
Citation: Mhawi, D.N.; Aldallal, A.;

Hassan, S. Advanced

Feature-Selection-Based Hybrid

Ensemble Learning Algorithms for

Network Intrusion Detection

Systems. Symmetry 2022, 14, 1461.

https://doi.org/10.3390/

sym14071461

Academic Editor: Chien-Hsing Chou

Received: 25 June 2022

Accepted: 12 July 2022

Published: 17 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Advanced Feature-Selection-Based Hybrid Ensemble Learning
Algorithms for Network Intrusion Detection Systems
Doaa N. Mhawi 1 , Ammar Aldallal 2,* and Soukeana Hassan 3

1 Computer Science Department, University of Technology, and Middle Technical University,
Baghdad 10010, Iraq; dododuaaenteesha@mtu.edu.iq

2 Telecommunication Engineering Department, Ahlia University, Manama P.O. Box 10878, Bahrain
3 Computer Science Department, University of Technology, Baghdad 10010, Iraq; soukaena.hassan@yahoo.com
* Correspondence: aaldallal@ahlia.edu.bh

Abstract: As cyber-attacks become remarkably sophisticated, effective Intrusion Detection Systems
(IDSs) are needed to monitor computer resources and to provide alerts regarding unusual or suspi-
cious behavior. Despite using several machine learning (ML) and data mining methods to achieve
high effectiveness, these systems have not proven ideal. Current intrusion detection algorithms suffer
from high dimensionality, redundancy, meaningless data, high error rate, false alarm rate, and false-
negative rate. This paper proposes a novel Ensemble Learning (EL) algorithm-based network IDS
model. The efficient feature selection is attained via a hybrid of Correlation Feature Selection coupled
with Forest Panelized Attributes (CFS–FPA). The improved intrusion detection involves exploiting
AdaBoosting and bagging ensemble learning algorithms to modify four classifiers: Support Vector
Machine, Random Forest, Naïve Bayes, and K-Nearest Neighbor. These four enhanced classifiers have
been applied first as AdaBoosting and then as bagging, using the aggregation technique through the
voting average technique. To provide better benchmarking, both binary and multi-class classification
forms are used to evaluate the model. The experimental results of applying the model to CICIDS2017
dataset achieved promising results of 99.7%accuracy, a 0.053 false-negative rate, and a 0.004 false
alarm rate. This system will be effective for information technology-based organizations, as it is
expected to provide a high level of symmetry between information security and detection of attacks
and malicious intrusion.

Keywords: correlation feature selection; Cybersecurity; ensemble learning; Forest Panelized Attribute;
intrusion detection system; machine learning

1. Introduction

Every day, different types of new cyber-attacks are discovered, and their sources are be-
coming more hazardous. As a result, detecting zero-day attacks is a difficult operation that
potentially jeopardizes business continuity [1]. Computer attacks are becoming increasingly
complex, posing difficulties in accurately detecting the intrusion [2,3]. Network Intrusion
detection systems (NIDSs) are meant to monitor computer networks for unusual activities
that a regular packet filter would miss Traditional IDSs have a number of flaws, such as the
inability to discriminate between new malicious threats; the need for modification; poor
accuracy; and a high rate of false alerts. Therefore, machine learning is used to detect new
attacks. However, machine learning encounters many challenges because it enhances the
computational and time complexity of the task by expanding the search space [4,5]. Numer-
ous studies have been conducted on the use of multiple classifiers instead of single ones
and the principle of ensemble learning techniques to ensure high accuracy and a low false
alarm rate [6–8]. As a result, ensemble learning can be divided into three categories (i.e.,
bagging, stacking, and boosting) [9–11]. It is a general meta approach to machine learning
to combine predictions from multiple models to improve predictive performance. Although

Symmetry 2022, 14, 1461. https://doi.org/10.3390/sym14071461 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071461
https://doi.org/10.3390/sym14071461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0892-8765
https://orcid.org/0000-0001-7811-8111
https://doi.org/10.3390/sym14071461
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071461?type=check_update&version=1

Symmetry 2022, 14, 1461 2 of 17

an infinite number of ensembles for any predictive modeling can be created, the subject of
ensemble learning is dominated by three methods. The first category of the ensemble is
bagging. It is the process of fitting multiple decision trees to different samples of the same
dataset and then averaging the results [12]. Alternatively, the stacking method involves
fitting many different model types onto the same data and using another model to learn
how to best combine the predictions [13]. Boosting involves sequentially adding ensemble
members that correct the predictions made by prior models and output a weighted average
of the predictions [14]. Recently, researchers applied hybrid principles in feature selection
and ensemble methods. Feature selection is a useful approach for intrusion detection sys-
tems. This method discovers extremely important features and discards unnecessary ones
while causing minimal performance reduction [15–17]. Correlation-based feature selection
(CFS) selects strong affinity on similarities that are used as a heuristic evaluation function.
The function compares feature vector subsets that are related to the class label but are
not associated with one another. The CFS algorithm implies that irrelevant characteristics
have a low association with the class and should be removed consequently. Excess traits,
on the other hand, should be investigated since they are typically associated with one
or more of the other characteristics [18]. The classification algorithms used in ensemble
learning frequently mix numerous basic classifiers in some fashion. The proposed work
will benefit from this feature of ensemble learning by developing and integrating multiple
distinct models, these classifiers are effective at dealing with the same problem and, when
combined, produce a predicting output that is more stable and accurate. To begin with, a
single classifier may not always be competent to produce the best representation in the
hypothesis space. Thus, the use of multiple independent classifiers is necessary to improve
prediction performance. Second, a false or inaccurate hypothesis can develop if the training
dataset for the learning algorithm is insufficient.

This paper proposes a dimensionality reduction approach as well as the Feature
Selection (FS) method for obtaining the optimum subset of the original features. The IDS’s
stability and accuracy are then improved by submitting these subsets to the proposed
hybrid ensemble learning, which requires minimum computational and time resources.
The present study is significant because it aims to:

• Reduce the dimensionality of the CICIDS2017 dataset through the proposed coupling
of Correlation Feature Selection with Forest Panelized Attributes.

• Find the best machine learning (ensemble method) approach to collect the four modi-
fied classifiers (Support Vector Machine, Random Forest, Naïve Bayes, and K-Nearest
Neighbor) to ensure the best result of the hybrid ensemble method.

• Conduct a comparative study between the CFS–FPA and other features selection
techniques in terms of accuracy, Detection Rate (DR), and False Alarm Rate (FAR).
The outcome will be used to generalize the efficiency of the proposed features selec-
tion technique.

• Compare the four classifiers before and after modification and work as the AdaBoosting
method. In addition, comparing the proposed method with other existing approaches.

The remainder of the paper is organized as follows: Section 2 includes a review of
similar feature selection techniques and ML-based IDS. Section 3 defines the suggested
system, approach, and distinct proposed ML. Section 4 presents the experimental data,
discussion, and findings. Finally, Section 5 presents the conclusion and future work.

2. Related Work

Recently, researchers focused on developing ML-based IDS using two well-known
datasets: NSL-KDD, and CICIDS2017. Zhou et al. [19] proposed an IDS based on feature se-
lection and ensemble classifier. This framework is based on feature selection and ensemble
learning techniques. In the first step, both heuristic algorithm CFS and Bat Algorithm (BA)
are proposed for dimensionality reduction. In the second step, an ensemble approach that
combines C4.5 and Random Forest (RF) algorithms is applied. Finally, it performs a voting
technique using NSL-KDD, AWID, and CICIDS2017 datasets. The experimental results of

Symmetry 2022, 14, 1461 3 of 17

this work reach 84% accuracy in the testing and a 0.15 false alarm rate; 96% accuracy and
a 94% detection rate with 10 selected features when applied to NSL KDD datasets; and
94.5% and 92% for accuracy and detection rates, respectively, for UNSW BN15 dataset with
13 features.

