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Abstract: Let G be a group and R be a G-graded ring. In this paper, we present and examine the
concept of graded weakly 2-absorbing ideals as in generality of graded weakly prime ideals in a
graded ring which is not commutative, and demonstrates that the symmetry is obtained as a lot of
the outcomes in commutative graded rings remain in graded rings that are not commutative.
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1. Introduction

During the whole of this article, the rings are not certainly expected to have unity
except pointed out alternatively. Likewise, an ideal in a ring means a two-sided ideal. Let
G be a group with identity e and R be a ring. Then R is called graded ring which denoted
by ‘GR-ring’ if R =

⊕
g∈G

Rg where RgRh ⊆ Rgh for g, h ∈ G. The additive subgroup stood

for Rg where g ∈ G. We call the homogeneous of degree g for the components of Rg. If
a ∈ R, then a can be represented by ∑

g∈G
ag, with ag being the element of a in Rg. In fact the

additive subgroup Re is a sub-ring of R, if R has a unity 1, then 1 ∈ Re. Let
⋃

g∈G
Rg be the

collection of all homogeneous elements of R which is denoted by h(R). Assume P is an
ideal of a graded ring R. If P =

⊕
g∈G

(P ∩ Rg), so, P is announced for a graded ideal, and

denoted by ‘GR-I’, i.e., for a ∈ P, a = ∑
g∈G

ag where ag ∈ P and g ∈ G. It is not necessary for

every ‘GR-I’ to be a GR-ring ([1], Example 1.1). For more details and terminology, see [2,3].
The following abbreviations are used towards the end of this paper: ‘CGR-ring’ stand

for commutative graded rings, ‘NCGR-ring’ for non-commutative graded rings, ‘GR-P’ for
graded prime, ‘GR-PI’ for graded prime ideals, ‘PGR-PI’ for proper graded prime ideals,
‘PGR-I’ for proper graded ideals, ‘GR-WPI’ for graded weakly prime ideals, ‘GR-2-AI’ for
graded 2-Absorbing ideals, ‘GR-W-2-AI’ for a graded weakly 2-Absorbing ideals, and
‘GR-CW-2-AI’ for a graded completely weakly 2-Absorbing ideals.

For ‘CGR-ring’, ‘GR-2-AI’, generalized from ‘GR-PI’, which were presented as well as
examined within [4]. Remember from [5] that a ‘PGR-I’ P of a ‘CGR-ring’ R is estimated to
be a ‘GR-WPI’ of R if x, y ∈ h(R) and 0 6= xy ∈ P, then either x ∈ P or y ∈ P. Also from [4]
a ‘PGR-I’ P of a ‘CGR-ring’ R is announced for a ‘GR-2-AI’ of R, where, x, y, z ∈ h(R) along
with xyz ∈ P, therefore, either xy ∈ P, xz ∈ P or yz ∈ P. The idea of a ‘GR-W-2-AI’ of a
‘CGR-ring’ R was presented in [4]. A ‘PGR-I’ P of a ‘CGR-ring’ R is called a ‘GR-W-2-AI’ of
R if given x, y, z ∈ h(R) and 0 6= xyz ∈ P, so one of xy, xz or yz be in P.
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The ‘GR-PI’ over ‘NCGR-rings’ have been put in place and examined by Abu-Dawwas,
Bataineh, and Al-Muanger in [6]. A ‘PGR-I’ P of R is expressed to be ‘GR-P’ for both of I
and J were ‘GR-I’ of R where, I J ⊆ P, therefore I ⊆ P or J ⊆ P. As a summarization of
‘GR-PI’ over ‘NCGR-ring’, the concept of ‘GR-2-AI’ over ‘NCGR-ring’ has been reported
and investigated by Abu-Dawwas, Shashan and Dagher in [7]. A ‘PGR-I’ P of R is said
to be ‘GR-2-AI’ where x, y, z ∈ h(R) so that xRyRz ⊆ P, then xy ∈ P, yz ∈ P or xz ∈ P.
Recently, ‘GR-WPI’ over ‘NCGR-rings’ have been brought up and served by Alshehry and
Abu-Dawwas in [1]. A ‘PGR-I’ P of R is said to be ‘GR-WP’ if once I and J are ‘GR-I’ of R
such that 0 6= I J ⊆ P, then I ⊆ P or J ⊆ P.

Within this article, we are following [8] to introduce and investigate the concept of
‘GR-W-2-AI’ as a generalization of ‘GR-WPI’ in a ‘GR-ring’ which is non-commutative, and
demonstrates that the symmetry is obtained as a lot of the outcomes in ‘CGR-ring’ still
remain in ‘NCGR-ring’.

