
Citation: El-Meniawy, N.; Rizk,

M.R.M.; Ahmed, M.A.; Saleh, M. An

Authentication Protocol for the

Medical Internet of Things. Symmetry

2022, 14, 1483. https://doi.org/

10.3390/sym14071483

Academic Editors: Chin-Ling Chen

and José Carlos R. Alcantud

Received: 19 June 2022

Accepted: 17 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Authentication Protocol for the Medical Internet of Things
Nagwa El-Meniawy 1, Mohamed R. M. Rizk 2, Magdy A. Ahmed 3 and Mohamed Saleh 4,*

1 Department of Computer Engineering, Pharos University, Alexandria 21649, Egypt;
eng.nagwa.elmeniawy@gmail.com

2 Department of Electrical Engineering, Alexandria University, Alexandria 21544, Egypt; mrmrizk@ieee.org
3 Department of Computer Engineering, Alexandria University, Alexandria 21544, Egypt; magdy@alexu.edu.eg
4 Department of Electrical Engineering, Pharos University, Alexandria 21649, Egypt
* Correspondence: mohamed.saleh@pua.edu.eg

Abstract: The progress in biomedical sensors, Internet of Things technologies, big data, cloud
computing, and artificial intelligence is leading the development of e-health medical systems, offering
a range of new and innovative services. One such service is remote patient monitoring, where
medical professionals are able to collect and examine a patient’s medical data remotely. Of course, in
these systems, security and privacy are of utmost importance and we need to verify the identities
of system users before granting them access to sensitive patient-related data. To this end, several
authentication protocols have been recently designed specifically for e-health systems. We survey
several of these protocols and report on flaws and shortcomings we discovered. Moreover, we
propose an authentication protocol that enables a medical professional and the network of sensors
used by a patient to authenticate each other and share a cryptographic key to be used for security in a
communication session. The protocol also enables the dynamic assignment of patients to doctors in
order to control access to patients’ data. We perform a security analysis of the protocol both formally,
using the ProVerif protocol analysis tool, and informally, demonstrating its security features. We
show that our protocol achieves mutual authentication, secret key establishment, forward secrecy,
and anonymity. In terms of performance, the protocol is computationally lightweight, as it relies
on symmetric key cryptography. This is demonstrated by comparing the computational cost of our
protocol (in terms of execution time) with that of other similar protocols.

Keywords: authentication; body sensor networks; communication system security; cryptographic
protocols; Internet of Things

1. Introduction

An aging population and an increasing number of persons living with multiple chronic
conditions are factors currently exerting pressure on healthcare systems worldwide [1].
There is a growing need for healthcare staff and for efficient and effective systems to
support them. This need is even more critical during emergency conditions such as those
present during the COVID-19 pandemic. The digital transformation in the healthcare sector
offers ways to improve the quality of medical services and to support medical staff. It
provides a spectrum of solutions commonly referred to as “digital health” or “eHealth” [2].
For instance, assisted living technologies [1] make use of biomedical sensors [3], internet
connectivity, and software applications to monitor health conditions of patients while they
are at home. Sensors collect real-time medical data that are sent to medical centers to be
stored in Electronic Health Records (EHRs) for analysis by doctors, possibly with the help
of AI-based decision support systems. Thus, treatment can be decided, emergencies can be
avoided and the need for hospitalization reduced, alleviating pressure on medical facilities
and staff. The objective is to enable patients to live independently while receiving quality
healthcare services at home.

Symmetry 2022, 14, 1483. https://doi.org/10.3390/sym14071483 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071483
https://doi.org/10.3390/sym14071483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7981-8187
https://doi.org/10.3390/sym14071483
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071483?type=check_update&version=1

Symmetry 2022, 14, 1483 2 of 21

Systems that remotely collect health-related data [4] provide a lot of possibilities for
progress in medical research, diagnosis, and treatment. Of course, biomedical sensors are
an enabling technology for such systems, e.g., assisted living, telehealth, and m-health [1].
A sensor comprises a sensing unit, a processing unit, and a transceiver, and is usually
battery-powered. Sensors are placed in or on a patient’s body to form a Wireless Body
Area Network (WBAN) [5,6], also called Body Sensor Network (BSN). Each sensor in the
network monitors the value of some physiological variable such as blood pressure, heart
electrical activity, or body temperature. Using the WBAN’s protocol stack, sensors send
their readings wirelessly to a special node in the WBAN called the sink. Data are then read
from the sink either locally or remotely. In an Internet of Things (IoT) framework, the sink
has Internet connectivity and acts as an IoT gateway [7]. Data can thus be relayed, through
the cloud, to remote monitoring stations to be examined by medical staff. This Medical
Internet of Things (MIoT) is subject to a lot of research in order to provide maximum benefit
for both doctors and patients.

Remote monitoring systems of the MIoT open up new possibilities for offering medical
services and improving the quality of life for patients. However, when transmitting and
storing medical data using a publicly accessible IT infrastructure, security and privacy are
major concerns [8,9]. Patients’ data need to be protected in transit and while being stored.
This protection is defined in terms of security objectives that should be achieved such as
data secrecy, data integrity, user authentication, etc. When designing a system, we first
need to decide on the security objectives (properties) that we aim to achieve. Then, security
mechanisms are implemented in the form of cryptographic operations and protocols in
order to achieve these objectives.

One of the main security objectives in the MIoT is entity authentication is the verifica-
tion of the identity of communicating parties to be able to establish secret keys for commu-
nication, enforce access control policies, and manage authorizations. While there has been
a lot of research in the design and analysis of authentication protocols for computers [10]
and the Internet of Things (IoT) [11], the nature of MIoT networks dictates the design of
new protocols. The communication architecture of these networks involves several types of
communicating nodes. At the patient’s end, biomedical sensors collect data and send them
to a gateway node that forwards them to a medical center where they may be monitored
online by medical staff or stored for later examination. Sensor nodes are limited in compu-
tational and storage capacities. They are also usually battery-powered and therefore face
the risk of premature depletion of energy if the algorithms they run consume too much
power for the battery’s capacity. On the other hand, medical professionals need to examine
patients’ data locally at the medical center, or even remotely using a variety of devices. All
of these factors have lead to an active research track in developing authentication protocols
for the MIoT.

Our contribution is to develop a mutual authentication and key establishment pro-
tocol for MIoT networks that is lightweight in terms of computation and storage needs.
The protocol is executed between a medical professional in possession of a smart card
device, a trusted server, and the IoT gateway of a patient’s WBAN. We demonstrate the
security of our protocol by the use of the ProVerif automated security analysis tool and by
informal arguments. We also demonstrate its performance in terms of computational cost
in comparison to other similar protocols. The novelty of our approach is that it provides a
combination of features that are essential for remote health monitoring applications. First,
it allows doctors to monitor a set of sensors, instead of a single one as is the case in most
previous works. This is necessary in medical settings where doctors need to know the
values of a set of physiological parameters not just a single one. Second, our protocol
enables the establishment of an access control policy where doctors may be granted or
denied access to one or more patients’ data. This policy is dynamic and under the control of
medical centers. Finally, our protocol supports both real-time monitoring of patient’s data
by doctors or the storage of these data for later examination. As another contribution, we
point out weaknesses in previously published protocols that, to the best of our knowledge,

Symmetry 2022, 14, 1483 3 of 21

have not been previously reported. These weaknesses may lead to attacks that compromise
security. We demonstrate several of these attacks.

This paper is organized in five sections starting with the introduction. In Section 2,
we survey the state-of-the-art in authentication protocols for the MIoT and present some
weaknesses that we discovered in these protocols. This is followed by the presentation
of our own protocol in Section 3 and its performance and security analysis in Section 4.
Finally, the paper is concluded in Section 5.

2. Previous Work

Communication in MIoT can be classified into intra-BAN, inter-BAN, and beyond
BAN [12]. Intra-BAN communication takes place between sensor nodes in the WBAN,
including the sink. Inter-BAN communication is between sinks in different WBANs,
possibly through relay nodes or access points. Finally, beyond-BAN communication occurs
with remote parties in the cloud.