Jaw and Wang [20] proposed a Comprehensive Approach for IDS. A wrapper method-
ology based on a genetic algorithm is adopted as a feature selection and logistic regression
as an ensemble learning algorithm for network intrusion detection systems. Experimental
results show excellent performance accuracy of 98.99%, 98.73%, and 97.997%, and detec-
tion rates of 98.75%, 96.64%, and 98.93% for CICIDS2017, NSL-KDD, and UNSW-NB15,
respectively, based on only 11, 8, and 13 selected relevant features from the above datasets.

Gupta et al. [21] recommended that ensemble algorithms handle a class imbalance in
network-based intrusion detection systems. This work consisted of three stages. The first
stage is the deep neural network for splitting and discriminating normal from suspicious
traffic network attacks and then for classifying major attacks using the eXtreme Gradient
Boosting algorithm as the second stage. The final stage uses Random Forest to classify
the minor attacks. This model used NSL-KDD, CIDDS-001, and CICIDS2017 datasets to
evaluate the performance of the proposed system. The accuracy achieved was 99% for NSL,
96% for CIDDS-001%, and 92% for CICIDS2017, and complexity time was measured in
hours, not in minutes.

Tama et al. [22] used a hybrid feature selection method with two stages of ensem-
ble learning classifiers. CIC-IDS2017 dataset with 37 features was used to evaluate the
performance of the proposed system, and the accuracy was 96.46%.

The IDS proposed by Aldallal and Alisa [23] merges genetic algorithm (GA) and
support vector machine (SVM), where GA is used to select an optimal set of features from
the CICIDS2017 dataset, while SVM is applied to classify the network traffic into benign
and abnormal. The results obtained by using CICIDS2017 outperform those obtained when
using KDD CUP 99 and NSL-KDD by up to 5.74%.

Pelletier and Abualkibash, in [24], proposed a model to detect intrusions on the
network by applying Neural Network as a feature selection method and Random Forest
algorithm as a classifier to detect the intrusion. This model is tested by using CIC-IDS2017
dataset, and the experimental result of the accuracy reached 97.30% whereas the number of
features used in this model was 30 features.

Abbas et al. in [25] proposed a new ensemble-based intrusion detection system for
the Internet of Things. Those researchers used different deployed classifiers (i.e., logistic
regression, naive Bayes, and a decision tree) with voting technique. The experimental result
using CICIDS2017 with two forms (binary, and multi-class).

An architectural model is presented in [26] for risk assessment (RA) of the information
system with the CICIDS2017 dataset using ML algorithms. ML techniques including K
nearest neighbors (KNN), NB, gradient boosting tree, RF, and decision tree (DT) were eval-
uated for RA in this study. The performance of the model was based on the ML technique
that has efficient predictively of intrusion. The predictive model was the implementation
of ML techniques that produced better results with the CICIDS2017 dataset. For RA, the
risk matrix was analyzed by 15 models with predicted results.

All previous works suffer from conflict in the measured values, where some of them
are sufficient in the accuracy but not sufficient in other measures, such as [19] where
accuracy reached 96% while FAR is 0.15%, [20] where accuracy reached 98.3% while FAR
is 0.14%. Hence, the proposed system increases robustness by using an advanced feature
selection method based on hybrid ensemble learning algorithms aiming at achieving high
accuracy and minimal FAR.

3. Materials and Methods

The proposed system provides an efficient ML-based IDS that uses new hybrid FS
ensemble learning techniques with a voting classifier that is a group of classifiers. It is
proposed to enhance the detection capabilities of IDS to protect service providers against

Symmetry 2022, 14, 1461 4 of 17

attacks. Figure 1 depicts the block diagram of the main idea of the proposed Hybrid
AdaBoosting and Bagging Algorithms (HABBAs).

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 17

selection method based on hybrid ensemble learning algorithms aiming at achieving high

accuracy and minimal FAR.

3. Materials and Methods

The proposed system provides an efficient ML-based IDS that uses new hybrid FS

ensemble learning techniques with a voting classifier that is a group of classifiers. It is

proposed to enhance the detection capabilities of IDS to protect service providers against

attacks. Figure 1 depicts the block diagram of the main idea of the proposed Hybrid Ada-

Boosting and Bagging Algorithms (HABBAs).

Figure 1. General block diagram of the proposed system.

Figure 1 consists of several stages starting from collecting the data and ending with

detecting normal or attack traffic. The following subsections provide an informative ex-

planation of the framework.

3.1. Description of CICIDS2017 Datasets

It is a challenging effort for researchers to find an appropriate dataset for evaluating

IDSs. This paper applied the CICIDS2017 dataset for experiments. The Canadian Institute

for Cybersecurity (CIC) issued the CIC IDS2017 dataset in 2017. It includes benign data

and the most recent common attacks [13]. The results of the CIC flow meter network traffic

analysis are also included. Protocols, source and destination IPs, ports, and attacks all

have time-stamped flows. This dataset is one of the most updated datasets. It includes

updated DDoS, Brute Force, XSS, SQL Injection, Infiltration, Port Scan, and Botnet as-

saults. This dataset has 2,830,743 records which are spread across eight files. Each record

contains 78 various features with their labels. The Wednesday-working hours’ set is cho-

sen for experimentation using the cross-validation method to retain the same magnitude

order of each dataset when multi-classification is needed. Table 1 shows the statistical

information for this set, which contains 691,406 occurrences divided into six categories.

Table 1. CICIDS2017 dataset.

Classes CIC_IDS/Wen.

DoS-slow loris 5499

DoS-Slow-HTTPtest 5796

DoSHulk 10,293

DoS-Golden-Eye 230,124

Hear-bleed 11

Figure 1. General block diagram of the proposed system.

Figure 1 consists of several stages starting from collecting the data and ending with
detecting normal or attack traffic. The following subsections provide an informative
explanation of the framework.

3.1. Description of CICIDS2017 Datasets

It is a challenging effort for researchers to find an appropriate dataset for evaluating
IDSs. This paper applied the CICIDS2017 dataset for experiments. The Canadian Institute
for Cybersecurity (CIC) issued the CIC IDS2017 dataset in 2017. It includes benign data
and the most recent common attacks [13]. The results of the CIC flow meter network traffic
analysis are also included. Protocols, source and destination IPs, ports, and attacks all
have time-stamped flows. This dataset is one of the most updated datasets. It includes
updated DDoS, Brute Force, XSS, SQL Injection, Infiltration, Port Scan, and Botnet assaults.
This dataset has 2,830,743 records which are spread across eight files. Each record contains
78 various features with their labels. The Wednesday-working hours’ set is chosen for
experimentation using the cross-validation method to retain the same magnitude order of
each dataset when multi-classification is needed. Table 1 shows the statistical information
for this set, which contains 691,406 occurrences divided into six categories.

Table 1. CICIDS2017 dataset.

Classes CIC_IDS/Wen.

DoS-slow loris 5499
DoS-Slow-HTTPtest 5796

DoSHulk 10,293
DoS-Golden-Eye 230,124

Hear-bleed 11
Normal 439,683

Total 691,406
Attack 251,723

3.2. CICIDS17 Dataset Preprocessing

Figure 2 depicts the steps of this stage in detail. Processes at this stage are done on the
CICIDS17 dataset that is formatted as CSV. In this stage, raw data is transformed into an

Symmetry 2022, 14, 1461 5 of 17

analysis-ready format. This stage consists of three steps. These steps are: (1) filtration, when
data is cleaned and duplicate values are removed; (2) transformation, when Label-Encoder
and One-Hot Encoding techniques are applied; and (3) normalization, when minimax
function is used to scale values between zero and one. The algorithm of this stage is
explained in Algorithm 1.