2. Graded Weakly 2-Absorbing Ideals

This section consists of an examination and studies of ‘GR-W-2-AI’. During the whole
of this section, we are dealing with a ring R, that is an ‘NCGR-ring’, having unity except
pointed out alternatively.

Definition 1. Let R be a ‘GR-ring’. Assume that P is a ‘PGR-I’ of R. Then we call P being a
‘GR-W-2-AI’ when 0 6= xRyRz ⊆ P gives xy ∈ P, yz ∈ P or xz ∈ P for each x, y, z ∈ h(R).
If 0 6= xyz ∈ P implies xy ∈ P, yz ∈ P or xz ∈ P for all x, y, z ∈ h(R), we call P to be
‘GR-CW-2-AI’.

Apparently, when R is a ‘CGR-rings’ having unity, then the concepts of ‘GR-W-2-A’
and ‘GR-CW-2-AI’ coincide. The following example demonstrates that this will not be the
case for ‘NCGR-ring’.

Example 1. Consider R = M2(Z) (the ring of all 2× 2 matrices with integer entries) and G = Z4.

Then R is graded by R0 =

(
Z 0
0 Z

)
, R2 =

(
0 Z
Z 0

)
and R1 = R3 = 0.

Deal with ‘GR-I’ P = M2(2Z) of R. P is Clearly a ‘GR-PI’ of R and so a ‘GR-W-2-AI’ of

R. On the other side, P is not a ‘GR-CW-2-AI’ of R since n, m ∈ Z, A =

(
2n + 1 0

0 2m

)
,

B =

(
0 2n + 1

2n + 1 0

)
and C =

(
2n + 1 0

0 4m

)
∈ h(R) where 0 6= ABC ∈ P, for each

of AB, AC and BC /∈ P.

Undoubtedly, every ‘GR-2-AI’ of a ‘GR-ring’ is a ‘GR-W-2-AI’. In any ‘GR-ring’,
P = {0} is ‘GR-W-2-AI’.

Individually, it is not necessary for P = {0} to be ‘GR-2-AI’, check the next example.

Example 2. Suppose that R = M2(Z8) along with G = Z4. Hence R will be ‘GR-ring’ by

R0 =

(
Z8 0
0 Z8

)
, R2 =

(
0 Z8
Z8 0

)
and R1 = R3 = 0. Undeniably, P =

{(
0 0
0 0

)}
is

not a ‘GR-2-AI’ of R since A =

(
2 0
0 2

)
∈ h(R) with ARARA ⊆ P but A.A /∈ P.

Lemma 1. For a ‘GR-ring’ R. Assume that P is a ‘GR-WPI’ of R.

1. If for both I and J are graded right (left) ideals of R where, 0 6= I J ⊆ P. Then it is either
I ⊆ P or J ⊆ P.

2. If 0 6= xRyRz ⊆ P such that x, y, z ∈ h(R), therefore each of x, y or z ∈ P.
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Proof.

1. Assume that both I and J are graded right (left) ideals of R in order that 0 6= I J ⊆ P.
Let (I) and (J) be the ‘GR-I’ generated by I and J respectively. Then 0 6= (I)(J) ⊆ P,
whence I ⊆ (I) ⊆ P or J ⊆ (J) ⊆ P.

2. Suppose that x, y, z ∈ h(R) where 0 6= xRyRz ⊆ P. That being 0 6= (Rx)RyRz ⊆ P
which it comes from (1) that x ∈ Rx ⊆ P or 0 6= RyRz ⊆ P. By reiterating this, the
result follows.

Proposition 1. In the ‘GR-ring’ R. P is a ‘GR-W-2-AI’ of R, if it is a ‘GR-WPI’ of R.

Proof. Let x, y, z ∈ h(R) where 0 6= xRyRz ⊆ P. By Lemma 1, x ∈ P or y ∈ P or z ∈ P.
Accordingly, xy ∈ P or yz ∈ P or xz ∈ P, and the result holds.

Proposition 2. If P and K are two distinct ‘GR-WPI’ of a ‘GR-ring’ R, then P
⋂

K is a ‘GR-W-2-
AI’ of R.

Proof. Assume that P
⋂

K = {0}, it seems that P
⋂

K is a ‘GR-W-2-AI’ of R. Let x1, x2, x3 ∈
h(R) where 0 6= x1Rx2Rx3 ⊆ P

⋂
K. Then 0 6= x1Rx2Rx3 ⊆ P and 0 6= x1Rx2Rx3 ⊆ K. By

Lemma 1 we have xi ∈ P and xj ∈ K for some i and j, then xixj ∈ P
⋂

K. As a result, P
⋂

K
is a ‘GR-W-2-AI’ of R.