Security issues in intra-BAN communications overlap those in sensor networks [13].
There are, however, some characteristics that are particular to intra-BAN networks, based
on the fact that they are composed of nodes placed in or on a human body. For instance, in
these networks, physiological signals can be used for authentication and key agreement [14].
Similarly, security issues in inter-BAN and beyond-BAN communications overlap those in
IoT networks [9]. However, inter-BAN and beyond-BAN networks have special features
and requirements since they are used in medical applications. These applications involve
three parties: patient, doctor, and medical center (server). They deal with medical data
which are of sensitive nature requiring privacy policies. Furthermore, patients need to be
dynamically assigned to doctors and access to patients’ data must be controlled. Hence,
a security mechanism for medical applications must take all these factors into account.
Our authentication protocol focuses on beyond-BAN communication. We therefore survey
protocols with the same scope and exclude protocols dealing solely with inter-BAN and
intra-BAN communication such as the one developed by Das et al. [15].

2.1. Protocols

Authentication protocols for beyond-BAN communication differ in the following aspects:

• Security objectives besides authentication, e.g., key establishment, forward secrecy [16], etc.
• Communicating parties, i.e., the roles involved in a protocol session.
• Support for real-time communication.
• Design logic, cryptographic operations (encryption, hashing, etc.), and execution steps.

In the work of Yeh [17], an authentication and key establishment protocol is designed
with three communicating parties: sensor node, gateway (called local processing unit) and
server. There is no mention of medical professionals connecting to the server. Therefore, it
is implicitly assumed that doctors will read patients’ data in the offline mode, i.e., there
is no possibility of monitoring a patient in real time. The protocol uses Elliptic Curve
Cryptography (ECC) [18] whose computational cost is around an order of magnitude
higher than symmetric encryption [19,20]. We will therefore limit our attention to protocols
using symmetric cryptography.

Gope and Hwang [20] designed an authentication and key establishment protocol
between a user U, a gateway G and a sensor node SN, where user anonymity is targeted.
In their terminology, a gateway is actually a “server-class” device that connects users to
multiple clusters of sensors. Traffic between sensors in a cluster and an external party passes
through a sink node, called the cluster head. The protocol uses only two mathematical
operations: secure hashing and XOR. However, the protocol does not account for the case
where readings from multiple sensors are aggregated, e.g., by the cluster head. Furthermore,
we discovered a serious flaw that lets an intruder, at one session, know the key established
in the previous session, as will be detailed in Section 2.2.2.

The authentication protocol by Li et al. [21] is designed for three communication
parties: the medical professional (user U), the gateway node G of the patient’s WBAN

Symmetry 2022, 14, 1483 4 of 21

and a single sensor in the WBAN. The protocol targets user and sensor anonymity with
respect to the intruder. It uses hashing and symmetric encryption/decryption, where a
single key is shared between multiple parties. This use of keys means that the compromise
of a single key compromises communication with all users or sensor nodes. Furthermore,
users are required to register themselves at the patient’s WBAN gateway node, i.e., a doctor
responsible for N patients will have to register N times which is impractical. We also
note that the gateway G stores no information about users, it therefore has no means of
differentiating between users for access control purposes.

A study by Sharma and Kalra [22] proposed a mutual authentication and key establish-
ment protocol between a user U who is a medical professional, a patient’s WBAN gateway
node G, and a single sensor in the WBAN. The protocol aims to achieve forward secrecy
and user anonymity with respect to the intruder. The only mathematical operations used
are XOR and hashing. The sensor’s ID is sent in clear text in the first message from the
user U to the gateway G, and therefore sensor anonymity is not achieved. Furthermore,
an intruder monitoring a doctor’s messages will relate the doctor’s identity to a sensor’s
identity which can be linked to a patient’s identity by monitoring the gateway. Moreover,
the gateway does not store information related to specific users and therefore is unable to
differentiate between users leading to infeasibility of access control. Finally, the gateway
stores only the value of a long-term secret key K which is used to create secrets shared
with users and sensors. Therefore, if the value of K is compromised, the security of all
communications is also compromised.

The paper by Xu et al. [23] presents a protocol between a server, an access point (acting
as WBAN gateway), and a single sensor node. There is no mention of the authentication
process between a medical professional and the server. The protocol uses only hashing and
XOR operations, its goal is to provide mutual authentication and session key establishment
between the server and the sensor node while preserving forward secrecy. A single long-
term sever key kser is used for communications with all sensor nodes. Therefore, if kser is
compromised, the whole network is compromised, and no procedure is given to renew
kser. A later work by Park et al. [24] found the protocol vulnerable to node capture attacks
where an intruder may capture a sensor node and read plain text values stored in it. The
proposed solution is to encrypt values stored in sensors using keys derived from a user’s
ID and password. However, sensor nodes are not usually equipped with user interfaces for
login purposes, and a remote login requires the design of yet another protocol. Moreover,
the proposed protocol fails to achieve forward secrecy. This is because it computes session
keys Ks as a hash value, and all inputs to the hash function can be easily computed if the
server key kser is known.

Shin and Kwon [25] developed an authentication protocol that is executed between
user U, a gateway G and a sensor node SN. A gateway is actually a “server-class” device,
and sensors are grouped into clusters, where a cluster may be the WBAN of a patient. The
protocol uses only hashing and XOR operations, and three-factor authentication of users.
Zhu et al. [26] analyzed the protocol and discovered that it fails to provide forward secrecy
and may also be vulnerable to offline password-guessing and desynchronization attacks.
Desynchronization occurs when a shared variable, between two or more parties, has a
different value at each party. This may be due to incomplete sessions, which we discuss in
Section 2.2.5. Zhu et al. also proposed a modified version of the protocol, which we discuss
in Sections 2.2.1, 2.2.2 and 2.2.5.

A lightweight mutual authentication and key agreement protocol is presented by
Soni and Singh [27]. It is executed between patients and servers in medical centers, so
that a patient’s data can be securely stored on a server. The protocol uses hashing and
XOR. It is, however, vulnerable to offline password-guessing attacks and does not mention
authentication of doctors to servers or how to implement access control policies.

The work by Shreya et al. [28] presents a mutual authentication and key agreement
protocol between a user (doctor), medical cloud server, and IoT gateway. The gateway
collects data from medical sensors to be read by medical staff. The protocol uses symmetric

Symmetry 2022, 14, 1483 5 of 21

encryption/decryption, hashing, and XOR operations. However, it is vulnerable to offline
password guessing. Furthermore, if a single secret session key is known by the intruder, he
will be able to obtain all previous and future session keys, as we report in Section 2.2.2.

2.2. Discovered Weaknesses

In the following, we present weaknesses discovered in the surveyed protocols, and
we group these weaknesses according to their root cause. We use h(·), ⊕, and ‖, to
denote cryptographic hash functions, the XOR operation, and the concatenation operation,
respectively. Furthermore, discovered attacks on surveyed protocols which are presented
in the current section, in addition to the analysis presented in Section 2.1 are summarized
in Table 1.

Table 1. Summary of the analysis of surveyed authentication protocols.

Protocol Comments

Yeh [17] ⇒ If an intruder knew the value of one session nonce, he will be able to compute
values of nonces in other sessions.

Gope and Hwang [20]

⇒ Communication with a single sensor per session (no support for data
aggregation).
⇒ Attack: value of previous session’s key can be known.
⇒ Off-line password attack is possible.
⇒ Desynchronization is possible.

Li et al. [21]

⇒ Single key shared with all users.
⇒ No differentiation between users leads to infeasibility of access control.
⇒ Doctors have to register themselves with each patient.
⇒ Off-line password attack is possible.

Sharma and Kalra [22]
⇒ Sensor’s anonymity is not achieved.
⇒ No differentiation between users leads to infeasibility of access control.
⇒ Single key shared with all users.

Xu et al. [23]

⇒ Communication with a single sensor per session (no support for data
aggregation).
⇒ Single key shared with all users.
⇒ If an intruder knew the value of one session nonce, he will be able to compute
values of nonces in other sessions.