Algorithm 1: Preprocessing and Minimax Scaling

Input: Read d1 where d1 is CICIDS201
Output: Normalize the dataset to d1normalize.
Begin

For each Di dataset Do
Step 1: Data Filtering

Removed meaningless and redundant instances.
Arrange Distribution-categorization.
Step 2: Data transformation

if (do non-numeric input) then do:
Transform categorical features into numbers using:
Label Encoder ()
One-Hot Encoding /*this process is a complement to the categorical
transform that is used to convert categorical features into numbers
such as convert protocol types such as UDP, and TCP into numerical
data using this function) */

End if
Step 3: Normalization

Minimax scaling is computed by applying the following:
Max = Find the Maximum value.
Min = Find the Minimum value.
For each XiValue in the dataset Do

XiValue = XiValue − Min
Max−Min

Return XiValue Between [0, 1]
Remove missing and duplicated data
Encoding process with the second normalization

End For
End For

End

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 17

Normal 439,683

Total 691,406

Attack 251,723

3.2. CICIDS17 Dataset Preprocessing

Figure 2 depicts the steps of this stage in detail. Processes at this stage are done on

the CICIDS17 dataset that is formatted as CSV. In this stage, raw data is transformed into

an analysis-ready format. This stage consists of three steps. These steps are: (1) filtration,

when data is cleaned and duplicate values are removed; (2) transformation, when Label-

Encoder and One-Hot Encoding techniques are applied; and (3) normalization, when min-

imax function is used to scale values between zero and one. The algorithm of this stage is

explained in Algorithm 1.

Figure 2. Preprocessing stage.

Algorithm 1: Preprocessing and Minimax Scaling

Input: Read d1 where d1 is CICIDS201

Output: Normalize the dataset to d1normalize.

Begin

 For each Di dataset Do

 Step 1: Data Filtering

 Removed meaningless and redundant instances.

 Arrange Distribution-categorization.

 Step 2: Data transformation

 if (do non-numeric input) then do:

 Transform categorical features into numbers using:

 Label Encoder ()

One-Hot Encoding /*this process is a complement to the categorical

transform that is used to convert categorical features into numbers

such as convert protocol types such as UDP, and TCP into numerical

data using this function) */

 End if

 Step 3: Normalization

 Minimax scaling is computed by applying the following:

 Max =Find the Maximum value.

 Min =Find the Minimum value.

 For each XiValue in the dataset Do

 XiValue =
XiValue−Min

Max−Min

 Return XiValue Between [0,1]

Figure 2. Preprocessing stage.

Symmetry 2022, 14, 1461 6 of 17

3.3. Correlation Feature Selection-Forest Panelized Attribute (CFS-FPA)

This proposed method is explained in detail in [27,28]. It is used to reduce dimen-
sionality and select the best subset features. Based on this method, the best 30 features
are selected out of 78 features of the CICIDS17 dataset. Table 2 depicts these 30 features.
Figure 3 depicts the main steps of the proposed FS.

Table 2. Subset feature selection of CICIDS2017.

CICIDS2017

Port-Destination
Flow-Duration

FlowIATStd
FlowIATMax

Flow_IAT_Min
Fwd_IAT_Total
Fwd_IAT_Std

Fwd_IAT_Max
Fwd_IAT_Min

BwdIATStd
BwdIATMax
BwdIATMin

FwdPSHFlags
MaxPacketLength

PacketLengthMean
PacketLengthStd

PacketLengthVariance
FINFlagCount
SYNFlagCount
PSHFlagCount
ACKFlagCount

IdleMean
‘IdleMax
IdleMin

Destination_Port
Flow_Duration

PSHFlagCountID
Bwd_Packet_Length_Max
Bwd_Packet_Length_Max

BwdIATStd
Symmetry 2022, 14, x FOR PEER REVIEW 7 of 17

Figure 3. CFS-FPA stage.

In Figure 3, Correlation Feature Selection combined with Forest Panelised Attributes

(CFS–FPA) is used to analyze the correlation of the selected features and is effective for

enhancing the efficiency of the training and testing phases.

3.4. Classifiers

The IDS proposed in this work is based on four classifiers. A brief explanation of

these classifiers is presented here:

3.4.1. Random Forest (RF)

Sekulić suggested Random Forest in [29]. This is a decision tree methodology that

works by constructing many decision trees. It categorizes hundreds of input variables

based on their importance without eliminating any one of them. RF is a set of classification

trees, each of which devotes a single vote to the task of identifying the most common class

in the input data. SVM and ANN, for example, have smaller parameters when RF is used

instead of other machine learning algorithms. In RF, a set of tree-structured classifiers can

be defined as follows:

{ (,), 1 , 2 , 3 , ...}k kh x  = (1)

In this model, h denotes an RF classifier and k is a collection of identical vectors dis-

persed at random.

Each tree has a vote for the most renowned class at input variable x. Its utilization

has an impact on the proportions and design of the tree structure. Establishing each deci-

sion-making tree is critical to RF’s success.

In RF, which has a minimal calculation cost, outliers and parameters have little im-

pact. Furthermore, compared to a single DT, overfitting is less of an issue, and the trees

do not need to be pruned [30]. With a volatility of two, the variance of an average of Bag-

ging random variables has a 1/B2 volatility. The average variance is then computed using

Equation (2), and if it is more than zero, the weight Wi for each subset feature is updated

(XiBest).

𝑝𝜎2 +
1 − 𝑝

𝐵
 (2)

Here, 𝜎2 is a stander division, p is population, and B is a constant.

3.4.2. Naïve Bayes Classifier

Naïve Bayes is one of the most widely used classifiers that is based on statistical clas-

sification. It is a form of supervised ML algorithm. It is featured by surprisingly usefulness

and high accuracy due to possessing several properties. It is characterized by a strong

Figure 3. CFS-FPA stage.

Symmetry 2022, 14, 1461 7 of 17

In Figure 3, Correlation Feature Selection combined with Forest Panelised Attributes
(CFS–FPA) is used to analyze the correlation of the selected features and is effective for
enhancing the efficiency of the training and testing phases.

3.4. Classifiers

The IDS proposed in this work is based on four classifiers. A brief explanation of these
classifiers is presented here:

3.4.1. Random Forest (RF)

Sekulić suggested Random Forest in [29]. This is a decision tree methodology that
works by constructing many decision trees. It categorizes hundreds of input variables
based on their importance without eliminating any one of them. RF is a set of classification
trees, each of which devotes a single vote to the task of identifying the most common class
in the input data. SVM and ANN, for example, have smaller parameters when RF is used
instead of other machine learning algorithms. In RF, a set of tree-structured classifiers can
be defined as follows:

{h(x, θk), k = 1, 2, 3, . . . } (1)

In this model, h denotes an RF classifier and k is a collection of identical vectors
dispersed at random.

Each tree has a vote for the most renowned class at input variable x. Its utilization
has an impact on the proportions and design of the tree structure. Establishing each
decision-making tree is critical to RF’s success.

In RF, which has a minimal calculation cost, outliers and parameters have little im-
pact. Furthermore, compared to a single DT, overfitting is less of an issue, and the trees
do not need to be pruned [30]. With a volatility of two, the variance of an average of
Bagging random variables has a 1/B2 volatility. The average variance is then computed
using Equation (2), and if it is more than zero, the weight Wi for each subset feature is
updated (XiBest).

pσ2 +
1− p

B
(2)

Here, σ2 is a stander division, p is population, and B is a constant.

3.4.2. Naïve Bayes Classifier

Naïve Bayes is one of the most widely used classifiers that is based on statistical
classification. It is a form of supervised ML algorithm. It is featured by surprisingly
usefulness and high accuracy due to possessing several properties. It is characterized
by a strong independence probabilistic classifier. In which, for a given class variable,
the presence or absence of a feature is unrelated to the absence or presence of another
feature. In a supervised learning setting, Naïve Bayes classifiers can be trained very
efficiently depending on the precise nature of the probability model, [31]. Basically, it has
two variables:

Class variable (C), and a set of attributes F = {A1; A2; . . . ; An}, on a dataset D which
consists of instances {I1, I2, . . . , It} and can be defined as in Equation (3), assuming the that
the attributes are independent within the class as in Equation (4). Figure 4 demonstrates
the structure of Naïve Bayes [32], where C is the classifier and A1, A2, . . . are the attributes.

c(E) = argmax
c∈C

P(c)× P(a1 , 32 , . . . , an|c) (3)

P(E|c) = P(a 1 , a2 , . . . , an|c) =
n

∏
i=1

P(ai|c) (4)

Symmetry 2022, 14, 1461 8 of 17

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 17

independence probabilistic classifier. In which, for a given class variable, the presence or

absence of a feature is unrelated to the absence or presence of another feature. In a super-

vised learning setting, Naïve Bayes classifiers can be trained very efficiently depending

on the precise nature of the probability model, [31]. Basically, it has two variables:

Class variable (C), and a set of attributes F = {𝐴1; 𝐴2;…; 𝐴𝑛}, on a dataset D which

consists of instances {𝐼1, 𝐼2,.., 𝐼𝑡} and can be defined as in Equation (3), assuming the that

the attributes are independent within the class as in Equation (4). Figure 4 demonstrates

the structure of Naïve Bayes [32], where C is the classifier and A1, A2, .. are the attributes.

c(E) = arg max
𝑐∈𝐶

 𝑃(𝑐) × 𝑃(𝑎1 , 32 , … . . , 𝑎𝑛|𝑐) (3)

P(E|c) = 𝑃(𝑎 1 , 𝑎2 , … . . , 𝑎𝑛|𝑐) = ∏ 𝑃(𝑎𝑖

𝑛

𝑖=1

|𝑐) (4)

Figure 4. NB Classifier

The conditional independence assumption leads to posterior probabilities. The NB

classifier is constructed easily because of the simplicity of computing P(C) and 𝑃(𝑎𝑖|𝑐). It

simplifies computations and provides high accuracy and speed when applied to large da-

tabases.

