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Abstract: In this paper, a new hybrid radial basis function collocation method (HRBF-CM) is pro-
posed to help resolve two-dimensional elastostatic symmetric problems. In the new approach, the
hybrid radial basis function (HRBF) combines the infinitely smooth RBF and piecewise smooth RBF,
containing two parameters (the shape parameter and the weight parameter). Discretization schemes
are presented in detail. We use MATLAB to implement the HRBF-CM and produce numerical results
which demonstrate the potential of this method. The new method’s accuracy is higher than that of
the traditional methods, especially in the case of a more significant number of nodes. We discuss the
new method’s effectiveness compared to the widely used traditional RBF and also investigate the
effect of parameters on the method’s performance under the new method.

Keywords: hybrid RBF; radial basis function (RBF); collocation method; elastostatic symmetric problems

1. Introduction

The radial basis function was proposed by Hardy in the 1970s [1] and has made
outstanding contributions to surface fitting and solving interpolation problems. Several au-
thors discretized the partial differential equations (PDEs) using the collocation method [2,3].
The RBF method has the following three advantages [4]: (i) it can be estimated without
using a mesh; (ii) it is highly accurate; and (iii) it has sufficient flexibility in choosing
basis functions. Generally, a radial function φ

(
rj
)

is a function of the Euclidean norm
rj =‖ x− xj ‖2, where x ∈ Rn is the center point and x ∈ Rn is a point in the influence
domain of x.

Most radial basis functions can be divided into two categories (see some typical RBFs
in Table 1). The first category uses infinitely smooth radial basis functions, including
multiquadric (MQ), inverse multiquadric (IMQ), and Gaussian (EXP) functions. This type
of radial basis function contains a shape parameter c, which needs to be defined by the user
and controls the stability and accuracy of the RBF approximation. Therefore, choosing an
optimal shape parameter value is imperative, which has also spurred discussion among
many scholars. Generally, we prefer a constant optimal shape parameter (CSP) c throughout
the computation, and the shape parameter c is the same for each node.

Some famous scholars proposed an experienced formula to select the optimal shape
parameters [5–7]. Rippa chooses the best shape parameter c based on the minimization
of the estimation of the error function and proposes the leave-one-out cross-validation
(LOOCV) method [8]. However, it was assumed that CSP is not suitable. In this case, the
approximation accuracy of the interpolation method was expected to be reduced, even
more so than the approximation method of the general function, and the condition number
of the matrix was large, resulting in an ill-conditioned linear system [9,10]. Kansa and
Sarra used the variable shape parameter (VSP) form to solve this problem [11,12]. VSP is
used to assign different values to the shape parameters which correspond to each center.
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This shows that each row of the RBF matrix has other shape parameters, which makes the
condition number reduction in the RBF matrix more stable and improves the approximation
of the interpolation function. Another method was used to determine the interval of the
shape parameter, rather than a value, without any minimization and estimation error [13].
The purpose of VSP is to convert several CSPs into an interval range. Some other VSP
strategies are summarized in [14–16].

Table 1. Some typical RBFs.

Infinitely Smooth RBFs Piecewise Smooth RBFs
Name Expression Name Expression

Multiquadric (MQ)
√

c2 + r2
j

Splines of degree n (Sn) r2n−1
j , n ∈ N

Inverse multiquadric (IMQ) 1/
√

c2 + r2
j

Thin plate spline (TPS) r2n
j log

(
rj

)
Gaussian (GA) e−c2r2

j Linear rj

Note: rj =‖ x− xj ‖2, c represents the shape parameter.

It can be seen that choosing optimal shape parameter values in infinitely smooth
RBFs is essential and has been an ongoing challenge. In contrast, the second set of piece-
wise smooth RBFs is not infinitely differentiable. They have no shape parameter and
are easier to implement than the former group when used. However, they only lead to
algebraic convergence rates and are rarely used alone in applications [17]. Therefore, many
researchers prefer using infinitely smooth RBFs in scientific computing and engineering
applications [18–21].

Some scholars bypassed the process of seeking optimal shape parameters and pro-
posed a nontraditional RBF. For instance, Karimi [22] introduces a new Gaussian RBF
(GRBF), which is both stable and accurate and is free of instability issues for small values
of the shape parameter. Similarly, Zhang [17] proposed a new global RBF based on the
coupling of infinitely smooth RBF with the conical spines, known as the coupled radial basis
function (CRBF). He used the CRBF method in the Kansa method to produce a relatively
good linear system. The condition number is moderate, and the error changes slightly with
the change in the shape parameter value. Cao [23] uses this CRBF method to reconstruct
the elasticity problem. However, there are still some deficiencies in the calculation accuracy,
and the operation time is too long. Recently, Manzoor [24] used this similar idea to propose
a hybrid radial basis function (HRBF) method, which combines two different RBFs: an
infinite smooth RBF defined by shape parameters and a piecewise smooth RBF that is
independent of shape parameters. This method has better accuracy when solving Burgers’
equations. In this paper, we use this method to solve elastostatic symmetric problems.

The predecessors have also made great efforts to solve elastostatic problems [25–35].
This paper mainly studies two well-known examples: cantilever beams and thin plates
with circular holes. Zhang [25] applied the globally supported RBFs, i.e., MQ, IMQ, and
Wendland’s functions [26]. Tolstykh and Shirobokov [27] applied the local RBF method.
Liu et al. proposed a combination of Galerkin weak form and RBFs, namely the radial
point interpolation method (RPIM) [28–31]. Simonenko [32] analyzes the applicability of
both the global and the local versions of the method for elastostatic problems. They use
multiquadric functions as RBFs and describe how to select an optimal shape parameter
value to minimize approximation errors. Based on Simonenko’s article, we use the HRBF
instead of MQ-RBF and the global Kansa method to conduct numerical experiments.