Park et al. [24]
⇒ Sensor nodes are required to provide a local login interface to users, which
is impractical.
⇒ Protocol fails to achieve forward secrecy.

Shin and Kwon [25]
⇒ Protocol fails to provide forward secrecy.
⇒ Protocol is vulnerable to desynchronization attacks.

Soni and Singh [27] ⇒ Offline password-guessing attack is possible.
⇒ No mention of authentication for doctors.

Zhu et al. [26]

⇒ Attack against anonymity is possible.
⇒ Denial of service attack against sensors is possible.
⇒ Off-line password attack is possible.
⇒ Desynchronization is possible.

Shreya et al. [28]
⇒ Offline password-guessing attack is possible.
⇒ If a secret session key is known, all previous and future session keys can
be known.

2.2.1. The Use of XOR for Secrecy

In various reviewed protocols, when a secret value x needs to be sent, it is XORed with
a key K or a hash value h(m), i.e., it is sent as x⊕ K or x⊕ h(m). This is secure as long as
multiple secret values x1, x2, . . . xi, . . . are XORed with a random or pseudo-random stream
of keys such as in the Vernam or RC4 ciphers [18]. If, on the other hand, multiple values
are XORed with the same key (or hash value), then secrecy is compromised. Consider,
for instance, the case where we need to send two secret values x1 and x2, and they are

Symmetry 2022, 14, 1483 6 of 21

sent as c1 = x1 ⊕ K and c2 = x2 ⊕ K, respectively. Now an intruder sees c1 and c2 and
performs the operation c1 ⊕ c2 = x1 ⊕ x2. If the intruder knows x1, he can easily compute
x2, and vice versa, without having to know the key. In fact, in the case of more than two
plain text messages, if the intruder knows only one of them, he can easily compute all
the other ones. A protocol with this weakness is the one by Yeh [17], where the message
M1 = h(Ki ‖ bsi)⊕ Ni is sent in each session by sensor i. The value Ni, which is a nonce
freshly generated each session, is secret. It is, therefore, XORed with the hash value, which
is constant an all sessions. Therefore, if the intruder is able to know the value of one nonce,
he will be able to compute the values of all other nonces. Another example is the protocol
by Xu et al. [23]. At the start of the authentication session between a sensor node and the
server, a secret nonce r is sent encrypted by the server key Kser. All nonces from all sensors
in all sessions are sent encrypted by the same key Kser. Therefore, if the intruder was able
to know the value of a single nonce, she can easily compute all other values.

We discovered that the improper use of XOR for encryption leads to an attack against
anonymity in the work of Zhu et al. [26]. The protocol attempts to hide the identity of
users using pseudonyms. During a session, the pseudonym is sent in clear text inside
messages and is used to identify the user in the current session. At the end of each session,
user Ui is assigned a new pseudonym PID1

i to be used in the next session. Therefore, an
intruder reading two messages sent in different sessions will not be able to decide if these
messages have the same sender or not, since the pseudonym is changed in each session.
For this scheme to work, PID1

i should be sent secretly. Otherwise, the intruder will be able
to relate the current pseudonym with the next one, and having a dynamic pseudonym will
be useless. In fact, PID1

i is sent secretly by XORing it with a secret value privately known
by the user. In the following, we demonstrate a multi-session attack, which enables an
attacker to relate a value of the pseudonym to the next one. We use subscript i for user
Ui and superscripts 1 and 2 to denote two consecutive sessions, e.g., PID1

i and PID2
i are

the pseudonyms secretly sent to user Ui in some session and the next one, respectively.
Values that do not change from one session to another are written without superscripts.
We focus on the last message to be received by Ui in a session. This message contains
two fields: p1

i and T1, where T1 is a timestamp that is sent in clear text. Knowing that
p1

i = h(TIDi ‖ HIDi) ⊕ PID1
i ⊕ HIDi ⊕ T1, the intruder can execute the computation:

p1
i ⊕ T1 = h(TIDi ‖ HIDi)⊕ PID1

i ⊕ HIDi. Then, after the next session, the intruder can
compute (p1

i ⊕ T1)⊕ (p2
i ⊕ T2) = PID1

i ⊕ PID2
i . Therefore, knowing PID1

i , the intruder
will know PID2

i . In fact, PID1
i is sent in clear text during the next session and this way the

intruder will be able to know that the sequence of pseudonyms PID1
i , PID2

i , . . . belongs to
the same user. This attack is possible even though the intruder does not know the value of
HIDi which is secretly assigned to the user during registration to the system.

2.2.2. Missing Secrecy of some Messages

In some protocols, values that should be secret are sent as clear text. For instance, in the
protocol by Gope and Hwang [20], a user U is assigned a sequence number TSUG which is
updated at the end of the authentication session by a new value TSnew

UG . Therefore, at the end
of session i, U receives TSnew

UG inside the message TS = h(KUG ‖ IDU ‖NU)⊕ TSnew
UG , where

KUG is a secret key shared between U and G, IDU is the user’s hidden identity and NU is a
secret nonce. This way TSnew

UG is kept secret from intruders. Furthermore, G generates a
session key SK and sends it to U secured inside the message SK′′ = h(KUG ‖ IDU ‖ NU)⊕
SK. If an intruder knew TSnew

UG , he can easily compute TS⊕ TSnew
UG = h(KUG ‖ IDU ‖ NU)

now the intruder can compute the session key SK = SK′′ ⊕ h(KUG ‖ IDU ‖ NU). In fact,
this attack will take place since at the start of session i + 1, U will send TSUG in clear text
to G (TSnew

UG of session i is TSUG of session i + 1). This way at the start of session i + 1 the
intruder will able to know the session key of the previous session i.

Furthermore, in the protocol by Zhu et al. [26], a gateway G sends requests to some
sensor Sj. In the request, a value NGj is sent in clear text to the sensor, and if the value
is above some threshold, the sensor will not respond to the request. The idea is to save

Symmetry 2022, 14, 1483 7 of 21

the sensor’s resources according to some protocol logic. The problem is that NGj is not
encrypted nor protected against modification. Hence, an intruder can easily read and
modify (e.g., increment) its value without being detected, thereby executing a successful
denial of service attack.

In the work by Shreya et al. [28], the session key is computed as SK = h(RN1) ⊕
h(RN2)⊕ h(CID)⊕ h(SKEN). The first three hash values can be known by the intruder
using publicly sent messages. In Step 7 of the protocol’s description, the message Mg10 =
CID ‖Mg3 is sent in clear text over the channel from gateway node to user node, where
Mg3 = h(CID) ‖ h(RN1) ‖ h(RN2). Obviously, this enables the intruder to know the current
values of h(CID), h(RN1), and h(RN2). The value SKEN = IDN ‖ Sk does not change from
one session to another. Therefore, if the intruder was able to know the value of a single
session key SK, he will be able to compute h(SKEN) = SK⊕ h(RN1)⊕ h(RN2)⊕ h(CID).
The intruder will therefore be able to compute all previous and future session keys provided
that he knows the message Mg10 of these sessions.

2.2.3. Ambiguous Definition of Anonymity

Anonymity is defined as the inability of an observer to link an action to the identity
of an agent (a communicating party) [29]. An action in our setting is mostly the sending
or receiving of a message and the observer is either an honest communicating party or
the intruder. Therefore, for instance, sender anonymity is an inability to link the sent
message to the identity of an agent. Here, the observer may be the intruder but it may
also be the agent receiving the message. Another example is relationship anonymity [30]
which involves both the sending and receiving of a message. Therefore, we may know
which agent sent a message and which one received it but we are unable to know who is
communicating with who. Various published authentication protocols claim to provide
anonymity [22], yet they fail to clarify what type of anonymity they mean and with respect
to which observer.