Consider the two ‘GR-rings’ R and T. For all g ∈ G, R× T is a graded by (R× T)g =
Rg × Tg. P× K is a ‘GR-I’ of R× T if and only if P is a ‘GR-I’ of R and K is a ‘GR-I’ of
T. The following example reveals that one can find ‘GR-W-2-AI’ which is not ‘GR-WPI’.
Unfortunately, these rings that are used are commutative, indeed, we could not find such
an example consisting of a non-commutative ring.

Example 3. Let R = Z2[i], T = Z4[i], and G = Z2. Then R0 = Z2 and R1 = iZ2 are the grades
at that point of R. As well, T is a graded by T0 = Z4 and T1 = iZ4. In order that, R× T is a graded
by (R× T)j = Rj × Tj for all j = 0, 1. Therefore, {0} is a ‘GR-I’ of R and 2T is a ‘GR-I’ of T as
2 ∈ h(T), so P = {0} × 2T is a ‘GR-I’ of R× T. Since x = (0, 1), y = (1, 2) ∈ h(R× T) with
(0, 0) 6= xy = (0, 2) ∈ P, x /∈ P and y /∈ P. Then P is not a ‘GR-WPI’ of R× T. Individually, P
is ‘GR-2-AI’ and hence a ‘GR-W-2-AI’ of R× T.

Theorem 1. Let R be a ‘GR-ring’. Suppose that P is a ‘PGR-I’ of R. Assume that for graded left
ideals E, F and G of R such that 0 6= EFG ⊆ P, since EG ⊆ P, FG ⊆ P or EF ⊆ P. Then P is a
‘GR-W-2-AI’ of R.

Proof. Suppose that x, y, z ∈ h(R) where 0 6= xRyRz ⊆ P. therefore, RxRyRzR ⊆ P, and as
a consequence, since R has a unity, 0 6= xRyRz = 1.xR.1.yR.1.z.1 ⊆ (RxR)(RyR)(RzR) ⊆ P.
By assumption, we have xy ∈ (RxR)(RyR) ⊆ P or yz ∈ (RyR)(RzR) ⊆ P or xz ∈
(RxR)(RzR) ⊆ P. Accordingly, P will be ‘GR-W-2-AI’.

Theorem 2. Theorem 1 still true if graded left ideals are replaced by graded right ideals.

Let R be a ‘GR-ring’ and K is a ‘GR-I’ of R, then R/K is a graded by (R/K)g =
(Rg + K)/K for any g ∈ G. For P as an ideal of R and K is a ‘GR-I’ of R such that K ⊆ P,
then P is a ‘GR-I’ of R if and only if P/K is a ‘GR-I’ of R/K.

Proposition 3. For a graded ring R. Assume that P is a ‘GR-W-2-AI’ of R. Let K ⊆ P, if K is a
‘GR-I’ of R, then P/K is a ‘GR-W-2-AI’ of R/K.

Proof. Let x + K, y + K, z + K ∈ h(R/K) with 0 + K 6= (x + K)(R/K)(y + K)(R/K)(z +
K) ⊆ P/K. Hence x, y, z ∈ h(R) with 0 6= xRyRz ⊆ P. Because P is ‘GR-W-2-AI’, for
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xy ∈ P, yz ∈ P or xz ∈ P, therefore, (x + K)(y + K) ∈ P/K or (y + K)(z + K) ∈ P/K or
(x + K)(z + K) ∈ P/K. So, P/K is a ‘GR-W-2-AI’ of R/K.

Proposition 4. For a graded ring R. Let K ⊆ P is a ‘PGR-I’ of a ‘GR-ring’ R. Then P is a
‘GR-W-2-AI’ of R, if K is a ‘GR-W-2-AI’ of R and P/K is a ‘GR-W-2-AI’ of R/K.

Proof. Suppose that x, y, z ∈ h(R) with 0 6= xRyRz ⊆ P. Therefore, x + K, y + K, z + K ∈
h(R/K) such that (x + K)(R/K)(y + K)(R/K)(z + K) ⊆ P/K. If 0 6= xRyRz ⊆ K, then
xy ∈ K ⊆ P or yz ∈ K ⊆ P or xz ∈ K ⊆ P since K is a ‘GR-W-2-AI’ of R. If xRyRz * K, then
0 + K 6= (x + K)(R/K)(y + K)(R/K)(z + K) ⊆ P/K. Since P/K is a ‘GR-W-2-AI’ of R/K,
(x + K)(y + K) ∈ P/K or (y + K)(z + K) ∈ P/K or (x + K)(z + K) ∈ P/K, that yields that
xy ∈ P, yz ∈ P or xz ∈ P. Therefore, P is a ‘GR-W-2-AI’ of R.

For two ‘GR-rings’ S and T. We call f : S→ T to be graded homomorphism f is ring
homomorphism and f (Sg) ⊆ Tg for every g ∈ G.