This paper is structured as follows. In Section 2, we first introduce the origin of
the hybrid radial basis function, list the several types of HRBF, and describe the HRBF-
CM’s formulation to find a solution to elastostatic problems. In Section 3, three numerical
examples are calculated to verify the validity and accuracy of the HRBF collocation method,
namely a patch test, a cantilever beam, and an infinite plate with a central hole. We compare
the accuracy of the HRBF-CM with the infinitely smooth RBFs and the piecewise smooth
RBFs. The distribution of two kinds of regular and irregular nodes is considered, and the
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influence of shape and weight parameters on the calculation results is discussed. The last
section provides a summary of this method.

2. The HRBF-CM for Elastostatic Symmetric Problems

In this section, we describe the origin of the HRBF, the HRBF used in this article, and
the process of solving elastostatic equations using the HRBF-CM in detail.

2.1. The Construction of HRBFs

As presented in [24], by coupling the infinite smoothing RBFs (φ1), such as MQ, IMQ,
and GA, with the piecewise smooth RBFs Sn and TPS RBFs (φ2), the HRBF is constructed
and can be defined as

R
(
rj
)
= γφ1

(
rj
)
+ εφ2

(
rj
)
, rj =‖ x− xj ‖2, (1)

where the parameters γ and ε are positive real numbers that control the contributions of φ1
and φ2, respectively. φ1 is an infinite smooth RBF with a user-defined shape parameter c,
and φ2 is a piecewise smooth RBF free from shape parameter.

Here, we find that the HRBF has three parameters, which seem to increase the algo-
rithm’s complexity. At this point, we can scale the HRBF by a constant, which will not
affect the algorithm. Therefore, the HRBF (1) can be normalized by the constant w = ε/γ
and has been redefined as

Rw
(
rj
)
= φ1

(
rj
)
+ wφ2

(
rj
)
. (2)

Note that the reconstructed HRBF (2) now contains two parameters (the shape parame-
ter c and the weight parameter w). These two parameters control the accuracy and stability
of the HRBF-CM. The HRBFs to be used in this paper are listed in Table 2. It has been
dictated in Mishra’s article [33] that a small value of the weight parameter w usually gives
acceptable accuracy with a stable spectrum (when all the eigenvalues of the differentiation
matrix lie in the left half-plane). In Manzoor’s article [24], the authors calculated many
numerical examples and concluded that in most of the test examples, for the three types
of hybrid radial basis functions, MQ + S3, GS + S3, and IMQ + S3, the weight parameter
w = 10−3 works best. On the other hand, for the three types of hybrid radial basis functions,
MQ + TPS, GS + TPS, and IMQ + TPS, the weight parameter w = 10−9. However, in this
work, we use w = [100, 10−1, 10−2, 10−3, . . . , 10−15] to find the optimal parameter w.

Table 2. The hybrid RBFs.

Name Expression

MQ + TPS
√

r2
j + c2 + wr4

j ln
(

rj

)
IMQ + TPS 1/

√
r2

j + c2 + wr4
j ln
(

rj

)
GA + TPS e−c2r2

j + wr4
j ln
(

rj

)
MQ + S3

√
r2

j + c2 + wr3
j

IMQ + S3 1/
√

r2
j + c2 + wr3

j

GA + S3 e−c2r2
j + wr3

j

Note: rj =‖ x− xj ‖2, c represents the shape parameter, and w represents the weight parameter.
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2.2. The Elastostatic Equation

Considering the two-dimensional elastostatic symmetric problem, Ω and Γ represent
the problem domain and the boundary, respectively. The equations of elasticity, written in
terms of displacements, are defined as

E
1−µ2

(
∂2ux
∂x2 + 1−µ

2
∂2ux
∂y2 + 1+µ

2
∂2uy
∂x∂y

)
= fx,

E
1−µ2

(
∂2uy
∂y2 + 1−µ

2
∂2uy
∂x2 + 1+µ

2
∂2ux
∂x∂y

)
= fy,

in Ω (3)

with the displacement boundary condition

ux = ux, uy = uy, on Γu (4)

and the stress boundary condition

lσxx + mτxy = tx,
lτyx + mσyy = ty

on Γt (5)

where ux and uy represent the displacement components on the boundary; fx and fy are
the given body forces; u and v are the known functions of nodes on the displacement
boundary Γu; l and m represent the cosine of the normal direction outside the slope; and
σxx, σyy, τxy represent the stress constraints on the stress boundary Γt. E and µ stand for
the Young’s modulus and the Poisson’s ratio, respectively. The stresses σxx, σyy, and τxy
and the displacements ux and uy present the following relationship.

σxx = E
1−µ2

(
∂ux
∂x + µ

∂uy
∂y

)
,

σyy = E
1−µ2

(
µ ∂ux

∂x +
∂uy
∂y

)
,

τxy = E
2(1+µ)

(
∂ux
∂y +

∂uy
∂x

)
.

(6)

2.3. The HRBF Formulation

Assuming that there are N distinct nodes {xi}N
i=1, the HRBF-CM is used to solve the

elastostatic symmetric problem (3)–(5). In the HRBF-CM, the displacement approximate
solutions ux(x) and uy(x) are separately spanned by a set of translated HRBFs, i.e.,

ux(x) =
N
∑

j=1
ajRw

(
rj
)
,

uy(x) =
N
∑

j=1
bjRw

(
rj
)
.

