj) > 0.

In the next two theorems, we present examples of non-regular graphs H of which
H ◦ G is distance antimagic.

Theorem 9. If G is a regular distance antimagic graph, then Pm ◦ G is also distance antimagic.

Proof. Let n be the order of G and Pm = (a1a2 . . . am). For m = 2, use Theorem 8. For
m = 3, define a labeling for Pm by λP(ai) = i − 1. By Lemma 3, ω(1, v) = ωG(v) +
k0 + n2, ω(2, v) = ωG(v) + 2k0 + 2n2 + rn, ω(3, v) = ωG(v) + k0 + n2 + 2rn. Then, due to
Lemmas 1 and 2

ω(2, vi)−ω(3, vj) = ωG(vi)−ωG(vj) + k0 + n2 − rn > 0, and

ω(3, vi)−ω(1, vj) = ωG(vi)−ωG(vj) + rn > 0.

For m ≥ 4, use the labeling λH from Definition 8 for Pm and the labeling λ from
Definition 7 for Pm ◦ G. Let (a, vi) ∈ VGa and (b, vj) ∈ VGb where λH(a) > λH(b).

ω(a, vi)−ω(b, vj) = ωG(vi)−ωG(vj) + (λH(a)− λH(b))rn

+ (dH(a)− dH(b))k0 + (ωH(a)−ωH(b))n2

≥ ωG(vi)−ωG(vj) + rn.

By Lemma 2, ω(a, vi)−ω(b, vj) > 0.

Theorem 10. If G is a regular distance antimagic graph, then Wm ◦ G is also distance antimagic.

Proof. For m = 3 use Theorem 8. For m ≥ 4, let Cm = (v1v2...vmv1). Use a modification of
λH for Cm from Definition 8 where λH(vm+1) = m + 1. By this labeling, Wn is monotone.
Following the proof of Theorem 7 and considering d(m + 1) > d(i) for i ≤ m, we obtain
that Wm ◦ G is distance antimagic.

5. Distance Antimagic Graphs Obtained from the Corona Product

In [2], it was proven that G� K1 is distance antimagic for arbitrary graph G. Thus, the
following is an obvious consequence.

Corollary 1. Let G be a graph. Then G� Kn is distance antimagic if and only if n = 1.

Since the corona product is not commutative, we present sufficient conditions that
K1 � G is distance antimagic in the following two theorems.
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Theorem 11. If G is a distance antimagic graph of order n with ∆ < n + 1
2 −

√
2n + 9

4 , then
K1 � G is distance antimagic.

Proof. Let λG be a distance antimagic labeling of G and V(K1 � G) = V(G) ∪ {u}. De-
fine a labeling for K1 � G by λ(vi) = λG(vi) for vi ∈ V(G) and λ(u) = n + 1. Then,
ω(vi) = ωG(vi) + (n + 1) and ω(u) = 1+n

2 n. Therefore, ω(vi) 6= ω(vj) for distinct vi, vj ∈
V(G).

For ∆ < n + 1
2 −

√
2n + 9

4 ,

∆2 − (2n + 1)∆ + (n2 − n− 2) > 0

2n∆− ∆2 + ∆ + 2n + 2 < n + n2

n + n− ∆ + 1
2

∆ + n + 1 <
1 + n

2
n.

The left side of the last inequality is the maximum weight of any vertex in G. Hence,
ω(vi) 6= ω(u), vi ∈ V(G).

Examples of graphs satisfying the condition of Theorem 11 are paths and cycles with
n ≥ 5, distance antimagic cubic graphs with n ≥ 7, and distance antimagic bipartite graphs
with n ≥ 8. If the graph G is regular and distance antimagic instead, we could prove that
K1 � G is also distance antimagic.

Theorem 12. If G is a distance antimagic regular graph, then K1 � G is distance antimagic.

