Mapping Natural Orbits around Io
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of the Initial Inclination and Semi-Major Axis
3.2. Analysis of Initials Inclination and Eccentricity
3.3. Analysis of the Initial Argument of Pericentre and Longitude of the Ascending Node
3.4. Analysis of the Effect Due to the Non-Sphericity of Io—Zonal Harmonic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riedler, W.; Möhlmann, D.; Oraevsky, V.; Schwingenschuh, K.; Yeroshenko, Y.; Rustenbach, J.; Aydogar, O.; Berghofer, G.; Lichtenegger, H.; Delva, M.; et al. Magnetic fields near Mars: First results. Nature 1989, 341, 604–607. [Google Scholar] [CrossRef]
- Barth, C.A.; Pearce, J.B.; Kelly, K.K.; Wallace, L.; Fastie, W.G. Ultraviolet emissions observed near Venus from Mariner V. Science 1967, 158, 1675–1678. [Google Scholar] [CrossRef] [PubMed]
- Matson, D.L.; Spilker, L.J.; Lebreton, J.P. The Cassini/Huygens mission to the Saturnian system. In The Cassini-Huygens Mission; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–58. [Google Scholar] [CrossRef]
- Davies, A.G. Volcanism on Io; Cambridge University Press: Cambridge, UK, 2007; Volume 7. [Google Scholar]
- Pappalardo, R.T.; Belton, M.J.; Breneman, H.; Carr, M.; Chapman, C.R.; Collins, G.; Denk, T.; Fagents, S.; Geissler, P.E.; Giese, B.; et al. Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. Planets 1999, 104, 24015–24055. [Google Scholar] [CrossRef]
- Carr, M.H.; Belton, M.J.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; et al. Evidence for a subsurface ocean on Europa. Nature 1998, 391, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, C.D.; Liang, M.C.; Hartman, H.; Hansen, C.J.; Tinetti, G.; Meadows, V.; Kirschvink, J.L.; Yung, Y.L. Enceladus: Cassini observations and implications for the search for life. Astron. Astrophys. 2007, 463, 353–357. [Google Scholar] [CrossRef]
- NASA. NASA’s Europa Clipper. 2021. Available online: https://europa.nasa.gov/ (accessed on 28 July 2021).
- Hofstadter, M.D.; Fletcher, L.N.; Simon, A.A.; Masters, A.; Turrini, D.; Arridge, C.S. Future Missions to the Giant Planets that Can Advance Atmospheric Science Objectives. Space Sci. Rev. 2020, 216, 1–17. [Google Scholar] [CrossRef]
- Turtle, E.; Barnes, J.; Trainer, M.; Lorenz, R.; Hibbard, K.; Adams, D.; Bedini, P.; Langelaan, J.; Zacny, K. Dragonfly: In Situ exploration of titan’s prebiotic organic chemistry and habitability. In Proceedings of the European Planetary Science Congress, Riga, Latvia, 17–22 September 2017; Volume 11. [Google Scholar]
- Peale, S.J.; Cassen, P.; Reynolds, R.T. Melting of Io by tidal dissipation. Science 1979, 203, 892–894. [Google Scholar] [CrossRef] [Green Version]
- Kozai, Y. The motion of a close earth satellite. Astron. J. 1959, 64, 367. [Google Scholar] [CrossRef]
- Kozai, Y. On the Effects of the Sun and the Moon upon the Motion of a Close Earth Satellite. SAO Spec. Rep. 1959, 22. Available online: https://adsabs.harvard.edu/pdf/1959SAOSR..22....2K (accessed on 28 July 2021).
- Kozai, Y. A new method to compute lunisolar perturbations in satellite motions. SAO Spec. Rep. 1973, 349. Available online: https://ntrs.nasa.gov/citations/19730008982 (accessed on 28 July 2021).