2.2.4. Smart Cards Vulnerable to Offline Password Guessing

Humans are authenticated based on what they know (e.g., a password), what they
have (e.g., a smart card), or what they are (e.g., a biometric) [18]. We can combine two
or three of the aforementioned authentication factors to have two-factor or three-factor
authentication, respectively. The purpose is to avoid known weaknesses when relying on
passwords only, especially given that humans tend to choose passwords that they can easily
remember, which are generally low-entropy and vulnerable to dictionary attacks. Some
of the protocols we have reviewed use smart cards for authenticating users to servers in a
way that is vulnerable to offline password-guessing attacks. In these attacks, the intruder
guesses a password and is able to verify the correctness of their guess offline, i.e., without
communicating with the server. They are thus more serious attacks than online password
guessing in which the server is alerted with each unsuccessful login attempt and may
disable the user account after a predetermined number of failed logins. In the following
discussion, we assume that the intruder has access to the user’s smart card and biometric
information (if used by the protocol) and is trying to guess the user’s passwords.

In the protocol by Gope and Hwang [20], the user inputs an ID and password to the
smart card which verifies the password and sends a login request to the server only when
the password is correct. Hence, an intruder can execute multiple offline password-guessing
attempts and immediately know if the guess is correct or not by monitoring whether the
smart card sends a message or not. The same argument applies to both the protocol by Zhu
et al. [26] and the one by Li et al. [21], where the smart card does not communicate with the
server unless the login attempt is a valid one. The main cause in all the previous cases is
that the verification of the user’s identity is made by the smart card without communicating
with the server. An intruder in possession of the smart card is able to access its storage in
order to read values, execute code, and read the code’s output even under the assumption

Symmetry 2022, 14, 1483 8 of 21

of tamper-resistant cards [31]. It is therefore necessary not to store clear-text data or code on
the smart card that will enable the intruder to decide the correctness of a guessed password.

2.2.5. Renewal of Some Values Each Session

Some cryptographic keys are long-term, i.e., they are used for a period of time that
spans multiple sessions, others are ephemeral, i.e., they are established in a session to be
used in this session only. Prior to running any authentication sessions, long-term keys need
to be preloaded into communicating devices using a secure channel. Thereafter, these keys
are used in cryptographic operations to securely establish session keys. Long-term keys are
not renewed at each session but every n sessions. Usually, they also need to be renewed
using special communication steps. This is particularly important in unreliable networks
where message loss may occur. Assume we need to renew a long-term key KAB between
nodes A and B and the new key is K′AB. One of the nodes, say A, updates KAB and sends a
message m to B, which should update KAB upon receiving m. If m is lost, A and B will be
desynchronized since A will store K′AB, while B will still have KAB. Therefore, the renewal
process must ensure that, by its end, both agents will agree on the value of the key, either
new or old. In the case of session keys, this problem is not a major issue because when the
session key could not be established for any reason, A and B can just start a new session as
long as they agree on the values of long-term keys.

The protocol by Gope and Hwang [20] renews long-term keys in the communication
steps of each session. An example is the key Kgs shared between the network’s gateway G
and a sensor S. This key is used to encrypt the session key SK when it is sent from G to S.
The sensor S renews Kgs, then sends its last message ml in the current session to G. After
receiving this message, G renews the value of Kgs and now the new value will be used in
the next session. Therefore, if ml is lost or blocked by the intruder, G and S will end up
having different values of Kgs. This situation will make future sessions impossible.

Moreover, Zhu et al. [26] propose a protocol that avoids desynchronization of the
values of a variable PID shared between a user U and a gateway G. Their solution to
the desynchronization problem is to save a copy of the old value of PID at the gateway.
This way, at the next session, if U uses the old value, G will still be able to recognize it.
However, in their protocol, the communication between G and a sensor node S is not
protected against desynchronization. The value of a secret Xsj shared between G and S is
updated at G overriding the old value, then G sends a message m′ to S. Upon receiving
m′, S updates its own copy of Xjs. The message m′ contains the value of a counter NGj
that is stored at G and incremented by an amount (value nj) each time G sends message m′.
Another counter Nj is kept at the sensor S, and, upon receiving NGj, S computes the value
N = (NGj − Nj)/nj. Then, S updates Xjs N times and sets Nj = NGj. This way, even if
the intruder blocked m′ multiple times, S will be able to re-synchronize its values with G.
As we mentioned in Section 2.2.2, the problem is that NGj is not encrypted nor protected
against modification. Therefore, an intruder can easily change its value and desynchronize
G and S.

3. Our Protocol Design

In this section, we present our protocol for mutual authentication between a doctor
(or healthcare professional) and the IoT gateway that relays a patient’s data to the cloud.
Therefore, we focus on beyond-BAN communications. Besides authentication, We aim to
achieve the following objectives:

1. Fresh session key establishment.
2. Perfect forward secrecy.
3. Relationship anonymity [30] with respect to the intruder.

We assume the presence of an active intruder I able to perform the following actions [18]:

• Eavesdrop on, and store, all messages communicated over publicly accessible channels.
• Perform computations on messages.
• Register with the network as a legitimate user.

Symmetry 2022, 14, 1483 9 of 21

• Block any message from reaching its intended destination.
• Exchange messages with any other node on the network.
• Impersonate other users.

Such an intruder is capable of executing many types of attacks [10], such as reflection
attacks, replay attacks, etc. This is a common model where it is assumed that the intruder
has total control over the network.

3.1. Network Architecture

The network environment where the protocol runs is depicted in Figure 1. This setting
is used, for instance, in applications where doctors need real-time access to data collected
from patients. Data are examined by doctors for purposes of diagnosis or follow-ups. We
identify the following principals that take part in protocol execution:

• The doctor (or healthcare professional) identified by U, for user.
• The doctor’s smart card device, given identification D.
• The server identified by S.
• The IoT gateway (identity G). It relays data between server S and the sensors of the

patient’s WBAN.
• The patient, identified by A.

Doctor

Patient

Cloud

Server

IoT
Gateway

WBAN

Sensors

Computer with
smart card reader

Figure 1. A network topology for remote health monitoring.

A smart card device (identified by D) is used at the doctor’s side to enable doctors to
log in from any machine as long as it is equipped with a smart card reader. Furthermore,
using a smart card, we are able to implement three-factor authentication: possession of
the smart card, biometric recognition, and knowledge of a secret password. Moreover, by
executing the protocol with the WBAN’s gateway, instead of a single sensor, we enable the
monitoring of several sensors in a single session since the gateway may aggregate traffic
from multiple sensors. This is beneficial in medical settings where a doctor needs to check
values of multiple physiological parameters. In addition to the previous advantages, our
protocol gives the server S the ability to dynamically assign patients to doctors. Therefore,
S may grant a doctor the right to read a patient’s data collected by the gateway from sensor
nodes, or it may revoke this right, as will be explained in Sections 3.2 and 3.3. Finally,
the protocol uses symmetric cryptographic algorithms [18] as they are more efficient than
asymmetric ones in terms of computational cost, storage, and energy [19]. Algorithms with
a small footprint are preferable in our situation since gateways and smart card devices
are usually resource-limited devices. The use of symmetric cryptography implies that,
initially, values of secret keys need to be shared offline or via a secure channel. In the
following sections, we present the initialization process, followed by the description of
the authentication steps. Then, we demonstrate how to renew long-term secret keys and
passwords. We will make use of the symbols listed in Table 2.

Symmetry 2022, 14, 1483 10 of 21

Table 2. Table of used symbols.

Symbol Meaning

U User (doctor)

D Identity of U’s smart card device

G IoT gateway

S Server’s identity

A Patient’s identity

IU ID of user U

PU Password of user U

NS, ND, NG Nonces generated by S, D, and G, respectively.

h(·) Hash function

H(·) Bio-hash function

e(·, ·), d(·, ·) Encryption and decryption algorithms using key and message.

eK(·), dK(·)
Encryption and decryption functions using key K implemented as e(K, ·)
and d(K, ·), respectively.