(7)

Rw
(
rj
)

with rj =‖ x− xj ‖2 is the HRBF defined in Table 2. The unknown coefficients,
aj and bj, are computed by a collocation of Equation (3) at a set of interior nodes and a
collocation of the boundary conditions at boundary nodes. Let z be defined as a vector of
length 2N containing the unknowns.{

zj = aj
zj+N = bj,

j = 1, . . . , N , (8)

Then, a vector f is defined,{
fj = fx

(
xj
)

fj+N = fy
(
xj
) j = 1, . . . , N . (9)
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By substituting Equation (7) into the elastostatic Equation (3) and boundary conditions
(4)–(5), we obtain the following linear system:

Gz = f. (10)

For i = 1, . . . , N, the elements of j internal nodes corresponding to the matrix G are
Gi,j(i 6=j) =

E
1−µ2

[
∂2Rw(ri,j)

∂x2 + 1−µ
2

∂2Rw(ri,j)
∂y2

]
,

Gi,j(i=j) =
E

1−µ2

[
∂2φ(ri,j)

∂x2 + 1−µ
2

∂2φ(ri,j)
∂y2

]
.

(11)

Gi,j+N(i 6=j+N) =
E

2(1−µ)

∂2Rw(ri,j)
∂x∂y ,

Gi,j+N(i=j+N) =
E

2(1−µ)

∂2φ(ri,j)
∂x∂y .

(12)

Gi+N,j(i+N 6=j) =
E

2(1−µ)

∂2Rw(ri,j)
∂x∂y ,

Gi+N,j(i+N=j) =
E

2(1−µ)

∂2φ(ri,j)
∂x∂y .

(13)


Gi+N,j(i+N 6=j+N) =

E
1−µ2 [

∂2Rw(ri,j)
∂y2 + 1−µ

2
∂2Rw(ri,j)

∂x2 ],

Gi+N,j(i+N=j+N) =
E

1−µ2

[
∂2φ(ri,j)

∂y2 + 1−µ
2

∂2φ(ri,j)
∂x2

]
.

(14)

The elements of the boundary nodes of the matrix G depend on the boundary condi-
tions. For instance, in the case of Dirichlet boundary conditions,{

Gi,j = Rw
(
ri,j
)
, fj = ux

(
xj
)
,

Gi+N,j+N = Rw
(
ri,j
)
, fj+N = uy

(
xj
)
,

(15)

where ux and uy are the exact solutions of problem (3), and Equation (10) can be written as(
Gi,j Gi,j+N

Gi+N,j Gi+N,j+N

)(
aj
bj

)
=

(
ux
(
xj
)

uy
(
xj
) ). (16)

Therefore, the coefficients aj and bj of Equation (7) are used to compute the horizontal
and vertical displacements ux and uy, respectively. In addition, the stresses are computed
from Equation (5) with

∂ux

∂x
=

N

∑
i=1

aj
∂Rw

(
rj
)

∂x
, (17)

∂ux

∂y
=

N

∑
i=1

aj
∂Rw

(
rj
)

∂y
, (18)

∂uy

∂x
=

N

∑
i=1

bj
∂Rw

(
rj
)

∂x
, (19)

∂uy

∂y
=

N

∑
i=1

bj
∂Rw

(
rj
)

∂y
. (20)

3. Numerical Examples

In this section, we use three numerical examples to verify the validity and the applica-
bility of the hybrid radial basis function collocation method. The numerical results for these
examples are compared with the analytical solutions and the traditional RBF solutions. The
effect of different basis functions on computational accuracy is discussed.
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To judge the validity and accuracy of the HRBF-CM method, we need a measure
which can be measured by the relative error concerning the displacement and the stress:

ru =

√
N
∑

i=1

(
unum

i − uanal
i
)2/

√
N
∑

i=1
uanal2

i

rσ =

√
N
∑

i=1

(
σnum

i − σanal
i
)2/

√
N
∑

i=1
σanal2

i

(21)

where unum
i and σnum

i are the numerical solutions for the displacement and stress of the ith
node, respectively, and uanal

i and σanal
i are the corresponding analytical solutions for the

ith node.

3.1. Patch Test

The first numerical example is the standard patch test containing 13 nodes, with
5 irregular interior nodes, as shown in Figure 1. In this patch test, the essential boundary is
the linear displacement assigned along the boundary. The linear displacement functions
are ux = 0.6x and uy = 0.6y. Satisfying the patch test requires the same linear function
to give the displacement of any interior node and requires the strains and stresses to be
constant in the patch. In this problem, we randomly choose the shape parameter c = 1, the
weight parameter referring to Manzoor’s article [24], the variant related to TPS, the weight
parameter w = 10−9, the variant associated with S3, and the weight parameter w = 10−3. The
HRBF passes the patch test with precision, as well as the traditional RBF. Different radial
basis functions have different accuracies. The exact results of the internal node calculations
for the MQ-HRBF and the traditional MQ-RBF are shown in Table 3 when the parameters
are taken as E = 1 and v = 0.3.

Table 3. Example 1: computational results of different methods (MQ and its variants).