3.4.3. Support Vector Machine (SVM)

A statistical classifier is the use of a single-class was suggested by [33,34]. It is possible

to predict the support of a high-dimensional distribution. It uses relaxation parameters to

isolate the test point of a class from the rest of the datasets after first processing features

with a kernel. Iterative relaxation parameter methods are used to solve massive sparse

linear systems. It is also used to solve problems involving linear least-squares and nonlin-

ear equations.

The classifier converts instances into a large dimensional attribute space (via a kernel)

and finds the best boundary hyperplane position to break the training data according to

the following formula [31]:

𝒇(𝒙) = (𝒘, 𝒙) + 𝒃 (5)

where w refers to the normal vector and b refers to a bias term.

By optimizing rule f, SVM changes the hyperplane to find a linear classifier. A mark

can be assigned to a test example x using this classification law. If the result of f(x) is less

than zero, x is classified as an intrusion; otherwise, it is classified as natural. As presented

in Figure 5, the classification situation can be clarified by the product of f(x): Positive is

classified as regular, and negative is classified as an intrusion.

Figure 5. SVM classifier based on relaxation parameter [31].

Figure 4. NB Classifier.

The conditional independence assumption leads to posterior probabilities. The NB clas-
sifier is constructed easily because of the simplicity of computing P(C) and P(ai|c). It simpli-
fies computations and provides high accuracy and speed when applied to large databases.

3.4.3. Support Vector Machine (SVM)

A statistical classifier is the use of a single-class was suggested by [33,34]. It is possible
to predict the support of a high-dimensional distribution. It uses relaxation parameters
to isolate the test point of a class from the rest of the datasets after first processing fea-
tures with a kernel. Iterative relaxation parameter methods are used to solve massive
sparse linear systems. It is also used to solve problems involving linear least-squares and
nonlinear equations.

The classifier converts instances into a large dimensional attribute space (via a kernel)
and finds the best boundary hyperplane position to break the training data according to
the following formula [31]:

f(x) = (w, x) + b (5)

where w refers to the normal vector and b refers to a bias term.
By optimizing rule f , SVM changes the hyperplane to find a linear classifier. A mark

can be assigned to a test example x using this classification law. If the result of f (x) is less
than zero, x is classified as an intrusion; otherwise, it is classified as natural. As presented
in Figure 5, the classification situation can be clarified by the product of f (x): Positive is
classified as regular, and negative is classified as an intrusion.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 17

independence probabilistic classifier. In which, for a given class variable, the presence or

absence of a feature is unrelated to the absence or presence of another feature. In a super-

vised learning setting, Naïve Bayes classifiers can be trained very efficiently depending

on the precise nature of the probability model, [31]. Basically, it has two variables:

Class variable (C), and a set of attributes F = {𝐴1; 𝐴2;…; 𝐴𝑛}, on a dataset D which

consists of instances {𝐼1, 𝐼2,.., 𝐼𝑡} and can be defined as in Equation (3), assuming the that

the attributes are independent within the class as in Equation (4). Figure 4 demonstrates

the structure of Naïve Bayes [32], where C is the classifier and A1, A2, .. are the attributes.

c(E) = arg max
𝑐∈𝐶

 𝑃(𝑐) × 𝑃(𝑎1 , 32 , … . . , 𝑎𝑛|𝑐) (3)

P(E|c) = 𝑃(𝑎 1 , 𝑎2 , … . . , 𝑎𝑛|𝑐) = ∏ 𝑃(𝑎𝑖

𝑛

𝑖=1

|𝑐) (4)

Figure 4. NB Classifier

The conditional independence assumption leads to posterior probabilities. The NB

classifier is constructed easily because of the simplicity of computing P(C) and 𝑃(𝑎𝑖|𝑐). It

simplifies computations and provides high accuracy and speed when applied to large da-

tabases.

3.4.3. Support Vector Machine (SVM)

A statistical classifier is the use of a single-class was suggested by [33,34]. It is possible

to predict the support of a high-dimensional distribution. It uses relaxation parameters to

isolate the test point of a class from the rest of the datasets after first processing features

with a kernel. Iterative relaxation parameter methods are used to solve massive sparse

linear systems. It is also used to solve problems involving linear least-squares and nonlin-

ear equations.

The classifier converts instances into a large dimensional attribute space (via a kernel)

and finds the best boundary hyperplane position to break the training data according to

the following formula [31]:

𝒇(𝒙) = (𝒘, 𝒙) + 𝒃 (5)

where w refers to the normal vector and b refers to a bias term.

By optimizing rule f, SVM changes the hyperplane to find a linear classifier. A mark

can be assigned to a test example x using this classification law. If the result of f(x) is less

than zero, x is classified as an intrusion; otherwise, it is classified as natural. As presented

in Figure 5, the classification situation can be clarified by the product of f(x): Positive is

classified as regular, and negative is classified as an intrusion.

Figure 5. SVM classifier based on relaxation parameter [31]. Figure 5. SVM classifier based on relaxation parameter [31].

3.4.4. K-Nearest Neighbor (KNN)

According to the distance function, the nearest neighbor classifier (NNC) assigns a
class to the given test pattern that is the same as its nearest neighbor in the training set. The
k-nearest neighbor classifier (k-NNC) is a generalization of NNC, where k is an integer and
k = 1. The training set contains k-nearest neighbors for the given test pattern Y. Each of the
k closest neighbors’ class information is maintained. In most circumstances, NNC using
bootstrap samples outperforms traditional k-NNC according to experiments. It is worth
noting that there is no theoretical explanation for why k-NNC, which uses the bootstrapped
dataset, is better [35]. Figure 6 depicts KNN.

Symmetry 2022, 14, 1461 9 of 17

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 17

3.4.4. K-Nearest Neighbor (KNN)

According to the distance function, the nearest neighbor classifier (NNC) assigns a

class to the given test pattern that is the same as its nearest neighbor in the training set.

The k-nearest neighbor classifier (k-NNC) is a generalization of NNC, where k is an inte-

ger and k = 1. The training set contains k-nearest neighbors for the given test pattern Y.

Each of the k closest neighbors’ class information is maintained. In most circumstances,

NNC using bootstrap samples outperforms traditional k-NNC according to experiments.

It is worth noting that there is no theoretical explanation for why k-NNC, which uses the

bootstrapped dataset, is better [35]. Figure 6 depicts KNN.

Figure 6. KNN classifier [35].

3.5. Hybrid Classifier Algorithms

Hybrid ensemble learning algorithms are built during this stage. At first, four differ-

ent classifiers (i.e., SVM, RF, NB, and KNN) are used to facilitate sequential operation. The

weight is updated for an effective performance using the principle of AdaBoosting. These

classifiers are modified to work as AdaBoosting to run sequentially after modifying the

weight in order to achieve a high weight with less variance and bias to produce better

results when aggregated and applied with other modified classifiers by using the voting

technique (Overfitting is avoided through reducing tree depth, number of samples of var-

iables at each split and using different dataset). Therefore, these algorithms are modified

in this manner to obtain better results and performance with a minimal error rate. Figures

7–10 demonstrate block diagrams for SVM, RF, NB, and KNN, respectively. Algorithm 2

depicts the proposed Hybrid AdaBoosting and Bagging Algorithms (HABBAs).