{m}K Sometimes this notation is used for e(K, m)

m1 ‖m2 Concatenation of messages m1 and m2

‖L
i=1mi Shorthand for m1 ‖m2 ‖ . . . ‖mL

〈m1, m2, . . . , mL〉 Tuple of messages, i.e., (m1 ‖ . . . ‖mL)

‖L
i=1〈mi, ni〉 Shorthand for 〈m1, n1〉 ‖ . . . ‖ 〈mL, nL〉

3.2. Initialization and Registration

During initialization, both the doctor and the patient are required to register with the
server S. To initialize a doctor’s smart card device D, the doctor registers at the server S as
user U by choosing an identification IU , and a secret password PU . At the same time, the
doctor’s biometric template data BU , such as a fingerprint or facial image, is captured. The
server now computes the value of a key KU = h(IU ‖ h(PU ‖ H(BU))). In this computation,
h(·) is a cryptographic hash function, e.g., MD5, and H(·) is a biohash function [32,33].
A biohash is a one-way function used for Biometric Template Protection (BTP) [34], i.e.,
given the function’s output H(BU), it is unfeasible to obtain the biometric template BU .
Moreover, the biohash function has two properties that make its use advantageous. First,
it uses a random value as a parameter. The advantage is that if the intruder knew the
value H(BU), another function H′(·) could be constructed with a different value of the
random parameter, and we will obtain a different output for the same biometric template,
i.e., H(BU) 6= H′(BU). Second, the output H(BU) is invariant with respect to rotation,
translation or scaling of the captured biometric image [33].

The server, then, generates a secret key KDS and the following code and data are
loaded on D:

• Code: A cryptographic hash algorithm h(·), a bio-hash algorithm H(·), an encryption
algorithm e(·, ·), and a decryption algorithm d(·, ·).

• Data: A device identifier D, and the encrypted value {KDS}KU .

As a user record, server securely stores 〈D, IU , KDS〉. At the patient’s side, patient A
registers at the server S, when being provided with the necessary sensors needed for
remote monitoring. Sensors are attached to A’s body, and they form a WBAN where one
sensor node will act as IoT gateway. The gateway is loaded with an identity G and a secret
key KGS that is shared with S. The patient’s record at the server securely stores the tuple
〈G, IA, KGS〉, thereby associating the identity G of the gateway to that of the patient (IA).

Symmetry 2022, 14, 1483 11 of 21

The initialization phase is finalized by the server S assigning patients to doctors. When
a doctor U finishes registration, S loads the value

{
‖L

i=1 〈Gi, NSi〉
}

KDS
into the doctor’s

smart card D. Each tuple 〈Gi, NSi〉 represents an assignment to a patient (gateway Gi), so
that the doctor is now authorized to monitor the patient’s data. Each nonce NSi, generated
by S, is a unique identifier for this assignment. It also serves as indicator that the assignment
is still current, and as defense against replay attacks, as will be shown in the description of
authentication steps. All tuples are also saved in the doctor’s record on the server S, so that
the server keeps record of which patient is assigned to which doctor. We note that all data
exchanged during registration with the server are assumed to be communicated via secure
channels. By the end of the registration phase, we have the following configuration:

• The server’s user record stores
〈

D, IU , KDS ‖L
i=1 〈Gi, NSi〉

〉
• The server’s patient record stores 〈G, IA, KGS〉
• The doctor’s smart card device D stores

〈h(·), H(·), e(·, ·), d(·, ·), D, {KDS}KU ,
{
‖L

i=1 〈Gi, NSi〉
}

KDS
〉

• The patient’s IoT gateway G stores 〈G, KGS〉

3.3. Authentication Steps

When the initialization phase has been completed, authentication can be executed.
This starts with a doctor U inserting their smart card device D in a reader and entering
their ID I′U and password P′U . Furthermore, their biometric B′U is captured. The smart card
computes the value of the key K′U = h(I′U ‖ h(P′U ‖ H(B′U))) and is able to obtain the value
of KDS if K′U = KU . Consequently, the list of gateway ID’s ‖L

i=1〈Gi, NSi〉 is obtained by
decrypting the corresponding cipher text, and the doctor is prompted to choose one of their
patients to monitor. Then, a sequence of communication steps is executed between the
smart card device D, the server S and the IoT gateway G on the patient’s body. These steps
are shown in Figure 2. Interaction between protocol parties is also illustrated in Figure 3.

In step 1, the message m1 = D ‖
{

D ‖ G ‖ ND ‖ NS

}
KDS

is sent from D to S. When

the doctor chooses to monitor G, the value NS is read from the smart card and sent in m1.
Furthermore, D generates a fresh nonce ND. Encryption by KDS ensures secrecy and the
inclusion of NS ensures freshness to S. When S receives m1, it reads the first field (D) to
know the message’s origin. Now the server retrieves the data stored for D, which includes

IU and KDS. The server uses KDS to decrypt
{

D ‖ G ‖ ND ‖ NS

}
KDS

and verifies that the

first field in the decrypted message is D. Now the server checks the set of stored values
‖L

i=1〈Gi, NSi〉 to verify that the doctor is authorized to monitor the gateway G and also to
check NS for freshness. If all checks are successful, S executes step 2.

In step 2, S sends the message m2 = {G ‖ D ‖ ND}KGS to G, where the values G, D,
and ND are those previously received in m1. When G receives m2, it decrypts it, and verifies
that the first field is its own identity. Then it proceeds to step 3 where it generates a fresh
nonce NG and sends the message m3 = G ‖ {G ‖ D ‖ NG ‖ ND}KGS to S. When S receives
message m3, it reads the first field of the message (G) to choose the right key KGS. Then, it
uses KGS to decrypt {G ‖ D ‖ NG ‖ ND}KGS and verifies that the first field in the decrypted
message is G and that ND is the one previously sent in m2. It then proceeds to step 4.

step 1. D → S : m1 = D ‖
{

D ‖ G ‖ ND ‖ NS

}
KDS

step 2. S→ G : m2 =
{

G ‖ D ‖ ND

}
KGS

step 3. G → S : m3 = G ‖
{

G ‖ D ‖ NG ‖ ND

}
KGS

step 4. S→ D : m4 =
{

D ‖ G ‖ ND ‖ NG ‖ KDG ‖L
i=1 〈Gi, NSi〉

}
KDS

step 5. S→ G : m5 =
{

G ‖ D ‖ NG ‖ ND ‖ KDG

}
KGS

Figure 2. Authentication protocol.

Symmetry 2022, 14, 1483 12 of 21

A G S D U

After patient’s registration, the patient’s
ID is linked to gateway G at server.

U inserts smart card into reader
Provides ID (IU), password (PU) and
biometric (BU)
Chooses G when prompted

D performs the following:
KU = h(IU ‖ h(PU ‖ H(BU)))
Get KDS
Get ‖L

i=1〈Gi, NSi〉
U chooses some G

m1 = D ‖ {D ‖ G ‖ ND ‖ NS}KDS

Decrypt
{

D ‖ G ‖ ND ‖ NS

}
KDS

First field of decrypted message = D?
G and NS valid?

m2 = {G ‖ D ‖ ND}KGS

Decrypt m2
First field of decrypted message = G?

m3 = G ‖ {G ‖ D ‖ NG ‖ ND}KGS

Decrypt {G ‖ D ‖ NG ‖ ND}KGS

First field of decrypted message = G?
ND valid?

m4 = {D ‖ G ‖ ND ‖ NG ‖ KDG ‖L
i=1 〈Gi, NSi〉}KDS

Decrypt m4
First and second fields = D, G?
ND valid?
Update ‖L

i=1〈Gi, NSi〉
m5 = {G ‖ D ‖ NG ‖ ND ‖ KDG}KGS

Decrypt m5
First and second fields = G, D?
NG valid?

Figure 3. Steps of authentication protocol.

In step 4, S generates a session key KDG and sends the message m4 = {D ‖ G ‖ ND ‖
NG ‖KDG ‖L

i=1 〈Gi, NSi〉}KDS to D. The message is decrypted by D, and the values D, G, and
ND are compared with the corresponding ones sent in m1. The nonce ND ensures freshness
to D. If the values are equal, KDG is accepted as a fresh session key and the values in the
tuples 〈Gi, NSi〉 are encrypted by KDS so that the cipher text

{
‖L

i=1 〈Gi, NSi〉
}

KDS
overwrites

the stored one. This way the server renews all the doctor’s assignments to patients.
In step 5, S sends the message m5 = {G ‖ D ‖ NG ‖ ND ‖ KDG}KGS . The message is

decrypted by G, and the values G, D, NG, and ND are compared with the corresponding
ones in messages m2 and m3. If the values are equal, KDG is accepted as a fresh session key.
By the end of this step, KDG is established as a secret session key shared between D and G
and session communication can proceed.