Internal Node Coordinates
Method

Exact MQ MQ + TPS MQ + S3

5
(1,1)
(ux, uy) (0.600,0.600) (0.593,0.589) (0.593,0.589) (0.593,0.590)(
σxx, σyy, τxy

)
(0.857,0.857,0) (0.896,0.890,0.010) (0.896,0.890,0.010) (0.895,0.889,0.010)

10
(0.65,1)
(ux, uy) (0.390,0.600) (0.374,0.588) (0.374,0.588) (0.374,0.588)(
σxx, σyy, τxy

)
(0.857,0.857,0) (0.893,0.900,0.009) (0.893,0.900,0.009) (0.892,0.899,0.009)

11
(0.7,1.5)
(ux, uy) (0.420,0.900) (0.409,0.901) (0.409,0.901) (0.409,0.901)(
σxx, σyy, τxy

)
(0.857,0.857,0) (0.906,0.893,−0.006) (0.906,0.893,−0.006) (0.904,0.892,−0.006)

12
(1.3,1.2)
(ux, uy) (0.780,0.720) (0.784,0.718) (0.784,0.718) (0.784,0.718)(
σxx, σyy, τxy

)
(0.857,0.857,0) (0.892,0.896,0.012) (0.892,0.896,0.012) (0.891,0.895,0.011)

13
(1.2,0.6)
(ux, uy) (0.720,0.360) (0.718,0.343) (0.718,0.343) (0.718,0.343)(
σxx, σyy, τxy

)
(0.857,0.857,0) (0.909,0.889,−0.003) (0.909,0.889,−0.003) (0.908,0.888,−0.003)
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Figure 1. Example 1: a patch with 13 nodes.

3.2. Cantilever Beam

For the second example, we consider a cantilever beam problem, as presented in
Figure 2. A beam of length L and height H subjected to traction at the free end is considered.
The beam has a unit thickness; hence, a plane stress problem is also considered here. The
closed-form solution is available for the parabolic traction of force P:

uanal
x = − P

6EI

(
y− H

2

)[
(6L− 3x)x + (2 + µ)

(
y2 − Hy

)]
,

uanal
y = P

6EI

[
3µ
(

y− H
2

)2
(L− x) + (4 + 5µ)H2x

4 + (3L− x)x2
]

,
(22)

where the moment of inertia I of the beam is given as I = H3/12.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

Table 3. Example 1: computational results of different methods (MQ and its variants). 

Internal 
Node 

Coordinates 
Method 

Exact MQ MQ + TPS MQ + S3 

5 
(1,1)     (𝑢௫, 𝑢௬) (0.600,0.600) (0.593,0.589) (0.593,0.589) (0.593,0.590) (𝜎௫௫, 𝜎௬௬, 𝜏௫௬) (0.857,0.857,0) (0.896,0.890,0.010) (0.896,0.890,0.010) (0.895,0.889,0.010) 

10 
(0.65,1)     (𝑢௫, 𝑢௬) (0.390,0.600) (0.374,0.588) (0.374,0.588) (0.374,0.588) (𝜎௫௫, 𝜎௬௬, 𝜏௫௬) (0.857,0.857,0) (0.893,0.900,0.009) (0.893,0.900,0.009) (0.892,0.899,0.009) 

11 
(0.7,1.5)     (𝑢௫, 𝑢௬) (0.420,0.900) (0.409,0.901) (0.409,0.901) (0.409,0.901) (𝜎௫௫, 𝜎௬௬, 𝜏௫௬) (0.857,0.857,0) (0.906,0.893,−0.006) (0.906,0.893,−0.006) (0.904,0.892,−0.006) 

12 
(1.3,1.2)     (𝑢௫, 𝑢௬) (0.780,0.720) (0.784,0.718) (0.784,0.718) (0.784,0.718) (𝜎௫௫, 𝜎௬௬, 𝜏௫௬) (0.857,0.857,0) (0.892,0.896,0.012) (0.892,0.896,0.012) (0.891,0.895,0.011) 

13 
(1.2,0.6)     (𝑢௫, 𝑢௬) (0.720,0.360) (0.718,0.343) (0.718,0.343) (0.718,0.343) (𝜎௫௫, 𝜎௬௬, 𝜏௫௬) (0.857,0.857,0) (0.909,0.889,−0.003) (0.909,0.889,−0.003) (0.908,0.888,−0.003) 

3.2. Cantilever Beam 
For the second example, we consider a cantilever beam problem, as presented in Fig-

ure 2. A beam of length 𝐿 and height 𝐻 subjected to traction at the free end is considered. 
The beam has a unit thickness; hence, a plane stress problem is also considered here. The 
closed-form solution is available for the parabolic traction of force 𝑃: 

⎩⎪⎨
⎪⎧𝑢௫ = − 𝑃6𝐸𝐼 ൬𝑦 − 𝐻2൰ [(6𝐿 − 3𝑥)𝑥 + (2 + 𝜇)(𝑦ଶ − 𝐻𝑦)],

𝑢௬ = 𝑃6𝐸𝐼 ቈ3𝜇 ൬𝑦 − 𝐻2൰ଶ (𝐿 − 𝑥) + (4 + 5𝜇) 𝐻ଶ𝑥4 + (3𝐿 − 𝑥)𝑥ଶ , (22)

where the moment of inertia I of the beam is given as 𝐼 = 𝐻ଷ/12. 
The stresses corresponding to the above displacements are 

⎩⎪⎪
⎨⎪⎪
⎧𝜎௫௫ = − 𝑃(𝐿 − 𝑥)𝐼 ൬𝑦 − 𝐻2൰ ,

𝜎௬௬ = 0,
𝜏௫௬ = − 𝑃2𝐼 (𝑦ଶ − 𝐻𝑦).