Proposition 5. Let S and T be two ‘GR-rings’ and f : S → T be graded homomorphism. Then
Ker( f ) is a ‘GR-I’ of S.

Proof. Apparently, Ker( f ) is an ideal of S. Assume that x ∈ Ker( f ). Hence x ∈ S such that
f (x) = 0. Now, x = ∑

g∈G
xg, with xg ∈ Sg for all g ∈ G, which lead to f (xg) ∈ f (Sg) ⊆ Tg

for all g ∈ G. As a result, for g ∈ G, f (xg) ∈ h(T) with 0 = f (x) = f

(
∑

g∈G
xg

)
= ∑

g∈G
f (xg),

which yields that f (xg) = 0 for all g ∈ G along with {0} is a ‘GR-I’. Therefore, xg ∈ Ker( f )
for any g ∈ G, and then Ker( f ) is a ‘GR-I’ of S.

Theorem 3. For the two ‘GR-rings’ S and T and f : S→ T be surjective graded homomorphism.

1. f (P) will be a ‘GR-W-2-AI’ of T, if P is a ‘GR-W-2-AI’ of S and Ker( f ) ⊆ P.
2. f−1(I) will be a ‘GR-W-2-AI’ of S, if I is a ‘GR-W-2-AI’ of T and Ker( f ) is a ‘GR-W-2-AI’

of R.

Proof.

1. Let f (P) be a ‘GR-I’ of T. Because P is a ‘GR-W-2-AI’ of R and Ker( f ) ⊆ P,
Proposition 3 shows that P/Ker( f ) is a ‘GR-W-2-AI’ of S/Ker( f ). The result holds
Since S/Ker( f ) is isomorphic to T.

2. Assume that f−1(I) is a ‘GR-I’ of S. Let K = f−1(I). Then Ker( f ) ⊆ K. We observe
that K/Ker( f ) is a ‘GW-2-AI’ of S/Ker( f ), since S/Ker( f ) is isomorphic to T. Because
Ker( f ) is a ‘GR-W-2-AI’ of S and K/Ker( f ) is a ‘GR-W-2-AI’ of S/Ker( f ), Proposition 4
states that K = f−1(I) is a ‘GR-W-2-AI’ of S.

Motivated by Theorem 1, we observe the next question.

Question 1. If P is a ‘GR-W-2-AI’ of R that is not a ‘GR-2-AI’ and 0 6= EFK ⊆ P for some ‘GR-I’
E, F and K of R. Does it indicate that EF ⊆ P or EK ⊆ P or FK ⊆ P?

We will give a partial answer through the coming discussions. Motivated by ([4],
Definition 3.3), we introduce the following:

Definition 2. Assume that R is a ‘GR-ring’, g ∈ G and P is a ‘GR-I’ of R with Pg 6= Rg.

1. If for each x, y, z ∈ Rg where xReyRez ⊆ P, then P is said to be a ‘GR-2-AI’ of R, therefore,
xy ∈ P, yz ∈ P or xz ∈ P.
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2. If for each x, y, z ∈ Rg where 0 6= xReyRez ⊆ P, then P is said to be a ‘GR-W-2-AI’ of R,
therefore, xy ∈ P, yz ∈ P or xz ∈ P.

3. For x, y, z ∈ Rg, let P is a ‘GR-W-2-AI’ of R and. We denote ‘GR-3-Z’ for (x, y, z) which is
the graded-triple-zero of P if xReyRez = 0, such that xy /∈ P, yz /∈ P and xz /∈ P.

Note that if P is ‘GR-W-2-AI’ which is not ‘GR-2-AI’, then P involves a ‘GR-3-Z’ (x, y, z)
for x, y, z ∈ Rg.

Proposition 6. Assume that xRey, Kg ⊆ P for any x, y ∈ Rg and some graded left ideal K of R,
and that P is a ‘GR-W-2-AI’ of R. Let (x, y, z) is not a ‘GR-3-z’ of P for every z ∈ Kg. If xy /∈ P,
then xKg ⊆ P or yKg ⊆ P.

Proof. Consider that xKg * P along with yKg * P. Then there exist r, s ∈ Kg such that
xr /∈ P and ys /∈ P. Since xReyRer ⊆ xReyKg ⊆ P and since (x, y, r) is not a GR-3-Z of
P and xy /∈ P, xr /∈ P, we obtain that yr ∈ P. Also, since xReyRes ⊆ xReyKg ⊆ P and
since (x, y, s) is not a GR-3-Z of P and xy /∈ P, ys /∈ P, we obtain that xs ∈ P. Now, since
xReyRe(r + s) ⊆ xReyKg ⊆ P and since (x, y, r + s) is not a GR-3-Z of P and xy /∈ P, we get
x(r + s) ∈ P or y(r + s) ∈ P. If x(r + s) ∈ P, then since xs ∈ P, xr ∈ P, a contradiction. If
y(r + s) ∈ P, then since yr ∈ P, ys ∈ P, a contradiction. Hence, xKg ⊆ P or yKg ⊆ P.