Figure 7. Block diagram of RF Classifier.

Figure 7, CF classifier, considers the best subset features (XiBEST) after applying pre-

processing and CFS_FPA [28]. Thereafter it initializes the weight (Wi), and creates the

subset forest by using Equation (1).

Figure 6. KNN classifier [35].

3.5. Hybrid Classifier Algorithms

Hybrid ensemble learning algorithms are built during this stage. At first, four different
classifiers (i.e., SVM, RF, NB, and KNN) are used to facilitate sequential operation. The
weight is updated for an effective performance using the principle of AdaBoosting. These
classifiers are modified to work as AdaBoosting to run sequentially after modifying the
weight in order to achieve a high weight with less variance and bias to produce better results
when aggregated and applied with other modified classifiers by using the voting technique
(Overfitting is avoided through reducing tree depth, number of samples of variables at
each split and using different dataset). Therefore, these algorithms are modified in this
manner to obtain better results and performance with a minimal error rate. Figures 7–10
demonstrate block diagrams for SVM, RF, NB, and KNN, respectively. Algorithm 2 depicts
the proposed Hybrid AdaBoosting and Bagging Algorithms (HABBAs).

Figure 7, CF classifier, considers the best subset features (XiBEST) after applying
preprocessing and CFS_FPA [28]. Thereafter it initializes the weight (Wi), and creates the
subset forest by using Equation (1).

Figure 8 depicts the block diagram of SVM Classifier. It starts with the initialization
step to set the weight Wi to zero and to begin the splitting process for the training dataset
using a hyperplane. Next, it uses Equation (5) explained earlier to compute the function
that utilizes each of Wi, bias, and vector of training data. The modified SVM overcomes two
main drawbacks of classical SVM, the first one is that it is not suitable for large databases,
and the second one is that it does not perform very well when the dataset has more noise. As
the support vector classifier works by putting data points, above and below the classifying
hyperplane, there is no probabilistic explanation for the classification.

Figure 9 depicts the process of computing the probability of each subset feature
(XiBEST) and finding the maximum values to update the weight of each XiBEST.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 17

3.4.4. K-Nearest Neighbor (KNN)

According to the distance function, the nearest neighbor classifier (NNC) assigns a

class to the given test pattern that is the same as its nearest neighbor in the training set.

The k-nearest neighbor classifier (k-NNC) is a generalization of NNC, where k is an inte-

ger and k = 1. The training set contains k-nearest neighbors for the given test pattern Y.

Each of the k closest neighbors’ class information is maintained. In most circumstances,

NNC using bootstrap samples outperforms traditional k-NNC according to experiments.

It is worth noting that there is no theoretical explanation for why k-NNC, which uses the

bootstrapped dataset, is better [35]. Figure 6 depicts KNN.

Figure 6. KNN classifier [35].

3.5. Hybrid Classifier Algorithms

Hybrid ensemble learning algorithms are built during this stage. At first, four differ-

ent classifiers (i.e., SVM, RF, NB, and KNN) are used to facilitate sequential operation. The

weight is updated for an effective performance using the principle of AdaBoosting. These

classifiers are modified to work as AdaBoosting to run sequentially after modifying the

weight in order to achieve a high weight with less variance and bias to produce better

results when aggregated and applied with other modified classifiers by using the voting

technique (Overfitting is avoided through reducing tree depth, number of samples of var-

iables at each split and using different dataset). Therefore, these algorithms are modified

in this manner to obtain better results and performance with a minimal error rate. Figures

7–10 demonstrate block diagrams for SVM, RF, NB, and KNN, respectively. Algorithm 2

depicts the proposed Hybrid AdaBoosting and Bagging Algorithms (HABBAs).

Figure 7. Block diagram of RF Classifier.

Figure 7, CF classifier, considers the best subset features (XiBEST) after applying pre-

processing and CFS_FPA [28]. Thereafter it initializes the weight (Wi), and creates the

subset forest by using Equation (1).

Figure 7. Block diagram of RF Classifier.

Symmetry 2022, 14, 1461 10 of 17Symmetry 2022, 14, x FOR PEER REVIEW 10 of 17

Figure 8. Block diagram of SVM Classifier.

Figure 8 depicts the block diagram of SVM Classifier. It starts with the initialization

step to set the weight Wi to zero and to begin the splitting process for the training dataset

using a hyperplane. Next, it uses Equation (5) explained earlier to compute the function

that utilizes each of Wi, bias, and vector of training data. The modified SVM overcomes

two main drawbacks of classical SVM, the first one is that it is not suitable for large data-

bases, and the second one is that it does not perform very well when the dataset has more

noise. As the support vector classifier works by putting data points, above and below the

classifying hyperplane, there is no probabilistic explanation for the classification.

Figure 9 depicts the process of computing the probability of each subset feature

(XiBEST) and finding the maximum values to update the weight of each XiBEST.

Figure 9. Block diagram for NB Classifier.

Figure 10. Block diagram for KNN Classifier.

Figure 8. Block diagram of SVM Classifier.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 17

Figure 8. Block diagram of SVM Classifier.

Figure 8 depicts the block diagram of SVM Classifier. It starts with the initialization

step to set the weight Wi to zero and to begin the splitting process for the training dataset

using a hyperplane. Next, it uses Equation (5) explained earlier to compute the function

that utilizes each of Wi, bias, and vector of training data. The modified SVM overcomes

two main drawbacks of classical SVM, the first one is that it is not suitable for large data-

bases, and the second one is that it does not perform very well when the dataset has more

noise. As the support vector classifier works by putting data points, above and below the

classifying hyperplane, there is no probabilistic explanation for the classification.

Figure 9 depicts the process of computing the probability of each subset feature

(XiBEST) and finding the maximum values to update the weight of each XiBEST.

Figure 9. Block diagram for NB Classifier.

Figure 10. Block diagram for KNN Classifier.

Figure 9. Block diagram for NB Classifier.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 17

Figure 8. Block diagram of SVM Classifier.

Figure 8 depicts the block diagram of SVM Classifier. It starts with the initialization

step to set the weight Wi to zero and to begin the splitting process for the training dataset

using a hyperplane. Next, it uses Equation (5) explained earlier to compute the function

that utilizes each of Wi, bias, and vector of training data. The modified SVM overcomes

two main drawbacks of classical SVM, the first one is that it is not suitable for large data-

bases, and the second one is that it does not perform very well when the dataset has more

noise. As the support vector classifier works by putting data points, above and below the

classifying hyperplane, there is no probabilistic explanation for the classification.

Figure 9 depicts the process of computing the probability of each subset feature

(XiBEST) and finding the maximum values to update the weight of each XiBEST.

Figure 9. Block diagram for NB Classifier.

Figure 10. Block diagram for KNN Classifier.

Figure 10. Block diagram for KNN Classifier.

Symmetry 2022, 14, 1461 11 of 17

Algorithm 2: Hybrid HABBAs for Intrusion Detection

Input: D1 = CICIDS17 training datasets; Mi = modified classifiers, k = the number of rounds
(one Modified algorithm per round);
Output: A composite model
Step 1: Adaboosting Algorithms

initialize weight of each class Wi = 0; // this weight for each modified algorithm.
k = 4; (four modified algorithms).
for i = 1 to k do // for each modified algorithm

Compute ErrorRate (Mi)
If ErrorRate (Mi) > 0.5 then

compute Wi to each k.
[log (1 − ErrorRate (Mi))/ErrorRate (Mi)]
compute prediction of each modified classifier Mi: Ci = Mi(x)
add Wi to weight for classifier Ci

End if
End for
Return Ci with the highest weight and error rate

Step 2: bagging Algorithms
For each Ci Do

Ensemble these Ci to bootstrap models.
Aggregate each Ci using voting average as parallel operations.

Average voting ← 1
mj = l

l
∑

i=1
pci(Wix) .

