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Abstract: In this research work, a symmetrical four-capacitance loaded complementary circular
split ring resonator is proposed, which uses an ultra-thin Zinc Selenide (ZnSe) substrate to realize a
low-profile triple-band metamaterial (MTM) perfect absorber for application in the terahertz (THz)
frequency range. The electromagnetic properties of the proposed structure were calculated and
investigated using the Finite Integration Technique (FIT). The proposed structure exhibited three
highly absorptive (nearly perfect) peaks at the resonance frequencies of 15.68 THz, 37.48 THz, and
39.55 THz. Furthermore, the absorber was found to be insensitive to the polarization and incident
wave angles, due to its symmetrical design. The effects of the conductor type, substrate thickness,
unit cell dimension, resonator gap, and substrate type on the reflection and absorption spectra were
investigated. To validate the numerical results, the proposed design was analyzed using High-
Frequency Simulation Software (HFSS) and Advanced Design System (ADS). The surface current,
electric field, and magnetic field distributions at the three-resonance frequency were analyzed. It was
concluded that the overall performance of the proposed MTM structure was superior compared to
those reported in the literature. The proposed design could be a good candidate for application in
stealth technology, imaging, and thermal energy harvesting.

Keywords: metamaterial (MTM); complementary circular split ring resonator (CCSRR); triple-band;
polarization independent; ultra-thin layer; symmetry

1. Introduction

Metamaterials (MTMs) are artificial structures that exhibit exotic properties of negative
permittivity, negative permeability, and a negative refractive index in the frequency range
of interest [1]. Metamaterials can be used for various applications such as sensing [2,3],
super lensing [4,5], cloaking [6,7], imaging [8], antennae [9], and wave absorption [10].
Studies on micro-and nano-sized designs in high frequency bands have been paired with
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technological developments; this is specifically important for the development of high
chemical selectivity and the penetration of opaque materials. Along this line, a high-
performance metamaterial-based swastika-shaped liquid chemical sensor was designed for
X band applications [11]. It is known that selective designs are necessary for the production
of effective electromagnetic wave absorbers that can be used in sensing, imaging, and
detection applications. Therefore, various design structures have been proposed to act as a
perfect absorber for the MTM resonators [12–16].

For instance, a real-time and non-invasive glucose-sensing structure, based on MTM
transmission line theory, was designed and experimentally investigated in microwave
frequencies [17]. Furthermore, it is possible to detect liquid chemicals such as clean and
waste transformer oil, cotton oil, corn oil, and olive oil with the help of metamaterial-based
sensors integrated into the X-band waveguide [18]. Recently, Chen et al., proposed an
InSb micro cylinder array with a metasurface absorber for sensing applications in chemical,
biological, and optoelectronic samples in the terahertz frequency range [19]. The detection
rate can be correlated with effective changes in the materials’ permittivity [20]. In addition,
the temperature-sensing capability of metamaterial-based sensors has attracted attention
in the terahertz frequencies [21–23]. The polarization-independent frequency selective
thermal emitter has also been presented in the literature, revealing a relatively high sensing
capability [24,25].

Terahertz absorbers are also used for the control of thermal emissions [26]. Ito et al.
presented a phase change material with a metasurface to invert the thermal radiative
contrast, which can control the radiative heat flux [27]. For this purpose, Zhang et al.
designed a metamaterial-based optical absorber that uses the parity symmetric fano reso-
nance principle to control the thermal resonance [28]. Additionally, metamaterial-based
absorber structures have successfully been used in solar cell applications to provide high
efficiency and dual-band absorption [29,30] or wideband characteristics [31]. The ability
of thermal radiation has to be further explored due to its high bandwidth characteristics.
Li and Fan reviewed the recent developments in the nanophotonic control of thermal
radiation, photovoltaic systems, and energy harvesting [32]. Wang et al., designed a self-
adaptive radiative cooling and heating system based on a solar metasurface structure [33].
In terahertz absorber structures, the achievement of a perfect wideband absorption of the
light wave is possible with epsilon zero metamaterial resonators [34]. Additionally, the
tunability properties of metamaterial absorbers can be obtained by amalgamating various
resonators such as graphene [35,36] and strontium titanate in the terahertz bands [37]. The
main purpose of adjusting the operating frequency is to control the design parameters
of the resonators in either the microwave or terahertz frequencies [38–49]. Zinc selenide
(ZnSe) is an attractive wide bandgap semiconductor mostly used in infrared components,
windows, and lenses. ZnSe nanoparticles have been utilized in humidity sensing [50].
The interesting characteristics of zinc selenide (ZnSe) include its low electrical resistivity,
high direct band gap, high refractive index, transparency over a wide frequency range,
low optical absorption, and great photosensitivity. Researchers frequently employ ZnSe
for applications in solar cells, sensing, and mid-infrared sources because of these char-
acteristics [51–53]. Two-dimensional ZnSe nano sheets have recently been synthesized
and systematically analyzed for wideband absorption applications [51]. An MTM-based
design has also been proposed by Cheng et al. for wide-angle terahertz wave absorption,
polarization-insensitive, and switchable metamaterial absorbers [54]. Various MTM designs
and approaches have been reported in the literature that can be adapted to absorb incident
electromagnetic waves [55]. However, most of these designs are found to be complex and
expensive. Hence, researchers aim to achieve simple and cost-effective designs for MTMs,
with affordable efficiency in the desired frequency ranges.