Definition 3. Let R be a ‘GR-ring’ g ∈ G and P be a ‘GR-W-2-AI’ of R. Assume that AgBgKg ⊆
P for some ‘GR-I’ A, B and K of R. If (x, y, z) is not a ‘GR-3-Z’ of P for every x ∈ Ag, y ∈ Bg and
z ∈ Kg. We can state P as being a free ‘GR-3-Z’ respecting ABK. The next proposition is clear.

Proposition 7. Let P is a ‘GR-W-2-AI’ of R. Presume that AgBgKg ⊆ P and P to be a free
‘GR-3-Z’ in respect to ABK, for some ‘GR-I’ A, B and K of R. If x ∈ Ag, y ∈ Bg and z ∈ Kg, then
xy ∈ P, xz ∈ P or yz ∈ P.

Theorem 4. Infer that P is a ‘GR-W-2-AI’ of R. Lets take 0 6= AgBgKg ⊆ P and P to be a free
‘GR-3-Z’ in respect to ABK, for some ‘GR-I’ A, B and K of R. Then AgKg ⊆ P, BgKg ⊆ P or
AgBg ⊆ P.

Proof. Suppose that AgKg * P, BgKg * P and AgBg * P. There exist x ∈ Ag and y ∈ Bg
where xKg * P and yKg * P. Now, xReyKg ⊆ AgBgKg ⊆ P. Since xKg * P and yKg * P,
it comes from Proposition 6 that xy ∈ P. Because AgBg * P, there are a ∈ Ag and b ∈ Bg
where ab /∈ P. Since aRebKg ⊆ AgBgKg ⊆ P and ab /∈ P, it comes from Proposition 6 that
aKg ⊆ P or bKg ⊆ P.

Case (1): aKg ⊆ P and bKg * P. Since xRebKg ⊆ AgBgKg ⊆ P and xKg * P and
bKg * P, it follows from Proposition 6 that xb ∈ P. Since aKg ⊆ P and xKg * P, we obtain
that (x + a)Kg * P. On the other hand, since (x + a)RebKg ⊆ P and neither (x + a)Kg ⊆ P
nor bKg ⊆ P, we have that (x + a)b ∈ P by Proposition 6, and hence ab ∈ P, which is
not true.

Case (2): bKg ⊆ P and aKg * P. Using an analogous assertion to case (1), we will have
an inconsistency.

Case (3): aKg ⊆ P and bKg ⊆ P. Since bKg ⊆ P and yKg * P, (y + b)Kg * P. But
xRe(y + b)Kg ⊆ P and neither xKg ⊆ P nor (y + b)Kg ⊆ P, and hence x(y + b) ⊆ P
by Proposition 6. Since xy ∈ P and (xy + xb) ∈ P, we have that xb ∈ P. Since (x +
a)ReyKg ⊆ P and neither yKg ⊆ P nor (x + a)Kg ⊆ P, we conclude that (x + a)y ∈ P by
Proposition 6, and hence ax ∈ P. Since (x + a)Re(y + b)Kg ⊆ P and neither (x + a)Kg ⊆ P
nor (y + b)Kg ⊆ P, we have (x + a)(y + b) ∈ P by Proposition 6. But xy, xb, ay ∈ P, so
ab ∈ P, a contradiction. Consequently, AgKg ⊆ P or BgKg ⊆ P or AgBg ⊆ P.

Lemma 2. For a ‘GR-ring’ R. Assume that P is a ‘GR-W-2-AI’ and (x, y, z) is a ‘GR-3-Z’ of P for
some x, y, z ∈ Rg. Then
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1. xReyPg = {0},
2. PgyRez = {0},
3. xPgz = {0},
4. P2

g z = {0},
5. xP2

g = {0},
6. PgyPg = {0}.

Proof.

1. Assume that xReyPg 6= {0}. Then there exist r ∈ Re and p ∈ Pg such that 0 6= xryp.
Now, xry(p + z) = xryp + xryz = xryp 6= 0. Hence, 0 6= xReyRe(p + z) ⊆ P. We
have x(p + z) ∈ P or y(p + z) ∈ P, since P is ‘GR-W-2-AI’. Thus xz ∈ P or yz ∈ P is
a contradiction.

2. Suppose that PgyRez 6= {0}. Then there exist r ∈ Re and p ∈ Pg such that 0 6= pyrz.
Now, (x + p)yrz = xyrz + pyrz = pyrz 6= 0. Hence, 0 6= (x + p)ReyRez ⊆ P. If P is
‘GR-W-2-AI’ We have (x + p)y ∈ P or (x + p)z ∈ P. As a result, xy ∈ P or xz ∈ P is
a contradiction.