Proof. Suppose that n, r, and λG are the order, the degree, and a distance antimagic labeling
of G, respectively. Define a labeling for K1 � G by λ(u) = 1 and λ(v) = λG(v) + 1 for
v ∈ V(G). Then, ω(v) = ωG(v) + r + 1. Since u is adjacent to all vertices of G, then
ω(u) > ω(v) for all v ∈ V(G).

If we change the factor K1 with K2, we obtain the following sufficient condition for
K2 � G to be distance magic.

Theorem 13. If G is r-regular distance antimagic graph on n vertices with r < 1
2 (4n + 5−√

12n2 + 20n + 33), then K2 � G is distance antimagic.

Proof. Let λG be a distance antimagic labeling of G and V(K2 � G) = V(G1) ∪ V(G2) ∪
{u1, u2}. Define a labeling for K2 � G by λ(u1) = 2, λ(u2) = 1, λ(vi) = λG(vi) + 2 for
vi ∈ V(G1) and λ(vi) = λG(vi) + 2 + n for vi ∈ V(G2). By this labeling, the distinct
vertex-weights of G1 and G2 are preserved. For r < 1

2 (4n + 5−
√

12n2 + 20n + 33),

r2 − (4n + 5)r + (n2 + 5n− 2) > 0

3 + (n + 2)
2

n >
(2n + 2) + (2n + 2− r + 1)

2
r + 1.

The right side of the last inequality is the maximum vertex-weight in V(G2), while the
left one is ω(u1). Hence, ω(vi) < ω(vj) < ω(u1) < ω(u2) for vi ∈ V(G1), vj ∈ V(G2).

Examples of graphs satisfying the sufficient condition of Theorem 13 are paths and
cycles with n ≥ 5 and distance antimagic cubic graphs with n ≥ 8. However, in general,
the antimagicness of Kn � G is still unknown and thus the following problem.

Problem 2. For n ≥ 3, is Kn � G distance antimagic?
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In the last part of this section, we study the distance antimagicness of both G� P2 and
P2 � G. In addition, we can find other results for corona product graphs in [13], where it
was proven that C4 � Cn is distance antimagic for n ≥ 9.

Theorem 14. If G is r-regular distance antimagic graph on n vertices with r < 1
2 (4n + 5−√

12n2 + 20n + 25), then P2 � G is distance antimagic.

Proof. The proof is similar to that of Theorem 13, by substituting ω(u1) with 3+(n+2)
2 n +

1.

Theorem 15. If G is a monotone graph with a minimum degree of at least 3, then G � P2 is
distance antimagic.

Proof. Let |V(G)| = n. Denote P2,v as subgraph of G � P2 induced by {(v, 1), (v, 2)}.
Define a labeling for G� P2 by,

λ(v, 1) = 2λG(v)− 1

λ(v, 2) = 2λG(v)

λ(v) = λG(v) + 2n.

Thus,

ω(v, 1) = 3λG(v) + 2n

ω(v, 2) = 3λG(v) + 2n− 1

ω(v) = ωG(v) + dG(v) · 2n + 4λG(v)− 1.

For arbitrary vertices vi, vj in G, we have

ω(vi)−ω(vj, 1) = ωG(vi) + 2n · dG(vi) + 4λG(vi)− 1− 3λG(vj)− 2n

≥ ωG(vi) + 2δn− 5n + 3

≥ 1 + δ

2
δ + 2δn− 5n + 3

=
1
2
(δ2 + (4n + 1)δ + (6− 10n))

≥ n + 9 > 0.

For vi, vj two vertices in G and a, b two vertices in P2, we have

ω(vi, a)−ω(vj, b) =


3λG(vi)− 3λG(vj)− 1 , a > b
3λG(vi)− 3λG(vj) , a = b
3λG(vi)− 3λG(vj) + 1 , a < b.

All the cases result in ω(vi, a)− ω(vj, b) 6= 0. Hence, there is no vertex in P2,vi and
P2,vj having the same weight.

To conclude, we ask for a natural generalization of Theorems 14 and 15.

Problem 3. For n ≥ 3 and an arbitrary graph G, are Pn � G and G� Pn distance antimagic?
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