 (23)

We refer to the study by Simonenko et al. [32] which uses the Dirichlet boundary 
conditions given by (22) in all the boundaries of the beam. The relevant parameters are 𝐿 = 12;  𝐻 = 2;  𝐸 = 1000;  𝜇 = 0.3;  𝑝 = −10. 
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The stresses corresponding to the above displacements are
σanal

xx = − P(L−x)
I

(
y− H

2

)
,

σanal
yy = 0,

τanal
xy = − P

2I
(
y2 − Hy

)
.

(23)

We refer to the study by Simonenko et al. [32] which uses the Dirichlet boundary
conditions given by (22) in all the boundaries of the beam. The relevant parameters are
L = 12; H = 2; E = 1000; µ = 0.3; p = −10.

3.2.1. Effect of Irregular Node Distribution

To investigate the stability of the HRBF-CM and its comparison with the traditional
radial basis function method, both regular and irregular node distributions are used. Four
kinds of regular node distributions, i.e., 13 × 3 (13 nodes in the x direction, 3 nodes in the y
direction), 25 × 5, 49 × 9, and 73 × 13, are considered. Four irregular distributions are used
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with the same number of nodes, i.e., 39, 125, 441, and 949. We discuss the effect of the node
distributions on the numerical accuracy, and the results of the calculations are presented in
Tables 4 and 5. The two node distributions for the 441 nodes are shown in Figure 3a,b. The
deflection distributions for these two node distribution methods are given in Figure 4.

Table 4. Example 2: computational results of different methods for the irregular node distribution.

Method N = 39 N = 125 N = 441 N = 949

MQ

copt 20 10 3 1.6
ru 2.5513 × 10−6 7.1523 × 10−7 2.5843 × 10−7 3.7019 × 10−7

rσ 1.4577 × 10−3 8.6395 × 10−5 1.7324 × 10−4 3.3451 × 10−4

CPU (s) 0.0445 0.0451 0.2092 0.7934

IMQ

copt 18 9 3 1.7
ru 2.6001 × 10−6 9.4806 × 10−7 9.5554 × 10−7 2.6342 × 10−6

rσ 1.9224 × 10−3 6.2694 × 10−4 6.7735 × 10−4 2.4746 × 10−3

CPU (s) 0.0270 0.0381 0.2288 0.9858

GA

copt 14.5 6.5 9 4.5
ru 2.7955 × 10−6 4.1935 × 10−7 5.3383 × 10−6 3.8875 × 10−6

rσ 1.2317 × 10−3 5.5071 × 10−5 2.3780 × 10−4 1.9450 × 10−4

CPU (s) 0.0071 0.0269 0.1128 0.4085

MQ + TPS

copt (19.5,10−15) (14,10−13) (12.5,10−11) (11.5,10−10)
ru 3.3220 × 10−6 2.2796 × 10−7 2.1210 × 10−8 1.3474 × 10−8

rσ 2.8319 × 10−3 7.7843 × 10−5 9.3717 × 10−6 8.6273 × 10−6

CPU (s) 0.0114 0.0723 0.2271 1.0846

IMQ + TPS

copt (19,10−15) (13,10−15) (16,10−13) (11.5,10−12)
ru 2.2627 × 10−6 3.4743 × 10−7 4.7540 × 10−8 2.9863 × 10−8

rσ 1.6277 × 10−3 1.6833 × 10−4 2.8371 × 10−5 2.0773 × 10−5

CPU (s) 0.0108 0.0396 0.2762 1.3265

GA + TPS

copt (19.5,10−15) (9.5,10−14) (10,10−12) (9,10−11)
ru 2.7870 × 10−6 1.7480 × 10−7 3.5633 × 10−8 2.7927 × 10−8

rσ 1.5181 × 10−3 8.5198 × 10−5 2.1890 × 10−5 2.1679 × 10−5

CPU (s) 0.0093 0.0686 0.2068 0.9901

MQ + S3

copt (20,10−12) (13,10−15) (10,10−11) (4.5,10−10)
ru 5.1602 × 10−6 3.3904 × 10−7 4.5543 × 10−8 5.0247 × 10−8

rσ 2.8665 × 10−3 3.0302 × 10−5 2.1685 × 10−5 2.5899 × 10−5

CPU (s) 0.0198 0.0585 0.1982 0.8878

IMQ + S3

copt (20,10−15) (13,10−15) (14,10−13) (15.5,10−13)
ru 2.6737 × 10−6 1.3149 × 10−7 1.9911 × 10−8 1.1097 × 10−8

rσ 1.7319 × 10−3 5.7103 × 10−5 1.0639 × 10−5 5.6919 × 10−6

CPU (s) 0.0127 0.0654 0.2489 1.1624

GA + S3

copt (20,10−12) (11,10−14) (10.5,10−12) (9,10−11)
ru 3.0658 × 10−6 1.1867 × 10−7 1.3768 × 10−8 1.3672 × 10−8

rσ 2.9404 × 10−3 3.4692 × 10−5 9.9027 × 10−6 1.0190 × 10−5

CPU (s) 0.0118 0.0573 0.1818 0.7992

TPS
ru 2.0007 × 10−4 7.5755 × 10−5 1.6952 × 10−5 8.0060 × 10−6

rσ 1.3620 × 10−1 2.7900 × 10−2 6.6000 × 10−3 2.9000 × 10−3

CPU (s) 0.0051 0.0297 0.1314 0.5920

S3
ru 3.3979 × 10−4 1.8154 × 10−4 5.0393 × 10−5 2.7450 × 10−5

rσ 2.0560 × 10−1 8.5200 × 10−2 3.0800 × 10−2 1.7500 × 10−2

CPU (s) 0.0279 0.0224 0.0978 0.4239

Note: The bold numbers represent the best calculated data.
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Table 5. Example 2: computational results of different methods for regular node distribution.