3. Suppose that xPgz 6= {0}. However, there exists p ∈ Pg for which 0 6= xpz. Now,
x(y + p)z = xyz + xpz = xpz 6= 0. Hence, 0 6= xRe(y + p)Rez ⊆ P. We have
x(y + p) ∈ P or (y + p)z ∈ P. Because P is ‘GR-W-2-AI’. Hence, xy ∈ P or yz ∈ P is
a contradiction.

4. Suppose that P2
g z 6= {0}. Moreover, there exist p, q ∈ Pg in which 0 6= pqz. Now,

(x + p)(y + q)z = xyz + xqz + pyz + pqz = pqz 6= 0 by (2) and (3). Hence, 0 6=
(x + p)Re(y+ q)Rez ⊆ P. We have (x + p)z ∈ P or (y+ q)z ∈ P or (x + p)(y+ q) ∈ P.
Because P is ‘GR-W-2-AI’. Hence, xz ∈ P or yz ∈ P or xy ∈ P is a contradiction.

5. Suppose that xP2
g 6= {0}. Moreover, there exist p, q ∈ Pg, where, 0 6= xpq. Now,

by (1) and (3), x(y + p)(z + q) = xyz + xyq + xpz + xpq = xpq 6= 0. As a result,
0 6= xRe(y+ p)Re(z+ q) ⊆ P. We have x(y+ p) ∈ P, x(z+ q) ∈ P or (y+ p)(z+ q) ∈
P. Because, P is ‘GR-W-2-AI’. Hence, xy ∈ P, xz ∈ P or yz ∈ P is a contradiction.

6. Suppose that PgyPg 6= {0}. Then there exist p, q ∈ Pg such that 0 6= pyq. Now,
by (1) and (2), (x + p)y(z + q) = xyz + xyq + pyz + pyq = pyq 6= 0. Hence, 0 6=
(x + p)ReyRe(z+ q) ⊆ P. We have (x + p)y ∈ P or y(z+ q) ∈ P or (x + p)(z+ q) ∈ P.
Because P is ‘GR-W-2-AI’. As a result, xy ∈ P, yz ∈ P or xz ∈ P is a contradiction.

The following theorem is a consequence result from Lemma 2.

Theorem 5. Let R be a ‘GR-ring’, g ∈ G and P be a ‘GR-I’ of R such that P3
g 6= {0}. Then P is

‘GR-W-2-AI’ if and only if P is ‘GR-2-AI’.

Proof. Assume that P is a ‘GR-W-2-AI’ that is not the same as a ‘GR-2-AI’ of R. For
some x, y, z ∈ Rg. Let P has a ‘GR-3-Z’, say (x, y, z) . Therefore, if P3

g 6= {0}, there
exist p, q, r ∈ Pg where pqr 6= 0, and then (x + p)(y + q)(z + r) = pqr 6= 0. As a result,
0 6= (x + p)Re(y + q)Re(z + r) ⊆ P. We have either (x + p)(y + q) ∈ P, (x + p)(z + r) ∈ P
or (y + q)(z + r) ∈ P. Because P is ‘GR-W-2-AI’, , and thus either xy ∈ P, xz ∈ P or yz ∈ P
which is a contradiction. Hence, P is a ‘GR-2-AI’ of R. The contrary is self-evident.

Corollary 1. Assume R to be a ‘GR-ring’. If P is a ‘GR-W-2-AI’ of R and it is not ‘GR-2-AI’, then
P3

g = {0}.

Allow R to be a ‘GR-ring’ and M to be an R-module. Then M is considered to be
a graded if for any g ∈ G, M =

⊕
g∈G Mg with Rg Mh ⊆ Mgh, where Mg is an additive

subgroup of M . The components of Mg are known as homogeneous of degree g.
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For any g ∈ G It is obvious that Mg is an Re-submodule of M . The set of all homoge-
neous components of M is

⋃
g∈G Mg and is denoted by h(M). Let N be an R-submodule

which is a graded R-module M, and denoted by ‘GR-R’-submodule.
If N =

⊕
g∈G(N ∩Mg), or equivalently, x = ∑g∈G xg ∈ N, i.e., xg ∈ N for any g ∈ G.

Then N is said to be graded R-submodule.
It is well known that an R-submodule of a ‘GR-R’-module does not need to be graded.

For more terminology see [2,3].
Assume M to be an bi-R-module. The idealization (trivial extension) Rn M = {(r, m) :

r ∈ R, m ∈ M} of M is a ring with component wise addition defined by: (x, m1)+ (y, m2) =
(x + y, m1 + m2) and multiplication is defined by: (x, m1)(y, m2) = (xy, xm2 + m1y) for
each x, y ∈ R and m1, m2 ∈ M. Let G be an Abelian group and M be a ‘GR-R’-module.
Then for any g ∈ G, X = R n M is a graded by Xg = Rg

⊕
Mg [9].

