Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruscheweyh, S. Linear operators between classes of prestarlike functions. Comment. Math. Helv. 1977, 52, 497–509. [Google Scholar] [CrossRef]
- Shenan, G.M.; Salim, T.O.; Marouf, M.S. A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator. Kyungpook Math. J. 2004, 44, 353–362. [Google Scholar]
- Marouf, M.S.; Salim, T.O. On a subclass of p-valent prestarlike functions with negative coefficients. Aligarh Bull. Math. 2002, 21, 13–20. [Google Scholar]
- Silverman, H.; Silvia, E.M. Prestarlike functions with negative coefficients. Int. J. Math. Math. Sci. 1979, 2, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent Prestarlike Functions with Respect to Symmetric Points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Ye, K.; Lim, L.-H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Ayinla, R.; Bello, R. Toeplitz determinants for a subclass of analytic functions. J. Progress. Res. Math. 2021, 18, 99–106. [Google Scholar]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation. J. Complex Anal. 2016, 2016, 4960704. [Google Scholar] [CrossRef] [Green Version]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are coefficients of Bazilevič functions. Open Math. 2018, 16, 1161–1169. [Google Scholar] [CrossRef]
- Ramachandran, C.; Kavitha, D. Toeplitz determinant for some subclasses of analytic functions. Glob. J. Pure Appl. Math. 2017, 13, 785–793. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Al-Khafaji, S.N.; Al-Fayadh, A.; Hussain, A.H.; Abbas, S.A. Toeplitz determinant whose its entries are the coefficients for class of Non-Bazilevič functions. J. Phys. Conf. Ser. 2020, 1660, 012091. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Govindaraj, M.; Murugusundaramoorthy, G. Toeplitz matrices whose elements are the coefficients of analytic functions belonging to certain conic domains. Int. J. Pure Appl. Math. 2016, 109, 39–49. [Google Scholar]
- Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Henkel and Toeplitz determinants for starlike functions connected with the sine functions. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.D.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
- Constantin, O.; Martin, M.J. A harmonic maps approach to fluid flows. Math. Ann. 2017, 316, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; California Monographs in Mathematical Sciences; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotîrlă, L.-I.; Wanas, A.K. Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry 2022, 14, 1413. https://doi.org/10.3390/sym14071413
Cotîrlă L-I, Wanas AK. Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry. 2022; 14(7):1413. https://doi.org/10.3390/sym14071413
Chicago/Turabian StyleCotîrlă, Luminiţa-Ioana, and Abbas Kareem Wanas. 2022. "Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions" Symmetry 14, no. 7: 1413. https://doi.org/10.3390/sym14071413
APA StyleCotîrlă, L. -I., & Wanas, A. K. (2022). Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry, 14(7), 1413. https://doi.org/10.3390/sym14071413