Method N =39 (3 × 13) N =125 (5 × 25) N =441 (9 × 49) N =949 (13 × 73)

MQ

copt 18 14 3.5 1.7
ru 8.0866 × 10−6 2.9725 × 10−6 4.0491 × 10−7 5.3096 × 10−7

rσ 8.3123 × 10−2 6.4158 × 10−4 1.2788 × 10−4 3.8119 × 10−4

CPU (s) 0.0338 0.0437 0.1869 0.7948

IMQ

copt 18.5 16.5 3.5 2.1
ru 1.2985 × 10−5 2.1955 × 10−6 1.4602 × 10−6 1.1814 × 10−6

rσ 8.0496 × 10−2 6.9578 × 10−4 6.7189 × 10−4 7.5492 × 10−4

CPU (s) 0.0852 0.0390 0.2182 0.9871

GA

copt 18 13 4 6
ru 7.3142 × 10−6 2.5473 × 10−6 3.7281 × 10−6 5.8424 × 10−6

rσ 6.1412 × 10−2 3.6249 × 10−4 2.1470 × 10−4 2.2683 × 10−4

CPU (s) 0.0073 0.0237 0.2114 0.4151

MQ + TPS

copt (20,10−15) (20,10−10) (11,10−11) (10.5,10−10)
ru 7.1497 × 10−6 7.4186 × 10−7 1.4188 × 10−8 9.3300 × 10−9

rσ 8.5075 × 10−2 2.9660 × 10−4 8.1700 × 10−6 6.4800 × 10−6

CPU (s) 0.0467 0.0572 0.2321 1.0553

IMQ + TPS

copt (20,10−15) (20,10−14) (11.5,10−13) (10.5,10−12)
ru 1.2108 × 10−5 1.2125 × 10−6 2.9799 × 10−8 1.5791 × 10−8

rσ 7.6433 × 10−2 4.5468 × 10−4 2.1833 × 10−5 1.5639 × 10−5

CPU (s) 0.0444 0.0696 0.2802 1.3881

GA + TPS

copt (20,10−10) (20,10−13) (10,10−12) (9,10−11)
ru 3.4546 × 10−6 3.7997 × 10−7 2.6746 × 10−8 2.0292 × 10−8

rσ 5.8012 × 10−2 1.5217 × 10−4 1.9862 × 10−5 1.6821 × 10−5

CPU (s) 0.0069 0.0319 0.2191 0.9833

MQ + S3

copt (1910−12) (20,10−12) (11,10−11) (9,10−10)
ru 5.3438 × 10−6 7.6381 × 10−7 3.1988 × 10−8 2.9318 × 10−8

rσ 7.5212 × 10−2 2.7886 × 10−4 1.8097 × 10−5 3.0168 × 10−5

CPU (s) 0.0398 0.0329 0.2059 0.8991

IMQ + S3

copt (20,10−15) (20,10−13) (14.5,10−13) (16,10−13)
ru 1.3095 × 10−5 1.1944 × 10−6 1.2919 × 10−8 6.9444 × 10−9

rσ 7.7167 × 10−2 4.3883 × 10−4 8.8861 × 10−6 4.4397 × 10−6

CPU (s) 0.0309 0.0372 0.2585 1.1514

GA + S3

copt (20,10−12) (20,10−13) (11,10−12) (9.5,10−11)
ru 4.5154 × 10−6 3.4575 × 10−7 1.2244 × 10−8 9.7053 × 10−9

rσ 5.8101 × 10−2 1.2654 × 10−4 8.6607 × 10−6 8.6815 × 10−6

CPU (s) 0.0053 0.0297 0.1934 0.7901

TPS
ru 1.7521 × 10−4 6.2527 × 10−5 1.0582 × 10−5 3.4544 × 10−6

rσ 1.3640 × 10−1 2.7100 × 10−2 6.0000 × 10−3 2.4000 × 10−3

CPU (s) 0.0042 0.0290 0.1349 0.5985

S3
ru 3.3830 × 10−4 1.7256 × 10−4 4.1090 × 10−5 1.6038 × 10−5

rσ 2.0250 × 10−1 1.3640 × 10−1 2.7400 × 10−2 1.3900 × 10−2

CPU (s) 0.0034 0.0271 0.1025 0.4247

Note: The bold numbers represent the best calculated data.

The HRBF-CM can obtain very accurate approximate solutions for the displacements,
indicating its high applicability and accuracy in the case of irregular node distribution
methods, which perform better than the traditional radial basis function. The accuracy of
the IMQ + S3 method reaches up to 10−9 for displacements and 10−16 for stresses. As the
number of nodes increases, the results of the HRBF-CM are in better agreement with the
analytical solution. Nevertheless, the number of nodes is not as high as possible, as too
many nodes can lead to higher computational costs and lower efficiency. As can be seen
from Tables 4 and 5, the deformations of the GA radial basis functions (GA + TPS, GA + S3),
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especially GA + S3, have better computational accuracy and stability for different node
distribution patterns. Tables 4 and 5 also list the results of sharded smooth TPS and S3. It
can be seen that they do not include the choice of parameters, and the calculation time is
short, but the accuracy is not high.
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3.2.2. Effect of Parameters

When the meshless method analyzes nonlinear elastic problems, different radial basis
function shape parameters impact the accuracy of the calculation. In addition to the shape
parameter, the HRBF-CM includes a weight parameter w, so this section goes into detail.
The influence of the shape parameter c and the weight parameter w on the calculation
results is studied. The relationships between ru, rσ and the shape parameter c for the
regular 73 × 13 (949 in total) nodes and the irregular 949 nodes are plotted in Figure 5. In
particular, Figure 5a,b plot the relationship between the shape parameter c (varying from
10−4∼20) and the relative error of displacement ru and Figure 5c,d plot the corresponding
relative error of rσ. To explore the variation of other nodes, Figure 6 plots ru and rσ relative
to the weight parameter w for the regular 49 × 9 (441 in total) nodes and the irregular
441 nodes, where Figure 6a,b plot the relationship between the weight parameter w ([100,
10−1, 10−2, . . . , 10−15]) and the relative error of displacement ru, and Figure 6c,d plot the
corresponding relative error of rσ.