Therefore, in this work, an attempt was made to present a simple design for MTMs
based on ultra-thin ZnSe to produce a triple-band metamaterial perfect absorber. The
proposed design was realized by loading four capacitances in the circular split-ring res-
onators with a complementary scheme that can be viably used for terahertz applications.
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The results showed three intensive peaks at the resonance frequencies of 15.68, 37.48, and
39.55 THz, with corresponding peak absorptions of 99%, 99.85%, and 92.25%, respectively.
The overall performance of the proposed structure outperformed those reported in the
literature. The novelties of the proposed structure are a low-profile and simple design that
provides perfect absorption responses with independent-polarization angles in the mid-IR
region and large frequency bands. The recommended metamaterials can be effectively used
in thermal energy harvesting, stealth technology, and imaging applications.

2. Proposed Structure of the MTM Unit Cell

The proposed triple-band perfect metamaterial absorber structure is shown in Figure 1,
while the optimum parameters of the proposed design are given in Table 1. As can be
seen in the periodic array shown in Figure 1a–c, the top (h3) and bottom (h1) layers were
composed of copper, while the middle layer (h2) was made of ZnSe. ∆w, l, g, R, r, and
D were the resonator’s dimensions. L and W were the length and width of the proposed
metamaterial unit cell, respectively. The values of the conductivities of different materials
were taken based on the material library of the CST software; this software is widely
used for simulations of structures. In this work, the conductivity of copper was taken as
σ = 5.8 × 107 S/m [56].
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Table 1. Dimensional values for the proposed MTM configuration.

Parameter Value (µm)

L 8
W 8
D 0.5
r 2
R 2.5
l 1.54

h1 0.03
h2 0.6
h3 0.03
g 1.8

∆w 1.15

The absorption rate can be expressed by Equation (1):

A(ω) = 1− R(ω)− T(ω) = 1− |s11|2 − |s12|2 (1)

where A (ω), R (ω), and T (ω) represent the absorption. The origin of the absorption can be
understood from Equation (1). The structure absorbs the incident electromagnetic radiation
when the transmission coefficient is zero and the reflection is zero. Zero transmission was
ensured by placing a thick metallic ground that prevented the transmission of the wave;
we can express the absorptivity by A (ω) = 1 − |s11|2. The reflection coefficient has to be
minimized through the proper design of the resonators on the top plane. When designed
properly, the impedance of the top plane matches that of the free space, ensuring minimum
reflection. For wide-band absorption, the unit parameters must be optimized to ensure
that the impedance of the free space is approximately equal along this band. The proposed
structure’s electromagnetic properties and absorption performance were analyzed by using
a Computer Simulation Technology (CST) microwave studio electromagnetic simulator,
which employs the Finite Integration Technique (FIT). All the physical properties parame-
ters of each design material were taken from the materials library of the simulation software
(CST). ZnSe was added into the library of the CST software defined as a new material by
providing its permittivity and permeability parameters of 5.73 and 1, respectively [52].
We set periodic boundary conditions in the x- and y- directions and applied an open-add
space boundary condition in the z-direction, as shown in Figure 2b. Figure 2a exhibits the
proposed structure’s absorption, reflection, and transmission spectra between 13 THz and
40 THz. Perfect metamaterial absorber characteristics were observed at three peaks, namely
15.68 THz, 37.48 THz, and 39.55 THz—corresponding to absorptivities of 98.76%, 99.58%,
and 92.39%, respectively. These three absorption peaks were all formed due to the electric
dipole resonance. The peak occurring at 31 THz had a very low absorbance and could not
be considered an absorption peak. Such peaks do not have any practical utility as they
cannot absorb the incident electromagnetic radiation. Only absorption bands with a peak
absorption greater than 90% are considered important.
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designed structure.