End for
For the testing set part do:

Compute accuracy for predicted XiAfter voting.
Compute accuracy for predicted XiBefore voting.
If XiBefore < XiAfter then

Return to the Average voting step and replace the probability of
weighting using the highest probabilities.

Else
Compute general measurement: Accuracy, DR, FAR, Precision,
False-positive Rate, False-negative Rate, True Positive Rate,
True negative Rate

End if
End for
Return composite model and Performance-Measurements
End

4. Implementation

This paper aims at building IDSs with better reliability, high accuracy, low false alarm
rates, and low false negative rates. CFS–FPA is a proposed method that combines both CFS
and FPA. This method applies correlation between features and a target, then it distributes
them into subsets using Random Forest. Finally, it uses a panelized attribute to select only
features that affect the final results [28]. It enables selecting the best set of features for
removing unnecessary features and increasing classification performance with HABBAs
to detect intrusion. This proposed system is implemented using the CICIDS2017 dataset
to test binary and multi-class forms of the confusion matrix. It is executed using laptop
CORE i7, 10th generation with RAM 16. Operated by win11 and Colab platform. Several
packages of Sklearn from Python 8.3 are utilized in this model, such as cross_val_score
from selection, and Voting Classifier from Ensemble.

5. Experimental Results and Discussion

To evaluate the proposed Modified Ensemble Learning Algorithms, 70% of the dataset
is used for training and 30% is used for testing. Testing is done in two stages: feature
selection and ensemble algorithms. Table 3 explains the experimental results of using

Symmetry 2022, 14, 1461 12 of 17

thirteen different numbers of feature selection along with the accuracy obtained. It is
obvious from this experiment that the best accuracy of 99% is achieved when the number
of features is 30. Hence it will be adopted for the remaining experiments.

Table 3. Experimental result of 13 different numbers of FS.

Number of FS Accuracy %

13 74
20 78
25 83
30 99
35 98.9
40 98.5
45 98
50 96.9
55 96.3
60 96
65 94
70 93
78 90

5.1. Binary and Multi-Class Confusion Matrix

The experiment is carried out at this stage. HABBAs use CICIDS2017 dataset by
applying a confusion matrix for each class that contains both normal and abnormal traffic
and with three sets of feature selections (i.e., 13, 30, and all features). After the applied
proposed CFS-FPA method and Hybrid AdaBoosting, a bagging ensemble algorithm is
used to detect intrusion.

The confusion matrix is presented in binary and multi-class. At first, the proposed
model is applied to each class of CICIDS2017. Tables 4–6 reveal the predicted results when
applying the CICIDS2017 dataset with the three feature selection sets (i.e., 13, 30, and 78) as
a binary class. Each of these tables explains the distribution of these four states: TP True
Positive, FP False Positive, TN True Negative, and FN False Negative, which are used in
the calculation of the evaluation measures.

Table 4. Binary CICIDS2017 with 13-features.

ActualClass
PredictedClass

Positive Negative

Positive 443,615 10,650
Negative 62,736 48,561

Table 5. Binary CICIDS2017 with 30-features.

ActualClass
PredictedClass

Positive Negative

Positive 453,916 349
Negative 369 110,928

Table 6. Binary CICIDS2017 with 78-features.

ActualClass
PredictedClass

Positive Negative

Positive 437,550 16,715
Negative 24,741 86,556

Symmetry 2022, 14, 1461 13 of 17

The numbers of attacks and normal distribution of each class where the best is when
applying 30 features. Table 7 shows the accuracy and FNR of these tables.

Table 7. CICIDS2017 Binary Accuracy with 78-features.

Features Accuracy FNR

13 0.87 0.123
30 0.99 0.0008
78 0.92 0.053

Based on the binary confusion matrix, Table 7 shows the highest and the best accuracy
obtained by the proposed system, with 30 features chosen using the proposed CFS-FPA
method. The lowest accuracy occurs when applied to 13 feature selections. Similarly, it
shows the highest accuracy of 99% when applied to 30 selected features and the lowest
FNR of 0.0008. This system performs better compared with using 13-features since the
accuracy is 87% and FNR is 0.123, and when applying 78-features the accuracy is 0.92%
and FNR is 0.053.

Table 8 describes the CICIDS17 confusion matrix of multi-class when applied to
30 features and Table 9 depicts Precision, Recall, and F-score for the same feature selection.

Table 8. Confusion matrix for the CICID2017 dataset for 30 features.

ActualClass

PredictedClass

Normal Bot Brute
Force DDoS

DoS
Golden

Eye

DoS
Hulk

DoS
Slow
HTTP
Test

DoS
Slow
Loris

FTP
Pastor

Port
Scan Pastor XSS

Normal 453,761 50 0 0 2 274 3 0 1 174 0 0
Bot 0 391 0 0 0 0 0 0 0 0 0 0

Brute Force 0 0 299 0 0 0 0 0 0 0 0 0
DDoS 10 0 0 25,595 0 0 0 0 0 0 0 0

DoS GoldenEye 8 0 0 0 2042 6 2 0 0 0 0 0
DoS Hulk 21 0 1 2 1 45,999 0 0 0 1 0 0

DoS
Slow-HTTP-test 7 0 0 0 0 0 1091 2 0 0 0 0

DoS slow loris 3 0 1 0 0 0 6 1149 0 0 0 0
FTP-Patator 3 0 0 0 0 0 0 0 1584 0 0 0

Port-Scan 1 0 3 0 0 4 0 0 0 31,752 0 1
SSH-Patator 6 0 0 0 0 0 0 0 0 0 1174 0

XSS 0 0 0 0 0 0 0 0 0 0 0 130

Table 9. Accuracy of Multi-class CICIDS2017 with 30-features.

Attack Precision Detection-Rate F-Score

Normal 99 99 100
bot 100 100 100

Brute force 100 100 100
Port-Scan 99 99 99

DoS-slow loris 99 99 99
DoS-Slow-HTTPtest 99 99 99

DoSHulk 99 99 99
DoSGolden-Eye 99 99 99

Hear-bleed 99 99 99
FTP-Patter 99 99 99
SSH-Scan 100 99 99

Symmetry 2022, 14, 1461 14 of 17

Table 9 shows that the best results for all classes are achieved when selecting the
30 features reaching 100% in Bot and Brute Force, which means that the features’ number is
optimal and useful to detect all types of attacks.

5.2. Time Complexity

The time complexity of the proposed algorithm using Big O notation is O(N2) [28].
This means the run-time increases polynomial when the input is increased. The complexity
time when applied to the CICIDS17 dataset is presented in Figure 11. It shows that the
highest runtime is 11.5 s for DDoS_ston class, while the shortest runtime is 1.1 s for brute
force class.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 17

Table 9. Accuracy of Multi-class CICIDS2017 with 30-features.

Attack Precision Detection-Rate F-Score

Normal 99 99 100

bot 100 100 100

Brute force 100 100 100

Port-Scan 99 99 99

DoS-slow loris 99 99 99

DoS-Slow-HTTPtest 99 99 99

DoSHulk 99 99 99

DoSGolden-Eye 99 99 99

Hear-bleed 99 99 99

FTP-Patter 99 99 99

SSH-Scan 100 99 99

Table 9 shows that the best results for all classes are achieved when selecting the 30

features reaching 100% in Bot and Brute Force, which means that the features’ number is

optimal and useful to detect all types of attacks.

5.2. Time Complexity

The time complexity of the proposed algorithm using Big O notation is O(N2) [28].

This means the run-time increases polynomial when the input is increased. The complex-

ity time when applied to the CICIDS17 dataset is presented in Figure 11. It shows that the

highest runtime is 11.5 s for DDoS_ston class, while the shortest runtime is 1.1 s for brute

force class.

Figure 11. CICID2017 Complexity-time.

5.3. Analysis of Results

To demonstrate the effectiveness of the proposed HABBAs, a comparison study is

conducted with similar work. Table 10 reveals that the proposed HABBAs outperform all

the selected algorithms for this evaluation. For example, the work done by [30] is applied

to the same dataset CICIDS2017, and examined the performance using 10 and 13 features.