Symmetry 2022, 14, 1483 13 of 21

It is worth noting that if the data requested by the doctor is already stored at the server,
then only steps 1 and 4 are executed to achieve mutual authentication between doctor
and server. This case is beneficial when a doctor needs to review a patient’s historical
data that have been previously collected in past sessions. The differentiation between a
request for current real-time data and a request for historical data is left as an application
implementation issue since it will not affect the abstract data structure of messages.

3.4. Renewal of Passwords and Keys

A doctor U may wish to change their password PU . In this case, U inserts the smart
card device D into a reader and supplies the old values of the ID, password and bio-
metric: IU , PU , and BU , respectively. The smart card computes the value of the key
KU = h(IU ‖ h(PU ‖ H(BU))) and decrypts {KDS}KU to obtain KDS. Now the user is
prompted to enter the new password P′U and the smart card computes the value of a
new key K′U = h(IU ‖ h(P′U ‖ H(BU))), which is used to encrypt KDS. The encrypted value
{KDS}K′U

is stored on the smart card instead of the old one.
Furthermore, the long-term keys KDS and KGS are used during some time period: an

epoch. At the end of an epoch, these two keys are renewed by the server. The new ones
(K′DS and K′GS), which are generated by the server, will be used in the newly starting epoch.
At the doctor’s side (smart card device D), m4, sent from S to D is modified to include K′DS:

m′4 =
{

D ‖ G ‖ ND ‖ NG ‖ KDG ‖ K′DS ‖L
i=1 〈Gi, NSi〉

}
KDS

Upon receiving m′4, D updates its storage to replace KDS by K′DS. Furthermore, to
confirm receiving the new key, D replies with another message:

m6 =
{

D ‖ ND
}

K′DS

When S receives m6, it decrypts it using K′DS and checks the value of the nonce ND for
equality with the one received in message m1. If the two values are equal, S replaces the
stored value KDS with K′DS. At the patient’s side, m5, sent from S to the IoT gateway G, is

modified to include K′GS: m′5 =
{

G ‖ D ‖ NG ‖ ND ‖ KDG ‖ K′GS

}
KGS

. Upon receiving m′5, G

updates its storage to replace KGS by K′GS. Furthermore, to confirm receiving the new key,
G replies with another message:

m7 =
{

G ‖ NG
}

K′GS

When S receives m7, it decrypts it using K′GS and checks the value of the nonce NG for
equality with the one received in message m3. If the two values are equal, S replaces the
stored value KGS with K′GS.

3.5. Revocation of Smart Card Device

Sometimes, there is a need to revoke the rights of a smart card device D. For instance,
this may be the case if a doctor lost the smart card or if the card was stolen. In this case,
at the request of the doctor, a new smart card device D′ is issued according to the steps
detailed in Section 3.2. The new card D′ will be loaded with a new key K′DS, and the old
card’s identity D and key KDS will be added to a revocation list on the server to indicate
their invalidity.

4. Analysis of Protocol

In this section, we analyze the performance of our proposed authentication protocol.
We start by enumerating its features in comparison to the surveyed protocols, then we
compare its computational cost to other protocols of similar objectives. We also demonstrate
its suitability for smart card devices, with respect to storage requirements. Then, we provide

Symmetry 2022, 14, 1483 14 of 21

an informal argument about its security, followed by a demonstration of the attacks it
resists. Finally, we present a formal security analysis using the protocol verification tool
ProVerif [35].

4.1. Features and Comparison with Previous Works

Our protocol has the following functional features:

F1: Mutual authentication between patient’s IoT gateway and server.
F2: Mutual authentication between doctor and server.
F3: Support for both real-time monitoring of patient’s data and offline reading of data

from server.
F4: Ability to monitor multiple sensors in a single session.
F5: Support for dynamic assignment of patient’s to doctors.
F6: Support for the implementation of an access control policy at the server.

Table 3 compares the surveyed protocols with respect to each one of these features.
The symbol ‘_’ in a table cell means that the feature (table column) is not applicable for
the protocol (table row). Table 3 deals with functional features only, security features are
summarized in Table 1.

Table 3. Protocols and features.

Protocol F1 F2 F3 F4 F5 F6

Yeh [17] yes no no no _ _

Gope and Hwang [20] yes yes no no _ _

Li et al. [21] yes yes no no no no

Sharma and Kalra [22] yes yes no no no no

Xu et al. [23] yes no no no _ _

Park et al. [24] yes no no no _ _

Shin and Kwon [25] yes yes no no _ _

Soni and Singh [27] yes no no yes _ _

Zhu et al. [26] yes yes no no _ _

Shreya et al. [28] yes yes yes yes possible possible

Our protocol yes yes yes yes yes yes

4.2. Performance Analysis

The computational cost of a security protocol is estimated as the time it takes to execute
the mathematical operations of a single protocol run [36]. Since we focus on protocols
using symmetric cryptography, these operations are symmetric encryption/decryption and
secure hashing. The execution time of a hash function is almost equal to that of symmetric
encryption or decryption [19], we denote this time by Tf . In Table 4, we compare the
computational cost of our protocol with other ones, all during authentication steps. For
each protocol, we count the number of operations performed by the protocol’s entities
(user, server, etc.) and multiply this number by Tf .

In Table 4, the symbol ‘_’ in a cell means that this particular protocol does not have
the entity indicated by the column. For instance, the protocol by Xu et al. does not have
a user role. We also note that we use our notation to describe various protocol roles. For
instance, in the protocol by Gope and Hwang, a gateway in their notation is equivalent to
our server role.

Symmetry 2022, 14, 1483 15 of 21

Table 4. The computational cost of our protocol compared to surveyed protocols.

Scheme User Server GW Sensor

Xu et al. [23] _ 7 Tf 0 5 Tf

Gope & Hwang [20] 7 Tf 9 Tf _ 3 Tf

Li et al. [21] 8 Tf 13 Tf _ 7 Tf

Shin and Kwon. [25] 13 Tf 15 Tf _ 6 Tf

Park et al. [24] _ 9 Tf 0 11 Tf

Zhu et al. [26] 11 Tf 10 Tf _ 6 Tf

Our protocol 6 Tf 5 Tf 3 Tf _

In terms of storage requirements, we focus on the resource-constrained devices in-
volved in the protocol. Namely, these are the IoT gateway G and the smart card device D.
We assume the size of a single data block (key, cipher text, nonce, . . .) to be 256 bits (32 bytes).
This estimate is based on sizes of data blocks in well-known algorithms. For instance, the
Advanced Encryption Standard (AES) has a maximum key length of 256 bits and a cipher
block size of 128 bits. The patient’s IoT gateway G stores the pair 〈G, KGS〉, whose size is 64
bytes, which can be easily accommodated in a device of this class. On the other hand, data
stored on the doctor’s smart card device are: 〈D, {KDS}KU ,

{
‖L

i=1 〈Gi, NSi〉
}

KDS
〉. Their

estimated total size is 64 + 64× L bytes. Smart card devices are equipped with EEPROM
storage whose size typically fall in the range between 8 KBytes and 64 Kbytes [37,38]. Thus,
the space is enough to accommodate values of L (number of patients assigned to doctor) in
the three digit range. Of course, this is more than needed for all practical purposes.

4.3. Informal Security Analysis

In this section, we argue that our protocol achieves its desired security objectives,
where each objective is discussed in a separate section.

4.3.1. Authentication

Message m1 can be constructed only by an agent that knows KDS. To obtain KDS, the
agent must possess the smart card and must know KU . The key KU is not stored but must
be constructed from the user’s credentials (ID, password, and biometric). Therefore, m1 can
only be sent after achieving three-factor authentication. Even if an intruder has possession
of the smart card and the user’s biometric, he will have to guess the password in order to
construct KU and hence obtain KDS. To test their guess, the intruder needs to communicate
with the server since there is no way of knowing the correctness of their guess offline. By
limiting the number of failed logins, we can greatly reduce the intruder’s probability of
guessing the correct password.