3. Polarization Independence

When an electromagnetic wave is incident on an inclined metamaterial surface, the
absorptivity is decreased because of the reflection of part of the wave. An ideal absorber
should absorb the electromagnetic radiation independently of the angle of incidence and
the polarization angle. The proposed absorber offers similar absorption characteristics
for different incident angles and for different polarization angles, as shown in Figure 3.
Seven different oblique incidence angles were considered between 0◦and 90◦, and the
same absorption characteristics results were achieved. Due to the unique design of the
proposed structure, the polarization and incident angle independency were obtained over
the whole simulation bandwidth. A top metallic layer consisting of an array of four
capacitance-loaded circle complementary metallic resonators was utilized to achieve a
polarization-independent electromagnetic response. Due to the symmetrical configuration
of the resonators, the changes in the optical response at different polarization angles were
trivial. Generally, for a plane monochromatic electromagnetic wave in an isotropic medium,
the wave vector k, magnetic field H, and electric field E are always perpendicular to each
other. It can be interpreted that, in our design environment, the wave vector is in direction
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of Z, which is perpendicular to the ports and structure surface. When the vectors E and H
are in phase and in the directions of X and Y, respectively, they are approximately straight
with respect to the rotational symmetry of the resonators along the X and Y axis. However,
in some cases, novel resonators do not obey this postulate, as shown in some different
works in the literature [54,56–58]. Therefore, we believe that the novelty of the proposed
absorber leads to the achievement of incidence angle independence—especially for angle
variations from 0 to 90 degrees.
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4. Parametric Analysis of the Reflection and Absorption Coefficient
4.1. Effect of Conductor Type

The metal used for the resonators significantly affects the performance of the MTM
structure due to their differences in conductivity. Consequently, different conductive
materials, namely Platinum, Copper, Gold, and Iron, were utilized to perform the para-
metric studies. The conductivity of these materials is 9.43 × 106 S/m, 5.80 × 107 S/m,
4.11 × 107 S/m, and 1 × 107 S/m, respectively, based on the material library in the CST
software. Therefore, different resonance characteristics would be anticipated due to the
conductivity variation of the resonator materials. Figure 4 shows the impact of changing
the resonator type on the reflection and absorption spectra of the proposed MTM structure.
One can notice that the positions of the resonance peaks shift with changes in the type of
material. Moreover, the absorption coefficient was found to be maximal in the low and
high-frequency ranges when gold was used for the metallic layers.
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Nevertheless, a low reflection coefficient was optimum for the MTM when iron was
added as the metallic layer. These differences can be ascribed to the effect of the plas-
monic resonance response of the metals on the overall absorption and reflection of the EM
waves. Noticeably, platinum and iron showed nearly the same return loss and transmission
characteristics because their conductivities are close to each other. Similarly, copper and
gold conductors established very similar resonance characteristics due to their relative
conductivity values.

4.2. Effect of Substrate Thickness

The second significant parameter of the resonator design is the thickness of the dielec-
tric substrate, as it controls the capacitive effect against the resonance frequency. As shown
in Figure 5, the first resonance frequency shifted with changes in thickness and distorted
the second resonance. Consequently, the optimum thickness of the ZnSe substrate layer
was obtained at 0.6 µm.
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4.3. Effect of the Unit Cell Dimensions