The best accuracy of 98.4% was when using 10 features compared with 30 in this work.

While FAR of 13 features is lower than that of 10 features but still higher than that of our

proposed model. Nevertheless, the HABBAs achieved 99.7% accuracy with an improve-

ment of 1.62% and FAR as low as 0.004 [31] applied voting on four ML techniques using

three sets of features (8, 11, and 13). These techniques are K-means, SVM, DBSCAN, and

11.5

4.5
5.5

7.1

1.2 1.1
2.3

0
2
4
6
8
10
12
14

Time Complexity

Complexity-Time

Figure 11. CICID2017 Complexity-time.

5.3. Analysis of Results

To demonstrate the effectiveness of the proposed HABBAs, a comparison study is
conducted with similar work. Table 10 reveals that the proposed HABBAs outperform all
the selected algorithms for this evaluation. For example, the work done by [30] is applied to
the same dataset CICIDS2017, and examined the performance using 10 and 13 features. The
best accuracy of 98.4% was when using 10 features compared with 30 in this work. While
FAR of 13 features is lower than that of 10 features but still higher than that of our proposed
model. Nevertheless, the HABBAs achieved 99.7% accuracy with an improvement of 1.62%
and FAR as low as 0.004 [31] applied voting on four ML techniques using three sets of
features (8, 11, and 13). These techniques are K-means, SVM, DBSCAN, and Maximization-
Expectation. The best average accuracy achieved was 98% which is lower than our model
by 1.73%. In the same manner, the best average detection rate is higher than the detection
rate of the proposed model. Reference [32] tried three values for the number of features
(38, 41, and 78) and the best accuracy achieved is for 41 features. It is 99%, which is slightly
lower than that of our model. This study does not provide values for the detection rate
of FAR. The accuracy of the work done by [33] is less than the proposed model by 3.4%.
The FAR measure of [32] is much higher than the proposed model although the accuracy
is 98.5. These results reveal that there is an actual need to have a system that combines
high accuracy and low FAR. This system is achieved by the proposed model. Finally, both
works of [32] and [33] do not consider the number of features. However, the accuracy
of [33] is 97.5% when using the same dataset and it is lower than our model by 2.26%. From
the above discussion, it is obvious that the proposed HABBAs model outperforms all the
selected algorithms. This is due to the effective feature selection algorithm that obtained

Symmetry 2022, 14, 1461 15 of 17

the best combination and most important features which influence the accuracy of the
classification of network traffic. This is from one side. On the other side, the proposed
voting model of the modified ML algorithms (Support Vector Machine, Random Forest,
Naïve Bayes, and K-Nearest Neighbor) demonstrates its ability to accurately classify the
network traffic into benign and normal.

Table 10. Comparison with other studies.

References, Authors Feature Selection
Method Classification Method FS Accuracy DR FAR

Zhou Y., et al. [19] CFS_BA Voting contain (C4.5, RF, ForestPA).
10 98.4 99.1 0.15

13 97.3 98 0.12

Jaw E. and
Wang X. [20] HFS-KODE

Voting contains (K-means, SVM, DBSCAN,
and Maximization-Expectation, (KODE))

11 96.4 99 1.15

8 98.3 99 0.14

13 98 98 1.12

Gupta N., et al. [21] deep neural
network

eXtreme Gradient Boosting algorithm

41 99% __ __

38 96% __ __

78 92% __ __

Tama B., et al. [22] hybrid Ensemble Two-stage 37 96.42 __ __

Pelletier, Z.;
Abualkibash, M. [24] NN RF 30 97.30% 98% __

Thaseen I. S. and
Ahmad A. [36] Chi-square Voting (SVM, MNB, Boosting) __ 98.5 95 2.15

Ikram S. T., et al. [37] DNN XGBoost __ 97.5 97 __

Proposed system CFS_FPA Voting (RF, NB, KNN, SVM) 30 99.7 99.99 0.004

6. Conclusions

Despite previous attempts to increase the efficacy of IDSs through the use of various
ML methods, existing IDSs are still ineffective by some measures. With hybrid techniques
based on the desired FS, we proposed a novel IDS approach for dealing with unbalanced
and high-dimensional traffic with low DR. A hybrid CFS FPA strategy with a 30-feature
sample and a hybrid ensemble learning method is proposed to attain the best subset in
terms of function correlation. Removing non-essential features and selecting only affected
features through the proposed method CFS_FPA by combining correlation feature selection
and forest penalized attribute enabled the proposed system to manipulate and process the
conflict that the previous work suffers from such as (FAR, FNR, DR, and accuracy); hence,
the accuracy in the testing phase enhanced to 87% and FNR is 0.123. Using the CICIDS2017
dataset, the suggested model’s final experimental results showed an accuracy of 99.73%, an
F-measure of 99.71%, a precision of 99.82%, a DR of 99.8%, and a FAR of 0.004. Furthermore,
the suggested technique outperforms the currently available classification algorithms as
well as the previously proposed CFS–FPA–ensemble method. Comparisons with other
strategies reveal that this methodology can give a considerable competitive advantage in
the IDS industry. Hence, provide high reliability and more robustness in classifying benign
traffics and identifying intrusions.

Despite CFS-FPA’s advantage with ensemble techniques (HABBAs), additional work
is needed to enhance its capabilities to tackle infrequent traffic problems. In the future,
we are interested in testing the performance of our proposed model on other datasets
such as CICIDS2018 which includes more recent types of attacks. Other types of machine
learning techniques could be considered for further enhancement that considers both
memory utilization and time complexity to make it more efficient for real-time detection of
intrusions and attacks.

Symmetry 2022, 14, 1461 16 of 17

Author Contributions: Conceptualization, D.N.M. and S.H.; Formal analysis, D.N.M. and A.A.;
Software, D.N.M.; Supervision, S.H.; Writing-original draft, D.N.M.; Writing-review & editing, A.A.
and D.N.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: CICIDS2017 Dataset free downloaded from the link: http://205.174.16
5.80/CICDataset/CIC-IDS-2017/Dataset/, accessed on 24 June 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, X.; Dai, J.; Liu, P.; Singhal, A.; Yen, J. Using Bayesian Networks for Probabilistic Identification of Zero-Day Attack Paths.

IEEE Trans. Inf. Forensics Secur. 2018, 13, 2506–2521. [CrossRef]
2. Alazab, M. Profiling and classifying the behavior of malicious codes. J. Syst. Softw. 2015, 100, 91–102. [CrossRef]
3. Sumaiya Thaseen, I.; Aswani Kumar, C. Intrusion detection model using fusion of chi-square feature selection and multi class

SVM. J. King Saud Univ.—Comput. Inf. Sci. 2017, 29, 462–472. [CrossRef]
4. Rajagopal, S.; Kundapur, P.P.; Hareesha, K.S. A Stacking Ensemble for Network Intrusion Detection Using Heterogeneous

Datasets. Secur. Commun. Netw. 2020, 2020, 4586875. [CrossRef]
5. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and

building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [CrossRef]
6. Sharma, S.; Challa, R.K.; Kumar, R. An ensemble-based supervised machine learning framework for android ransomware

detection. Int. Arab J. Inf. Technol. 2021, 18, 422–429. [CrossRef]
7. Devarajan, R.; Rao, P. An efficient intrusion detection system by using behaviour profiling and statistical approach model. Int.

Arab J. Inf. Technol. 2021, 18, 114–124. [CrossRef]
8. Hnaif, A.; Jaber, K.; Alia, M.; Daghbosheh, M. Parallel scalable approximate matching algorithm for network intrusion detection

systems. Int. Arab J. Inf. Technol. 2021, 18, 77–84. [CrossRef]
9. Aljanabi, M.; Ismail, M. Improved intrusion detection algorithm based on TLBO and GA algorithms. Int. Arab J. Inf. Technol. 2021,

18, 170–179. [CrossRef]
10. Tabash, M.; Allah, M.A.; Tawfik, B. Intrusion detection model using naive bayes and deep learning technique. Int. Arab J. Inf.