We can first see from these figures that the HRBF-CM has high accuracy. Figure 5
shows that the shape parameter c has a particular influence on the calculation progress of
the conventional and hybrid radial basis functions. However, when the shape parameter
takes an enormous value, the relative error of the hybrid radial basis function accuracy is
still excellent. The trend shows that as the shape parameter increases, the relative error
is smaller and more accurate. The hybrid radial basis function also contains a weighting
parameter w. This article examines the effect of the weight parameter on accuracy in detail.
We select 16 weighting parameters, and Figure 6 shows that the accuracy of all hybrid
radial basis functions becomes higher as the weighting parameters are reduced, showing a
convergence trend. The parameters for the TPS hybrid radial basis functions are smoother
and not as volatile as those for the S3 hybrid radial basis functions. Tables 4 and 5 give the
optimal parameters for the regular and irregular nodes, and the optimal parameters are
chosen by minimizing the relative error in the displacement ru. These numerical results
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show that the HRBF-CM has better accuracy and better stability than the traditional RBF
method when solving cantilever beam problems.
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3.2.3. Convergence Analysis and Simulation

In this subsection, we analyze the convergence of the HRBF-CM using the cantilever
beam as an example, and also give simulated plots of the computational results. In Tables 4
and 5, we give the minimum relative error ru and rσ for regular and irregular nodes,
respectively, using different calculation methods. We draw the curves of the convergence
diagram, as shown in Figure 7. Figure 7a,b show the convergence curves for stresses and
displacements with regular node distribution. Figure 7c,d show the same items under
irregular nodal distribution. h is the maximum size of the nodal arrangement.
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The calculation results in Tables 4 and 5 show that the HRBF-CM has excellent con-
vergence properties. TPS and S3 converge slowly, and MQ, IMQ, and GA do not show
good convergence. The relative errors ru and rσ do not decrease as the number of nodes
increases. For the small number of nodes, the accuracy of the traditional infinitely smooth
RBF method is similar to the HRBF-CM. However, in the case of a large number of nodes,
the HRBF-CM is more advantageous.

We plot the analytical and numerical solutions of the HRBF-CM (MQ + TPS) in the
case of 73 × 13 regular nodes, as shown in Figure 8. Figure 8a represents the normal stress
σxx and Figure 8b shows the shear stress τxy. It can be seen that the numerical solution and
the analytical solution are highly consistent, and the calculation accuracy is very high.
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3.3. Plate with a Hole

For the third test problem, we consider a center circular hole plate with uniform tensile
load σ0 at infinity in the x direction, as shown in Figure 9a. In actual computations, the
geometric parameters and the material parameters are as follows: σ0 = 1, Lx = 5, Ly = 5,
a = 1, E = 1000, and µ = 0.3. Due to its symmetry, only a quarter of the model is considered
in the calculation, as shown in Figure 9b.
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where G = E
2(1+µ)

is the shear modulus. κ = 3−µ
1+µ . is the Kolosov constant.

3.3.1. Effect of Parameters

We calculate three-node distributions for the plate with a hole, including 289, 626, and
1089. We plot the relationship between the shape parameter c and the relative errors ru and
rσ for the 1089 node distribution, respectively, in Figure 10. Figure 11 plots the relationship
between the weight parameter w and the relative errors ru and rσ for the same-sized nodes.
Due to the difference in the order of magnitude of the errors, the relative error variations
for MQ + TPS, MQ + S3, IMQ + TPS, and IMQ + S3 are plotted in Figure 11a,b to provide a
more intuitive view. The relative error variations for GA + TPS and GA + S3 are plotted in
Figure 11c,d.
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As can be seen in Figure 10, the traditional RBF is not as accurate as HRBF when
the shape parameter gradually increases. The GA radial basis function is not as accurate,
and its variants GA + TPS, as well as GA + S3, are not advantageous either. As seen in
Figure 11a,b, the relative error is more affected by the variation of the weighting parameter
w, with better results for weighting parameters between [10−5, 10−6, 10−7, 10−8, 10−9]. The
GA is less accurate, as seen in Figure 11c,d.

3.3.2. Convergence Analysis and Simulation

We investigate the convergence of the HRBF-CM in solving the plate with a hole by
considering three-node distributions, namely 289, 626, and 1089. Figure 12 plots the results
of the displacement calculations for nodes 625 and 1089. It can be seen that the settlement
accuracy is very high. The calculation results for the other nodes are shown in Table 6. The
optimal parameters listed in Table 6 are obtained by minimising the relative error ru of the
displacements. The calculation results show that the relative errors ru and rσ decrease as
the nodes increase. Figure 13 effectively shows the convergence characteristics, plotting
the convergence curves for the nine kinds of radial basis functions. From these results, we
find that the deformation HRBFs for all types of conventional radial basis functions are
more accurate than the traditional radial basis functions, i.e., MQ + TPS and MQ + S3 are
better than the MQ method, IMQ + TPS and IMQ + S3 are better than the MQ method, and
GA + TPS and GA + S3 are more accurate than GA. When the number of nodes is 1089,
IMQ + S3 has a displacement accuracy of up to 10−5 and a stress accuracy of 10−3. The
HRBF-CM also has the highest accuracy for the other node distributions.