Another important parameter in the design process is the unit cell dimension (L). The unit
cell size defines the area (L ×W) of the ZnSe substrate on which the resonator is deposited.
Since the proposed substrate is square (L = W), the unit cell size can be expressed by L × L.
As such, changes in the unit cell size are directly related to changes in the radii (R and r) of
the resonator. When L changes, the size of the unit cell also changes. Five different unit cell
sizes of 6× 6 (µm)2, 7× 7 (µm)2, 8× 8 (µm)2, 9× 9 (µm)2 and 10× 10 (µm)2—named size 1,
size 2, size 3, size 4, and size 5, respectively—were considered. The absorption spectra for the
different unit cell sizes are shown in Figure 6. The absorption spectra varied for different sizes.
This could be mainly due to the effects of the wavelength, where each resonator operates at a
particular frequency. Hence, the impact of the unit cell size on the absorption profile can be seen
to significantly shift the absorption peaks at 37.48 and 39.55 THz, while there is not a significant
shift in the abortion peak at 15.68 THz (see Figure 6). From this parametric study, an optimum
condition was set such that the proposed MTM resonator achieved maximum absorption.
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4.4. Effect of Split Gap Variation

In this section, a parametric analysis was conducted to observe the effect of changing
the split gap dimension. The split gap was changed from 0.5 µm in steps of 0.5 µm. An
increase in the split gap dimension significantly changed the resonance peaks, as shown in
Figure 7. This resonance shift could be attributed to changes in the capacitive effect on the
resonator due to the split gap. For instance, each resonator layer corresponds to an RLC
circuit—hence, when the capacitance of the resonator is changed, the resonance frequency
also varies. The optimum operating parameter of the split gap was chosen as 0.5 µm.
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4.5. Effect of Substrate Type

Finally, the effects of the different substrate materials were investigated. Figure 8
shows the absorption spectra for the ZnSe, FR4, Rogers RT5870, and Arlon AD410 sub-
strates; variations were caused by differences in the dielectric constant and loss tangent
of the materials. The dielectric constants of these materials were 5.73, 4.3, 2.33, and 4.10,
respectively, while their corresponding loss tangents are 1, 0.025, 0.0012, and 0.003, respec-
tively. This analysis obtained the best absorption spectra with the ZnSe-based resonator,
as shown in Figure 8. The thickness of the substrate was fixed at 0.6 µm. One can see
that the FR4 and Arlon AD410 dielectric substrates created similar resonances, and the
Rogers RT5870 could generate only one resonance peak. However, the proposed ZnSe Pro
substrate produced three resonances. Thus, the ZnSe material was chosen as the substrate
for the MTM design. It can be seen from Figure 8 that the peak at about 31 THz appeared
when the substrate type was ZnSe. Therefore, this peak is mainly attributed to the ZnSe
substrate in the frequency window of 10 to 40 THz. Consequently, any changes in the
substrate thickness and substrate size (unit cell size) led to changes in the position and
magnitude of the peak at 31 THz, as can be seen in Figures 5 and 6.
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5. Selection of the Proposed Metamaterial Unit Cell

We designed and simulated two more designs to compare the proposed structure,
as shown in Figure 9. Design 1 had split gaps only, so it did not have any patches in the
splits nearby. Design 2 was composed of metallic patches placed at the split gaps of the
ring resonators. The reflection and absorption spectra were simulated for the designs and
given in Figure 9, while the obtained results are shown in Figure 10. It can be seen from
Figure 10a,b that the multiband perfect absorptivity and reflection characteristics reached
their optimum values. As design 2 did not have splits, it did not present a multiband
absorptivity. Although design 1 was similar to the proposed structure, it did not provide
multiband absorptivity in the given frequency band. Furthermore, the absorption peaks
were not prominent. For these reasons, the proposed design was chosen, and its dimensions
were optimized for the best performance and absorptivity, together with its insensitivity to
the incident and polarization angles.
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Figure 10 shows the reflection and absorption spectra obtained for design 1, design 2,
and the proposed design in the frequency range from 13 to 40 THz. Changes in the
resonance frequency were observed among the three designs, which can be related to the
presence of capacitive variations in the equation f0 =

1
2π
√

LC
. The first design comprised a

conventional circular ring resonator, having four capacitive gaps. The results showed that
design 1 could provide a single resonance frequency at 21 THz, as illustrated in Figure 10.
The capacitive gaps were removed in the second design to present a unit cell with a basic
circular ring. The overall capacitive effect in design 2 decreased dramatically due to the
elimination of these gaps. Therefore, the resonance frequency increased (blue shifted) to
36.5 THz owing to the minimization of the capacitance part of the equation. However, four
capacitive split gaps were again placed into the unit cell in the proposed design, as shown
in Figure 9c. The difference between the proposed design and design 1 was due to the
length of the parallel plates at the split gaps and the distance between them; these variations
in the proposed design increased the capacitance of the unit cell. With increases in the
capacitive effects of the proposed design, the resonance frequency decreased (redshifted)
to 15.68 THz. Moreover, two different absorption peaks were obtained for the proposed
design in these terahertz regimes.
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6. Analysis of Different Software Simulations for the Proposed Design