Replay attacks are prevented using nonces. For instance, the server S knows that
message m1 is current from the nonce NS. Furthermore, mutual authentication is achieved
by the use of nonces as challenges. Therefore, by message m1, server S is assured of the
identity of D (and consequently U), since only an agent that knows KDS (and consequently
KU) could have sent m1. Similarly, by message m4, D is assured of the identity of S,
since only an agent that knows KDS could have sent m4 containing the same nonce ND
that was sent inside m1 in the current session. A similar argument applies to the mutual
authentication between S and G.

4.3.2. Session Key

The session key KDG is guaranteed to be fresh by the use of the two nonces ND and
NG. It is also secret by its inclusion in encrypted messages. The session key is randomly
generated by the server each session and its secrecy is dependent on the secrecy of the
long-term keys KDS and KGS.

Symmetry 2022, 14, 1483 16 of 21

4.3.3. Forward Secrecy

Assume the long-term keys KDS and KGS were known by the intruder. In this case,
the session keys of the current epoch will be revealed to the intruder. However, in any
previous epochs the session keys will still keep their secrecy.

4.3.4. Relationship Anonymity

The intruder will not be able to know which doctor U is communicating with which
patient A. This is because no direct communication exists between them; each communi-
cates with the server. Furthermore, by monitoring messages only, the intruder is not able
to relate messages to users (doctors) or patients since this information is not sent inside
messages. In fact, the only identities sent are those of the smart card device D and the
gateway G, and it is inside the server that the link is made between D and a doctor’s
identity, and between G and a patient’s identity. However, the intruder may be able to
deduce this link (D to doctor or G to patient), for instance, by surveying a doctor while
using a smart card D and reading messages sent by D. Nonetheless, this does not constitute
a successful attack against relationship anonymity. In particular, no message contains both
D and G in clear text.

4.3.5. Access Control

A doctor is allowed access only to designated patients. When a doctor U asks for
access to patient Ai’s gateway (Gi), the server checks U’s record to verify that U has the
right to monitor Gi. This implies that the doctor has authorization to monitor the data of all
sensors communicating with Gi. If a more detailed approach is preferred, a doctor may be
assigned a role according to specialization. Then, this role determines what data (sensors)
the doctor is authorized to monitor. For instance, a cardiologist may be allowed to monitor
a different set of sensors than an internist. To implement this role-based access control, we
need to modify messages m2 and m3 to replace the identity D with the pair 〈D, R〉, where
R is the doctor’s role. Furthermore, in this case, the gateway G, will need to implement
and access control list specifying which role has authorization to monitor which sensors.

4.4. Resistance to Common Attacks

Our protocol resists impersonation attacks by replaying messages due to the use of
fresh nonces. It also provides protection in case of smart card loss due to the use of three-
factor authentication. Moreover, an intruder cannot mount an offline password-guessing
attacks since all of the doctor’s credentials are checked online by the server.

4.5. Formal Security Analysis

The ProVerif tool [35] was used to verify our protocol and the following security
properties were proved:

• Secrecy of session key KDG.
• Mutual authentication between S and D and between S and G. We use the “injective

agreement” definition of authentication [39]. This definition states that A is authenti-
cated to B, by a certain run of an authentication protocol, if for each run of the protocol
by A (as initiator) there corresponds a unique run of the protocol by B as responder.
Moreover, by the end of these runs, both A and B agree on a set of values. These
values, in our case, are nonces, which guarantees the recentness of protocol runs and
hence prevents replay attacks.
The code for our protocol in ProVerif is shown below:

free c1, c2: channel.

type key.
type nonce.
type host.

Symmetry 2022, 14, 1483 17 of 21

(* Shared key encryption *)

fun encrypt(bitstring,key): bitstring.
reduc forall x: bitstring, k: key; decrypt(encrypt(x,k),k) = x.

free Kdg: key [private].

event DStart(nonce,nonce).
event DEnd(nonce,nonce).
event GStart(nonce,nonce).
event GEnd(nonce).
event SStartD(nonce,nonce).
event SEndD(nonce,nonce).
event SStartG(nonce).
event SEndG(nonce,nonce).

(* Queries *)

query attacker(Kdg).

query x1,x2:nonce; inj-event(SEndD(x1,x2)) ==> inj-event (DStart(x1,x2)).
query x1,x2:nonce; inj-event(DEnd(x1,x2)) ==> inj-event (SStartD(x1,x2)).
query x1,x2:nonce; inj-event(SEndG(x1,x2)) ==> inj-event (GStart(x1,x2)).
query x1:nonce; inj-event(GEnd(x1)) ==> inj-event (SStartG(x1)).

free D, G, S: host.

table keys(host,key).

(* Role of the doctor (D)*)

let processD =
get keys(D, Kds) in
in(c1, (minit: bitstring));
let (=D, Ns_d: nonce) = decrypt(minit, Kds) in

new Nd: nonce;
event DStart(Nd,Ns_d);
out(c1, (D, encrypt((D, G, Nd, Ns_d), Kds)));
in(c1, (m4: bitstring));
let (=D, =G, =Nd, Ng_d: nonce, kdg_d:key) = decrypt(m4, Kds) in
event DEnd(Nd,Ns_d).

(* Role of the gateway *)

let processG =
get keys(G, Kgs) in
in(c2, m2: bitstring);
let (=G, =D, Nd_g: nonce) = decrypt(m2, Kgs) in
new Ng: nonce;
event GStart(Ng,Nd_g);

out(c2, (G,encrypt((G, D, Ng, Nd_g), Kgs)));
in(c2, m5: bitstring);

let (=G, =D, =Ng, =Nd_g, Kdg_g:key) = decrypt(m5, Kgs) in
event GEnd(Nd_g).

(* Server *)

let processS =
new Ns: nonce;

Symmetry 2022, 14, 1483 18 of 21

new kds:key;
insert keys(D, kds);
new Kgs:key;
insert keys(G, Kgs);
out(c1, encrypt((D, Ns), kds));
in(c1, (idd_s: host, m1: bitstring));
get keys(=idd_s, Kds_s) in
let (=idd_s, idg_s: host, Nd_s: nonce, =Ns) = decrypt(m1, Kds_s) in
event SStartD(Nd_s,Ns);
get keys(=idg_s, Kgs_s) in
event SStartG(Nd_s);

out(c2, encrypt((idg_s, idd_s, Nd_s), Kgs_s));
in(c2, (idg_s: host, m3: bitstring));
get keys(=idg_s, Kgs_s) in
let (=idg_s, =idd_s, Ng_s: nonce, =Nd_s) = decrypt(m3, Kgs_s) in
out(c1, encrypt((idd_s, idg_s, Nd_s, Ng_s, Kdg), Kds_s));
event SEndG(Ng_s,Nd_s);
out(c2, encrypt((idg_s, idd_s, Ng_s, Nd_s, Kdg), Kgs_s));
event SEndD(Nd_s,Ns).

(* Start process *)

process
((!processD) | (!processG) |(!processS))

=============== Verification Result ======================
Verification summary:

(* Secrecy of session key *)
Query not attacker(Kdg[]) is true.

(* Mutual authentication as injective agreeement *)
Query inj-event(SEndD(x1,x2)) ==> inj-event(DStart(x1,x2)) is true.

Query inj-event(DEnd(x1,x2)) ==> inj-event(SStartD(x1,x2)) is true.

Query inj-event(SEndG(x1,x2)) ==> inj-event(GStart(x1,x2)) is true.

Query inj-event(GEnd(x1)) ==> inj-event(SStartG(x1)) is true.

Verification results demonstrate that our protocol satisfies its security objectives.