Theorem 6. Let R be a GR-ring with unity, M be a GR-bi-R-module and P be a ‘P-GR-I’ of R.
Hence, P n M is a ‘GR-2-AI’ of R n M if and only if P is a ‘GR-2-AI’ of R.

Proof. For some x, y, z ∈ h(R). Assume that Pn M is a ‘GR-2-AI’ of Rn M and xRyRz ⊆ P.
Then (x, 0), (y, 0), (z, 0) ∈ h(R n M) with (x, 0)R n M(y, 0)R n M(z, 0) ⊆ P n M, and
then (x, 0)(y, 0) = (xy, 0) ⊆ P n M, (x, 0)(z, 0) = (xz, 0) ⊆ P n M or (y, 0)(z, 0) =
(yz, 0) ⊆ P n M. A a result, xy ∈ P, xz ∈ P or yz ∈ P, as required. In the opposite
case, let (x, m)R n M(y, n)R n M(z, p) ⊆ P n M for some (x, m), (y, n), (z, p) ∈ h(R n M).
Therefore, x, y, z ∈ h(R) with xRyRz ⊆ P, we obtain xy ∈ P, xz ∈ P or yz ∈ P. If
xy ∈ P true, then (x, m)(y, n) = (xy, xn + ym) ⊆ P n M. Similarly, if xz ∈ P, then
(x, m)(z, p) ∈ P n M, and if yz ∈ P, then (y, n)(z, p) ∈ P n M, and so on, this completes
the proof.

Theorem 7. Let R be a ‘GR-ring’ with unity, M to be a ‘GR-bi-R’-module and P to be a ‘PGR-I’
of R. If P n M is a ‘GR-W-2-AI’ of R n M, then P is a ‘GR-W-2-AI’ of R.

Proof. For x, y, z ∈ h(R), let 0 6= xRyRz ⊆ P, . Then (0, 0) 6= (x, 0)R n M(y, 0)R n
M(z, 0) ⊆ P n M, and then (xy, 0) ∈ P n M, (xz, 0) ∈ P n M or (yz, 0) ∈ P n M. As a
result, xy ∈ P, xz ∈ P or yz ∈ P. So, P is ‘GR-W-2-AI’.

Theorem 8. Let R be a ‘GR-ring’ with unity, M be a ‘GR-bi-R’-module, g ∈ G and P to be a ‘GR-I’
of R with Pg 6= Rg. Hence P n M is a ‘GR-W-2-AI’ of R n M if and only if P is a ‘GR-W-2-AI’ of
R and for every ‘GR-3-Z’, (x, y, z) of P we got xReyRe Mg = MgReyRez = xMgz = 0.

Proof. Assume that P n M is a ‘GR-W-2-AI’ of R n M. Let 0 6= xReyRez ⊆ P, with x, y, z ∈
Rg. Then (0, 0) 6= (x, 0)Re n Me(y, 0)Re n Me(z, 0) ⊆ P n M, and then (xy, 0) ∈ P n M
or (xz, 0) ∈ P n M or (yz, 0) ∈ P n M. As a result, xy ∈ P, xz ∈ P or yz ∈ P. So, P is
‘GR-W-2-AI’. Preduse that (x, y, z) is a ‘GR-3-Z’ of P. Assume that xReyRe Mg 6= 0. Hence
there exist r, s ∈ Re and m ∈ Mg such that xrysm 6= 0, and then (0, 0) 6= (xrysz, xrysm) =
(x, 0)(r, 0)(y, 0)(s, 0)(z, m) ∈ (x, 0)Re n Me(y, 0)Re n Me(z, m) ⊆ xReyRez n Mg = 0 n
Mg ⊆ P n M. However, (x, 0)(y, 0) /∈ P n M and (x, 0)(z, m) /∈ P n M and (y, 0)(z, m) /∈
P n M, which contradicting the statement that P n M is a ‘GR-W-2-AI’. If MgReyRez 6= 0,
hence, there exist n ∈ Mg and r, s ∈ Re such that nrysz 6= 0. As above, we have
(0, 0) 6= (xrysz, nrysz) = (x, n)(r, 0)(y, 0)(s, 0)(z, 0) ∈ (x, n)Re n Me(y, 0)Re n Me(z, 0) ⊆
xReyRezn Mg = 0n Mg ⊆ Pn M. however, there is a contradiction between (x, n)(y, 0) /∈
P n M, (x, n)(z, 0) /∈ P n M and (y, 0)(z, 0) /∈ P n M. If xMgz 6= 0, then there exists
t ∈ Mg where, xtz 6= 0. At the present, (0, 0) 6= (xyz, xtz) = (x, 0)(1, 0)(y, t)(1, 0)(z, 0) ∈
(x, 0)Re n Me(y, t)Re n Me(z, 0) ⊆ xReyRez n Mg = 0 n Mg ⊆ P n M. However, there is
a contradiction between (x, 0)(y, t) /∈ P n M and (x, 0)(z, 0) /∈ P n M and (y, t)(z, 0) /∈
P n M. Conversely, suppose that (0, 0) 6= (x, n)Re n Me(y, m)Re n Me(z, t) ⊆ P n M for
(x, n), (y, m), (z, t) ∈ Rg n Mg. Then x, y, z ∈ Rg with xReyRez ⊆ P.
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Case (1): xReyRez 6= 0. Since P is GR-W-2-AI, it might be xy ∈ P, xz ∈ P or yz ∈ P.
Hence, (x, n)(y, m) ∈ P n M, (x, n)(z, t) ∈ P n M or (y, m)(z, t) ∈ P n M, as desired.