The numerical studies of the proposed ultrathin, triple band, and perfect metamaterial
absorber were also validated using three different simulation software—namely, High
Frequency Simulation Software (HFSS), Advanced Design System (ADS), and Computer
Simulation Technology (CST). In the ADS, 3D dielectric bricks or bond wire arcs can be
simulated using the finite element method (FEM) or method of moments (MOM). HFSS
has an efficient solver for radiation and scattering. The main solver of HFSS is FEM, while
it also has MOM solution. CST is based on finite integration techniques (FIT) and finite
difference time domains (FDTDs) for transient solutions; it also uses FEM and MOM for
the frequency domain and as an integral equation solver. It was found from the simulation
results that the reflection and absorption spectra had almost the same response, as shown in
Figure 11. Specifically, the HFSS and ADS results were highly matched, as they were built
on the same solution technique. Nevertheless, the CST result was slightly different from
that of the HFSS and ADS, confirming the absorption behavior of the proposed structure.
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7. Surface Current, Electric Field, and Magnetic Field Analysis

Field distributions are important for understanding wave propagation and resonance
modes [59]. Figure 12 shows the surface-current distribution across the resonator and the ground
plane at the three characteristic resonance frequencies of 15.68, 37.48, and 39.55 THz. It can
be seen from Figure 12a that at the resonance frequency of 15.68 THz, the current flow in the
upper- and lower-half parts of the resonator were parallel, while they were anti-parallel to the
current flow in the ground plane. This led to the formation of a weak electric field distribution
across the ring resonator arms, but a relatively strong electric field across the horizontal splits
(vertical capacitors)—as can be noticed in Figure 13a. Nevertheless, at the resonance frequency
of 37.48 THz, the current distribution intensity was lower. However, the current flow in the
resonator and the ground plane were parallel—especially around the ring resonator’s left- and
right-half arms, as shown in Figure 12b. Consequently, the induced electric field got stronger, as



Symmetry 2022, 14, 1477 15 of 19

shown in Figure 13b. It is worth noting from Figure 12c that at the higher resonance frequency of
39.55 THz, the electric current flow around the horizontally loaded capacitors (vertical split) and
the ground plane were aligned parallely—thereby enhancing the overall electric field distribution
around these two capacitors, as shown in Figure 13c.
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Figure 12. Simulated surface current distribution at the resonator (a) 15.68 THz, (b) 37.48 THz,
(c) 39.55 THz, (d,e), and (f) at the ground plane for the same frequencies for the triple-band
MPA, respectively.
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and (c) 39.55 THz for the proposed design.

Ultimately, the consequence of the current flow and electric field distributions play an
important role in shaping the magnetic properties of the MTM resonator. Therefore, from
Figure 14a, one can observe that the strongest magnetic field distribution was achieved at
the resonance frequency of 15.68 THz, where the current in the resonator and ground plane
were flowing in the opposite directions. The minimal level of occurrence of the intense
magnetic field was because of the induced magnetic field induced by the MTM; there was
not any magnetic opposition against the externally applied magnetic field in the y-axis
direction. Noteworthy, it can be concluded from Figure 14b,c that when the resonance
frequency increased, the magnetic field distribution around the left- and right-arms of the
ring resonator significantly decreased; this can be ascribed to the relatively high electric
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field at these positions (see Figure 13b,c). Therefore, the induced magnetic field by the
MTM due to the parallel current flow led to the formation of an induced magnetic field
which acted against the external magnetic field, according to Lenz’s law.
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Figure 14. Magnetic field distribution at three different resonance peaks (a) 15.68 THz (b) 37.48 THz
and (c) 39.55 THz for the triple band metamaterial perfect absorber.