- Aksenov, E. The doubly averaged, elliptical, restricted, three-body problem. Astron. Zhurnal 1979, 56, 419. [Google Scholar]
- De Almeida Prado, A.F.B. Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 2003, 26, 33–40. [Google Scholar] [CrossRef]
- Domingos, R.; de Almeida Prado, A.B.; De Moraes, R.V. Studying the behaviour of averaged models in the third body perturbation problem. Proc. J. Phys. Conf. Ser. 2013, 465, 012017. [Google Scholar] [CrossRef] [Green Version]
- Gomes, V.M.; de Cássia Domingos, R. Studying the lifetime of orbits around Moons in elliptic motion. Comput. Appl. Math. 2016, 35, 653–661. [Google Scholar] [CrossRef]
- Domingos, R.C.; Prado, A.D.A.; De Moraes, R.V. A study of the errors of the averaged models in the restricted three-body problem in a short time scale. Comput. Appl. Math. 2015, 34, 507–520. [Google Scholar] [CrossRef]
- Dos Santos, J.C.; Carvalho, J.P.; Prado, A.F.; de Moraes, R.V. Lifetime maps for orbits around Callisto using a double-averaged model. Astrophys. Space Sci. 2017, 362, 227. [Google Scholar] [CrossRef] [Green Version]
- Cinelli, M.; Ortore, E.; Circi, C. Long lifetime orbits for the observation of Europa. J. Guid. Control Dyn. 2019, 42, 123–135. [Google Scholar] [CrossRef]
- Carvalho, J.; Elipe, A.; De Moraes, R.V.; Prado, A. Low-altitude, near-polar and near-circular orbits around Europa. Adv. Space Res. 2012, 49, 994–1006. [Google Scholar] [CrossRef]
- Carvalho, J.; Mourao, D.; Elipe, A.; De Moraes, R.V.; Prado, A. Frozen orbits around Europa. Int. J. Bifurc. Chaos 2012, 22, 1250240. [Google Scholar] [CrossRef]
- Carvalho, J.; Vilhena de Moraes, R.; Prado, A. Dynamics of artificial satellites around Europa. Math. Probl. Eng. 2013, 2013, 182079. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.; Vilhena De Moraes, R.; Prado, A. Searching less perturbed circular orbits for a spacecraft travelling around Europa. Math. Probl. Eng. 2014, 2014, 529716. [Google Scholar] [CrossRef]
- Tzirti, S.; Tsiganis, K.; Varvoglis, H. Quasi-critical orbits for artificial lunar satellites. Celest. Mech. Dyn. Astron. 2009, 104, 227–239. [Google Scholar] [CrossRef]
- Costa, M.; Vilhena de Moraes, R.; Prado, A.; Carvalho, J. An optimization approach to search for quasi-critical inclinations for direct and retrograde orbits: Applications for artificial satellites around Io. Eur. Phys. J. Spec. Top. 2020, 229, 1429–1440. [Google Scholar] [CrossRef]
- Grasset, O.; Dougherty, M.; Coustenis, A.; Bunce, E.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
- Phillips, C.B.; Pappalardo, R.T. Europa Clipper mission concept: Exploring Jupiter’s ocean moon. Eos Trans. Am. Geophys. Union 2014, 95, 165–167. [Google Scholar] [CrossRef]
- Campagnola, S.; Buffington, B.B.; Petropoulos, A.E. Jovian tour design for orbiter and lander missions to Europa. Acta Astronaut. 2014, 100, 68–81. [Google Scholar] [CrossRef]
- Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L. Volcanism on Io: New insights from global geologic mapping. Icarus 2011, 214, 91–112. [Google Scholar] [CrossRef]
- NASA. NASA’s Juno Mission Expands into the Future. 2021. Available online: https://www.nasa.gov/feature/jpl/nasa-s-juno-mission-expands-into-the-future (accessed on 28 July 2021).
- Murray, C.D.; Dermott, S.F. Solar System Dynamics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Neto, E.V.; de Almeida Prado, A.F.B. Time-of-flight analyses for the gravitational capture maneuver. J. Guid. Control Dyn. 1998, 21, 122–126. [Google Scholar] [CrossRef]
- Schubert, G.; Anderson, J.; Spohn, T.; McKinnon, W. Interior composition, structure and dynamics of the Galilean satellites. Jupiter Planet Satell. Magnetos. 2004, 1, 281–306. [Google Scholar]
- NASA. Soviet Lunar Missions. 2005. Available online: https://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.html (accessed on 28 July 2021).