Case (2): xReyRez 6= 0. If xy /∈ P, xz /∈ P and yz /∈ P, then (x, y, z) is a ‘GR-3-Z’ of P
and by assumption xReyRe Mg = MgReyRez = xMgz = 0. Now, (x, n)Re n Me(y, m)Re n
Me(z, t) ⊆

(
xReyRez, MgReyRez + xMgz + xReyRe Mg

)
= (0, 0), a contradiction.

Question 2. As a proposal for future work, we think it will be worthy to study non-commutative
graded rings such that every ‘GR-I’ is ‘GR-W-2-AI’. What kind of results will be achieved?

The following abbreviations are used throw this Article: ‘GR-SW-2-AI’ for the graded
strongly weakly 2-absorbing ideals.

On the other hand, we present the idea of ‘GR-SW-2-AI’, and examine ‘GR-rings’ in
which every ‘GR-I’ is ‘GR-SW-2-AI’.

Definition 4. Let R be a ‘GR-ring’ and P to be a ‘PGR-I’ of R. If A, B and C are ‘GR-I’ of R where
0 6= ABC ⊆ P. So, AC ⊆ P, BC ⊆ P or AB ⊆ P. Then P is said to be a ‘GR-SW-2-AI’ of R.

Proposition 8. Let P be a ‘PGR-I’ of R. Then P is a ‘GR-SW-2-AI’ of R if and only if for any
‘GR-I’ A, B and C of R such that P ⊆ A (or P ⊆ B or P ⊆ C), 0 6= ABC ⊆ P implies that
AB ⊆ P, AC ⊆ P or BC ⊆ P.

Proof. The result holds by the above definition If P is a ‘GR-SW-2-AI’ of R. Conversely,
let K, B and C be ‘GR-I’ of R where, 0 6= KBC ⊆ P. Hence A = K + P is a GR-I of R such
that 0 6= ABC ⊆ P, and then by assumption, AB ⊆ P or AC ⊆ P or BC ⊆ P. As a result,
KB ⊆ P, KC ⊆ P or BC ⊆ P. Hence, P becomes a ‘GR-SW-2-AI’ of R.

Proposition 9. Let R be a ‘GR-ring’. Then every ‘GR-I’ of R is ‘GR-SW-2-AI’ if and only if for
any ‘GR-I’ I, J and K of R, I J = I JK, IK = I JK, JK = I JK or I JK = 0.

Proof. Suppose that every ‘GR-I’ of R is ‘GR-SW-2-AI’. Let I, J and K be ‘GR-I’ of R. If
I JK 6= R, then I JK is ‘GR-SW-2-AI’. Suppose that I JK 6= 0. Then 0 6= I JK ⊆ I JK and
I J ⊆ I JK, IK ⊆ I JK or JK ⊆ I JK and hence I J = I JK, IK = I JK or JK = I JK. If I JK = R,
then I = J = K = R. Conversely, let P be a PGR-I of R, 0 6= I JK ⊆ P for some ‘GR-I’
I, J and K of R. Then I J = I JK ⊆ P or IK = I JK ⊆ P or JK = I JK ⊆ P. Hence, P is a
‘GR-SW-2-AI’ of R.

Corollary 2. Assume R to be a ‘GR-ring’ where every ‘GR-I’ of R is ‘GR-SW-2-AI’. Then I3 = I2

or I3 = 0 for every ‘GR-I’ of R.

3. Conclusions

In this study, we introduced and examined the concept of Gr-W-2-AI over non-
commutative graded rings, several results were achieved. As a proposal for further work
on the topic, we are going to examine the concept of Gr-W-1-AI over non-commutative
graded rings.
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