Tables 2 and 3 show the comparison of the overall performance of the proposed MTM
structure with that of other works reported in the literature. Comparatively, it can be seen
from Table 2 that, based on the shape of the MTM unit cell, frequency operation, dimension
unit cell, thickness of the used substrate, absorptivity, and peak numbers, the proposed
design has a smaller unit cell of 8 × 8 µm2 and pocesses an ultra-thin property of 0.6 µm.
Hence, in addition to the reduction in the device profile, the absorptivity is high and its
absorption characteristics are independent of the polarization angle compared to those of
other designs reported in the literature.

Table 2. Parametric analysis of the proposed and existing metamaterials.

Ref. Shape of the MTM Unit Cell Frequency Operating THz Unit Cell Size (µm2) Substrate Thickness (µm) Absorptivity (%) Peak Numbers

[12] Multiple metallic resonators 2–5 36 × 36 2 100–97 Dual
[13] cross metal array resonator 12–28 4 × 4 1.5 99 Single

[14] two nested metallic circular
ring resonators 0–4.5 80 × 80 18 99.96–98.92–99.83–

99.35 and 99 Five

[15] Gold resonator 4–8 43.8 × 43.8 8.1 99.3–99.2–99.4 Five
95.2 and 98.1

[16] Periodic cross-shaped
grooves 0–3.5 50 × 50 45 97.80–95.8 Dual

[22] metallic cross-cave-patch
(CCP) 0.4–2.2 90 × 90 8 98.0, 99.6, 95.2, 97.9,

96.7 and 99.9 Six

[23] metal square ring and four
metallic cylinders 1.2–2.5 60 × 60 7 99.9 Single

[43] four-fold meander wire 1–3 55 × 50 15 93–100 Dual
[44] Au Reflector 2–8 30 × 35 5 99–99 Dual
[45] split ring dish resonator 1.925–6.3 24 × 24 1.2 100–99–100 Single/Dual
[46] Au rectangular strips 0–4.05 60 × 60 2 100–99–99 Triple

[47] graphene based meshed
square patch FSS 0–4 42 × 42 22 99–97 Dual

[52] Single metallic resonator 15–35 9.5 × 9.5 0.6 98.44–99.28 Dual
This Work Single copper resonator 13–40 8 × 8 0.6 99–99.85 and 92.25 Triple
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Table 3. Comparison between the suggested structure and existing MTM absorber.

Ref. Techniques Used Central Frequency Absorption Polarization Angles Year Published

[12] Al/TiO2/Al 3.5 >90% TE and TM 0–90 2020

[13] Metal layer/Dielectric
layer/Metal layer 20 >90% - 0–50 2020

[14] Copper/Polyimid/Silicon 2.25 >90% - 0–90 2018
[15] Au/Graphene/SiO2/Au 5.51 >90% TE and TM 0–90 2020
[16] Gold/SiO2/Graphene/SiO2 0.94 >90% - - 2019
[22] Gold/InSb/gold 1.3 >90% - - 2019
[23] Gold/InSb/gold 1.85 >90% TE and TM 0–90 2020
[43] Gold/PDMS/Gold 2 >90% TE and TM 0–90 2018
[44] Au/SiO2/Au 5 >90% - - 2019
[45] Gold/SiO2/Gold 4.375 >90% TE 0–60 2018
[46] Au/dielectric slab/Au 2.25 >90% - - 2019

[47]
Graphene FSS/polyimide

layer/perfect electric
conductor (PEC)

2 >90% TE 0–60 2020

[48] Copper/ZnSe/Copper 25 >90% TE and TM 0–60 2021
This Work Metal/ZnSe/Metal 27 >90% TE or TM 0–90 2022

8. Conclusions

In this work, we successfully designed and analyzed a low-profile metamaterial-
based perfect absorber in the THz frequency range. The proposed design consists of a
symmetric four-capacitance loaded complementary circular split ring resonator on the top
of an ultra-thin ZnSe substrate. The back side of the structure is covered by a metal plate
to prevent transmission, and a triple-band MTM perfect absorber was obtained. It was
found that with the help of parametric studies in the optimization of the proposed structure,
three high absorptive peaks with nearly perfect absorption were obtained at the resonance
frequencies of 15.68, 37.48, and 39.55 THz. Furthermore, the absorber was insensitive to
the polarization angle and incident wave angle from 0◦ to 90◦. It was concluded that the
overall performance of the proposed MTM structure is superior compared to that of other
reported structures.
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