- Kosofsky, L.J.; El-Baz, F. The Moon as Viewed by Lunar Orbiter; US Government Printing Office: Washington, DC, USA, 1970; Volume 200.
- NASA. Lunar Orbiter 4. 2019. Available online: https://solarsystem.nasa.gov/missions/lunar-orbiter-4/in-depth/ (accessed on 28 July 2021).
- NASA. Lunar Orbiter 5. 2019. Available online: https://solarsystem.nasa.gov/missions/lunar-orbiter-5/in-depth/ (accessed on 28 July 2021).
- MacKenzie, S.M.; Neveu, M.; Davila, A.F.; Lunine, J.I.; Craft, K.L.; Cable, M.L.; Phillips-Lander, C.M.; Hofgartner, J.D.; Eigenbrode, J.L.; Waite, J.H.; et al. The Enceladus Orbilander Mission Concept: Balancing return and resources in the search for life. Planet. Sci. J. 2021, 2, 77. [Google Scholar] [CrossRef]
- Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 1962, 67, 591–598. [Google Scholar] [CrossRef]
- Park, S.Y.; Junkins, J. Orbital mission analysis for a lunar mapping satellite. In Proceedings of the Astrodynamics Conference, Scottsdale, AZ, USA, 1–3 August 1994; p. 3717. [Google Scholar]
- Xavier, J.; Prado, A.B.; Winter, S.G.; Amarante, A. Mapping Long-Term Natural Orbits about Titania, a Satellite of Uranus. Symmetry 2022, 14, 667. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Sfair, R.; Prado, A.F.B.A. Lifetime and Dynamics of Natural Orbits around Titan. Symmetry 2022, 14, 1243. [Google Scholar] [CrossRef]
- Marchal, C.L. Fifth John V. Breakwell memorial lecture: The restricted three-body problem revisited. Acta Astronaut. 2000, 47, 411–418. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X. On the orbital lifetime of high-altitude satellites. Chin. Astron. Astrophys. 2000, 24, 284–288. [Google Scholar] [CrossRef]
R (km) | a (km) | Sideral Time (Days) | ||
Io | ||||
() | (Degrees) | and (Degrees) | ||
Probe | (0.0–0.5) | (60.0–85.0) |
Orbit | Lifetime (Days) | ||
---|---|---|---|
a | |||
b | |||
c | |||
d |
(Degrees) | (Degrees) | (Degrees) | ||
---|---|---|---|---|
(0.0–0.5) | (60.0–90.0) | |||
(0.0–0.5) | (60.0–90.0) | |||
(0.0–0.5) | (60.0–90.0) | |||
(0.0–0.5) | (60.0–90.0) | |||
– | (60.0–90.0) | |||
– | (60.0–90.0) | |||
– | (60.0–90.0) | |||
– | (60.0–90.0) | |||
80 | (0.0–360) | (0.0–360) | ||
90 | (0.0–360) | (0.0–360) | ||
80 | (0.0–360) | (0.0–360) | ||
80 | (0.0–360) | (0.0–360) | ||
80 | (0.0–360) | (0.0–360) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, T.C.F.C.; Prado, A.F.B.A.; Giuliatti Winter, S.M.; Ferreira, L.S. Mapping Natural Orbits around Io. Symmetry 2022, 14, 1478. https://doi.org/10.3390/sym14071478
Ferreira TCFC, Prado AFBA, Giuliatti Winter SM, Ferreira LS. Mapping Natural Orbits around Io. Symmetry. 2022; 14(7):1478. https://doi.org/10.3390/sym14071478
Chicago/Turabian StyleFerreira, Thamis C. F. Carvalho, Antonio F. Bertachini A. Prado, Silvia M. Giuliatti Winter, and Lucas S. Ferreira. 2022. "Mapping Natural Orbits around Io" Symmetry 14, no. 7: 1478. https://doi.org/10.3390/sym14071478
APA StyleFerreira, T. C. F. C., Prado, A. F. B. A., Giuliatti Winter, S. M., & Ferreira, L. S. (2022). Mapping Natural Orbits around Io. Symmetry, 14(7), 1478. https://doi.org/10.3390/sym14071478