Table 6. Example 3: computational results of different methods.

Method N = 289 N = 625 N = 1089

MQ

copt 0.9 0.8 0.8
ru 4.2960 × 10−4 1.7965 × 10−4 7.1667 × 10−5

rσ 1.3975 × 10−2 5.4578 × 10−3 2.4684 × 10−3

CPU (s) 0.1746 0.3531 1.1068

IMQ

copt 1.3 1.2 1.2
ru 3.1431 × 10−3 1.0973 × 10−3 6.0918 × 10−4

rσ 6.8418 × 10−2 3.0396 × 10−2 2.0173 × 10−2

CPU (s) 0.1658 0.2070 1.3669

GA

copt 1.8 2 2.1
ru 5.6372 × 10−2 2.8088 × 10−2 1.0097 × 10−2

rσ 9.4539 × 10−1 6.0751 × 10−1 4.9868 × 10−1

CPU (s) 0.0599 0.1048 0.5760

MQ + TPS

copt (1.7,10−5) (1.6,10−7) (1.4,10−8)
ru 1.8100 × 10−4 3.1703 × 10−5 7.6593 × 10−6

rσ 1.3936 × 10−2 2.2995 × 10−3 4.9781 × 10−4

CPU (s) 0.1535 0.4709 1.5308

IMQ + TPS

copt (20,10−7) (20,10−7) (20,10−7)
ru 6.2954 × 10−4 2.2173 × 10−4 1.0269 × 10−4

rσ 3.4004 × 10−2 1.5125 × 10−2 8.2553 × 10−3

CPU (s) 0.1371 0.5829 1.8389

GA + TPS

copt (0.01,10−9) (0.01,10−9) (0.01,10−7)
ru 5.9965 × 10−4 2.1045 × 10−4 9.9975 × 10−5

rσ 3.3397 × 10−2 1.4878 × 10−2 8.1967 × 10−3

CPU (s) 0.0975 0.4265 1.3619

MQ + S3

copt (0.9,10−8) (0.9,10−12) (0.8,10−9)
ru 4.1938 × 10−4 9.7755 × 10−5 6.4772 × 10−5

rσ 1.4432 × 10−2 4.5325 × 10−3 2.2693 × 10−3

CPU (s) 0.1264 0.4127 1.2019
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Table 6. Cont.

Method N = 289 N = 625 N = 1089

IMQ + S3

copt (2.5,10−6) (2.5,10−8) (2.2,10−9)
ru 4.6816 × 10−4 9.0696 × 10−5 1.8502 × 10−5

rσ 2.6994 × 10−2 7.4137 × 10−3 1.8960 × 10−3

CPU (s) 0.1495 0.5371 1.6242

GA+S3

copt (0.4,10−5) (0.8,10−5) (0.8,10−5)
ru 1.0062 × 10−3 3.1934 × 10−4 1.2175 × 10−4

rσ 4.9156 × 10−2 1.6263 × 10−2 9.4336 × 10−3

CPU (s) 0.1173 0.3705 1.1097

TPS
ru 7.6646 × 10−4 2.6404 × 10−4 1.2074 × 10−4

rσ 3.6900 × 10−2 1.6100 × 10−2 8.7000 × 10−3

CPU (s) 0.1215 0.2706 0.7952

S3
ru 1.2000 × 10−3 4.9997 × 10−4 2.5632 × 10−4

rσ 5.5700 × 10−2 2.8800 × 10−2 1.7600 × 10−2

CPU (s) 0.1209 0.2032 0.5977
Note: The bold numbers represent the best calculated data.
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Figure 14a,b plot the analytical solution and the HRBF (IMQ + S3) solution for stress
σxx. Figure 14c,d plot the analytical solution and the HRBF (IMQ + S3) solution for the
stress σyy. Figure 14e,f plot the analytical and HRBF (IMQ + S3) solutions for the shear
stress τxy. These figures also show the excellent agreement between the analytical and
numerical results.
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It should be pointed out that the present study only considers the global colloca-
tion method to solve small-scale problems. We can use the local collocation method to
solve large-scale problems in the future. The numerical examples are mainly focused on
plane elastostatic symmetry problems. However, it can be extended to three-dimensional
elastostatic problems to verify the effectiveness of the HRBF-CM.

4. Conclusions

The traditional RBF methods are widely used in many areas of scientific computing,
such as interpolating multi-dimensional scattered data and solving PDEs. The HRBF is
constructed based on infinite smooth RBFs and piecewise smooth RBFs. It does inherit the
advantages of both RBFs, making HRBFs both spectrally convergent and stable. Inspired
by Manzoor, [24] used the HRBF to solve the Burgers’ equation; we study his HRBF in
detail in this paper, using three elastostatic symmetric problems. The sensitivity analysis
of the HBRF concerning the number of nodes N, the weight parameter w, and the shape
parameter c is analyzed. The ability of the HRBF-CM to fit the data under different shape
parameters and weight parameters is investigated. The numerical results of the HRBF
are compared with those of the analytical solutions and other numerical methods, and
excellent agreements can be found.
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