Technol. 2020, 17, 215–224. [CrossRef]
11. Wang, K.; Wang, Y.; Zhao, Q.; Meng, D.; Liao, X.; Xu, Z. SPLBoost: An Improved Robust Boosting Algorithm Based on Self-Paced

Learning. IEEE Trans. Cybern. 2021, 51, 1556–1570. [CrossRef] [PubMed]
12. Wang, C.; Du, J.; Fan, X. High-dimensional correlation matrix estimation for general continuous data with Bagging technique.

Mach. Learn. 2022. [CrossRef]
13. Guo, H.W.; Hu, Z.; Liu, Z.B.; Tian, J.G. Stacking of 2D Materials. Adv. Funct. Mater. 2021, 31, 2007810. [CrossRef]
14. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54,

1937–1967. [CrossRef]
15. Hota, H.S.; Shrivas, A.K. Decision tree techniques applied on NSL-KDD data and its comparison with various feature selection

techniques. In Advanced Computing, Networking and Informatics; Springer: Cham, Switzerland, 2014; Volume 1, pp. 205–212.
16. Khammassi, C.; Krichen, S. A GA-LR wrapper approach for feature selection in network intrusion detection. Comput. Secur. 2017,

70, 255–277. [CrossRef]
17. Moon, S.H.; Kim, Y.H. An improved forecast of precipitation type using correlation-based feature selection and multinomial

logistic regression. Atmos. Res. 2020, 240, 104928. [CrossRef]
18. Mohamad, M.; Selamat, A.; Krejcar, O.; Crespo, R.G.; Herrera-Viedma, E.; Fujita, H. Enhancing big data feature selection using a

hybrid correlation-based feature selection. Electronics 2021, 10, 2984. [CrossRef]
19. Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble

classifier. Comput. Netw. 2020, 174, 107274. [CrossRef]
20. Jaw, E.; Wang, X. Feature Selection and Ensemble-Based Intrusion Detection System: An Efficient and Comprehensive Approach.

Symmetry 2021, 13, 1764. [CrossRef]
21. Gupta, N.; Jindal, V.; Bedi, P. CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in

network-based intrusion detection systems. Comput. Secur. 2022, 112, 102499. [CrossRef]
22. Tama, B.A.; Comuzzi, M.; Rhee, K.H. TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-Based Intrusion

Detection System. IEEE Access 2019, 7, 94497–94507. [CrossRef]
23. Aldallal, A.; Alisa, F. Effective intrusion detection system to secure data in cloud using machine learning. Symmetry 2021, 13, 2306.

[CrossRef]

http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/
http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/
http://doi.org/10.1109/TIFS.2018.2821095
http://doi.org/10.1016/j.jss.2014.10.031
http://doi.org/10.1016/j.jksuci.2015.12.004
http://doi.org/10.1155/2020/4586875
http://doi.org/10.1016/j.jocs.2017.03.006
http://doi.org/10.34028/iajit/18/3A/5
http://doi.org/10.34028/iajit/18/1/13
http://doi.org/10.34028/iajit/18/1/9
http://doi.org/10.34028/IAJIT/18/2/5
http://doi.org/10.34028/iajit/17/2/9
http://doi.org/10.1109/TCYB.2019.2957101
http://www.ncbi.nlm.nih.gov/pubmed/31880577
http://doi.org/10.1007/s10994-022-06138-3
http://doi.org/10.1002/adfm.202007810
http://doi.org/10.1007/s10462-020-09896-5
http://doi.org/10.1016/j.cose.2017.06.005
http://doi.org/10.1016/j.atmosres.2020.104928
http://doi.org/10.3390/electronics10232984
http://doi.org/10.1016/j.comnet.2020.107247
http://doi.org/10.3390/sym13101764
http://doi.org/10.1016/j.cose.2021.102499
http://doi.org/10.1109/ACCESS.2019.2928048
http://doi.org/10.3390/sym13122306

Symmetry 2022, 14, 1461 17 of 17

24. Pelletier, Z.; Abualkibash, M. Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating Multiple
Predictive Models in the Statistical Computing Language R. Science 2020, 5, 187–191.

25. Abbas, A.; Khan, M.A.; Latif, S.; Ajaz, M.; Shah, A.A.; Ahmad, J. A New Ensemble-Based Intrusion Detection System for Internet
of Things. Arab. J. Sci. Eng. 2022, 47, 1805–1819. [CrossRef]

26. Pangsuban, P.; Nilsook, P.; Wannapiroon, P. A Real-time Risk Assessment for Information System with CICIDS2017 Dataset Using
Machine Learning. Int. J. Mach. Learn. Comput. 2020, 10, 465–470. [CrossRef]

27. Gopalan, S.S.; Ravikumar, D.; Linekar, D.; Raza, A.; Hasib, M. Balancing Approaches towards ML for IDS: A Survey for the
CSE-CIC IDS Dataset. In Proceedings of the ICCSPA 2020—4th International Conference on Communications, Signal Processing,
and Their Applications, Sharjah, United Arab Emirates, 16–18 March 2021; Volume 2021-Janua.

28. Mhawi, D.N. Proposed Hybrid Correlation Feature Selection Forest Panalized Attribute Approach to advance IDSs. Karbala Int. J.
Mod. Sci. 2021, 7, 15. [CrossRef]

29. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote Sens. 2020,
12, 1687. [CrossRef]

30. Feng, Q.; Liu, J.; Gong, J. UAV Remote sensing for urban vegetation mapping using random forest and texture analysis. Remote
Sens. 2015, 7, 1074–1094. [CrossRef]

31. Alkasassbeh, M. An empirical evaluation for the intrusion detection features based on machine learning and feature selection
methods. J. Theor. Appl. Inf. Technol. 2017, 95, 5962–5976.

32. Chen, S.; Webb, G.I.; Liu, L.; Ma, X. A novel selective naïve Bayes algorithm. Knowl.-Based Syst. 2020, 192, 105361. [CrossRef]
33. Huang, M.W.; Chen, C.W.; Lin, W.C.; Ke, S.W.; Tsai, C.F. SVM and SVM ensembles in breast cancer prediction. PLoS ONE 2017,

12, 161501. [CrossRef] [PubMed]
34. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]
35. Gou, J.; Qiu, W.; Yi, Z.; Shen, X.; Zhan, Y.; Ou, W. Locality constrained representation-based K-nearest neighbor classification.

Knowl.-Based Syst. 2019, 167, 38–52. [CrossRef]
36. Thaseen, I.S.; Kumar, C.A.; Ahmad, A. Integrated Intrusion Detection Model Using Chi-Square Feature Selection and Ensemble

of Classifiers. Arab. J. Sci. Eng. 2019, 44, 3357–3368. [CrossRef]
37. Ikram, S.T.; Cherukuri, A.K.; Poorva, B.; Ushasree, P.S.; Zhang, Y.; Liu, X.; Li, G. Anomaly Detection Using XGBoost Ensemble of

Deep Neural Network Models. Cybern. Inf. Technol. 2021, 21, 175–188. [CrossRef]

http://doi.org/10.1007/s13369-021-06086-5
http://doi.org/10.18178/ijmlc.2020.10.3.958
http://doi.org/10.33640/2405-609X.3166
http://doi.org/10.3390/rs12101687
http://doi.org/10.3390/rs70101074
http://doi.org/10.1016/j.knosys.2019.105361
http://doi.org/10.1371/journal.pone.0161501
http://www.ncbi.nlm.nih.gov/pubmed/28060807
http://doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://doi.org/10.1016/j.knosys.2019.01.016
http://doi.org/10.1007/s13369-018-3507-5
http://doi.org/10.2478/cait-2021-0037

	Introduction
	Related Work
	Materials and Methods
	Description of CICIDS2017 Datasets
	CICIDS17 Dataset Preprocessing
	Correlation Feature Selection-Forest Panelized Attribute (CFS-FPA)
	Classifiers
	Random Forest (RF)
	Naïve Bayes Classifier
	Support Vector Machine (SVM)
	K-Nearest Neighbor (KNN)

	Hybrid Classifier Algorithms

	Implementation
	Experimental Results and Discussion
	Binary and Multi-Class Confusion Matrix
	Time Complexity
	Analysis of Results

	Conclusions
	References