4.6. Implementation Issues and Limitations

The first step toward the implementation of our protocol is the investigation of its
integration with current implementations of eHealth systems. To facilitate this integration,
it is beneficial to adopt an Authentication as a Service (AaaS) framework [40]. Then, we
need to investigate the storage requirements in terms of code and data for all protocol
entities. This represents no problem at the server where there is no lack of resources.
However, the gateway and smart card device are usually resource-limited devices and
storage requirements need to be carefully computed. This was performed in Section 4.2,
where we analyzed the protocol’s performance. Finally, our protocol uses lightweight
symmetric cryptography that is easily implemented on resource-limited devices since it
does not have extensive computational requirements and thus save energy and resources.

With respect to limitations, our protocol uses a single server which may constitute a
bottleneck in communication affecting the system’s scalability. It also constitutes a single
point of failure. Therefore, as a future research direction, the possibility of having multiple
servers should be investigated. Of course, this necessitates synchronizing data between
servers, with all the details involved in such a process. Moreover, currently, the patient’s

Symmetry 2022, 14, 1483 19 of 21

IoT gateway is not selective in sending sensors’ data to the server. As future work, the
gateway should be able to send data only from a subset of sensors in the WBAN. This
subset may be determined, for instance, by the specialty of the doctor currently reading the
data. This issue falls within the design of an access control policy for doctors.

5. Conclusions and Future Work

We presented an authentication protocol for remote health monitoring within the
MIoT. The protocol is lightweight, secure, and avoids the security weaknesses found in
similar previously published protocols. It provides a method to grant authorizations to
doctors to monitor specific patients. The communication with the sensors at the patient’s
side is performed through the IoT gateway which enables the doctor to monitor multiple
sensors with a single connection. This is possible because the gateway acts as a sink in
the WBAN and is able to aggregate traffic from groups of sensors. Both the security and
performance analyses confirm the suitability of our protocol for use in MIoT.

As future work, we may consider having multiple servers instead of a single one.
This will increase the system’s capacity to handle more traffic, and help improve reliability
by avoiding interruptions in case a single server fails. Moreover, access control policies
implemented on the server may be investigated. In this regard, there are two main issues:
policy design and policy enforcement. A policy is designed to achieve some security
objective and is based on some model of system objects (components, files, etc.), system
subjects (users, processes, etc.), and actions (read, delete, etc.). It is interesting to see how
to design such policies for standard Electronic Health Records (EHRs) [41]. Moreover,
implementations of these policies need to be tested in order to make sure that all policy
rules are enforced. This is of extreme importance in the medical field where data are
sensitive and patient privacy is protected by law.

Author Contributions: Conceptualization, M.S.; methodology, M.S. and N.E.-M.; software, N.E.-M.
and M.S.; validation, M.S., M.A.A. and M.R.M.R.; formal analysis, N.E.-M. and M.S.; investi-
gation, N.E.-M.; resources, M.R.M.R. and M.A.A.; writing—original draft preparation, N.E.-M.;
writing—review and editing, M.S., M.R.M.R., and M.A.A.; supervision, M.R.M.R., M.A.A. and M.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Empowering the Health Workforce: Strategies to Make the Most of the Digital Revolution; Technical Report; Organisation for Eco-

nomic Co-Operation and Development (OECD): Paris, France, 2020. Available online: https://www.oecd.org/publications/
empowering-the-health-workforce-to-make-the-most-of-the-digital-revolution-37ff0eaa-en.htm (accessed on 6 July 2022).

2. Hallberg, D.; Salimi, N. Qualitative and Quantitative Analysis of Definitions of e-Health and m-Health. Healthc. Inform. Res.
2020, 26, 119–128. [CrossRef] [PubMed]

3. Wan, H.; Zhuang, L.; Pan, Y.; Gao, F.; Tu, J.; Zhang, B.; Wang, P. Biomedical sensors. In Biomedical Information Technology; Feng, D.,
Ed.; Academic Press: Cambridge, MA, USA, 2020; Chapter 2, pp. 51–79.

4. Angelov, G.; Nikolakov, D.; Ruskova, I.; Gieva, E.; Spasova, M. Healthcare Sensing and Monitoring. In Enhanced Living
Environments: Algorithms, Architectures, Platforms, and Systems (LNCS 11369); Springer: Berlin/Heidelberg, Germany, 2019.

5. Gandhi, V.; Singh, J. An automated review of body sensor networks research patterns and trends. J. Ind. Inf. Integr. 2020,
18, 100132. [CrossRef]

6. Liu, Q.; Mkongwa, K.G.; Zhang, C. Performance issues in wireless body area networks for the healthcare application: A survey
and future prospects. SN Appl. Sci. 2021, 3, 155. [CrossRef]

7. Aboubakar, M.; Kellil, M.; Roux, P. A review of IoT network management: Current status and perspectives. J. King Saud Univ.
Comput. Inf. Sci. 2022, 34, 4163–4176. [CrossRef]

8. Awotunde, J.; Jimoh, R.; Folorunso, S.; Adeniyi, E.; Abiodun, K.; Banjo, O. Privacy and Security Concerns in IoT-Based Healthcare
Systems. In Privacy and Security Concerns in IoT-Based Healthcare Systems; Siarry, P., Jabbar, M., Aluvalu, R., Abraham, A., Madureira,
A., Eds.; Springer: Cham, Switzerland, 2021; pp. 105–134.

9. Keyvan Mousavi, S.; Ghaffari, A.; Besharat, S.; Afshari, H. Security of internet of things based on cryptographic algorithms: A
survey. Wirel. Netw. 2021, 27, 1515–1555. [CrossRef]

10. Boyd, C.; Mathuria, A. Protocols for Authentication and Key Establishment; Springer: Berlin/Heidelberg, Germany, 2003; p. 342.

https://www.oecd.org/publications/empowering-the-health-workforce-to-make-the-most-of-the-digital-revolution-37ff0eaa-en.htm
https://www.oecd.org/publications/empowering-the-health-workforce-to-make-the-most-of-the-digital-revolution-37ff0eaa-en.htm
http://doi.org/10.4258/hir.2020.26.2.119
http://www.ncbi.nlm.nih.gov/pubmed/32547809
http://dx.doi.org/10.1016/j.jii.2020.100132
http://dx.doi.org/10.1007/s42452-020-04058-2
http://dx.doi.org/10.1016/j.jksuci.2021.03.006
http://dx.doi.org/10.1007/s11276-020-02535-5

Symmetry 2022, 14, 1483 20 of 21

11. El-Hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A survey of internet of things (IoT) authentication schemes. Sensors
2019, 19, 1141. [CrossRef]

12. Punj, R.; Kumar, R. Technological aspects of WBANs for health monitoring. Wirel. Netw. 2019, 25, 1125–1157. [CrossRef]
13. Radhappa, H.; Pan, L.; Zheng, X.J.; Wen, S. Practical overview of security issues in wireless sensor network applications. Int. J.

Comput. Appl. 2018, 40, 202–213. [CrossRef]
14. Reshan, M.A.; Liu, H.; Hu, C.; Yu, J. MBPSKA: Multi-Biometric and Physiological Signal-Based Key Agreement for Body Area

Networks. IEEE Access 2019, 7, 78484–78502. [CrossRef]
15. Das, A.K.; Wazid, M.; Kumar, N.; Khan, M.K.; Choo, K.K.R.; Park, Y.H. Design of Secure and Lightweight Authentication Protocol

for Wearable Devices Environment. IEEE J. Biomed. Health Inform. 2018, 22, 1310–1322. [CrossRef]
16. Boyd, C.; Gellert, K. A Modern View on Forward Security. Comput. J. 2021, 64, 639–652. [CrossRef]
17. Yeh, K.H. A Secure IoT-Based Healthcare System with Body Sensor Networks. IEEE Access 2016, 4, 10288–10299. [CrossRef]
18. Van Oorschot, P.C. Computer Security and the Internet: Tools and Jewels from Malware to Bitcoin, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2021.
19. Rifà-Pous, H.; Herrera-Joancomartí, J. Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices.

Future Internet 2011, 3, 31–48. [CrossRef]
20. Gope, P.; Hwang, T. A Realistic Lightweight Anonymous Authentication Protocol for Securing Real-Time Application Data

Access in Wireless Sensor Networks. IEEE Trans. Ind. Electron. 2016, 63, 7124–7132. [CrossRef]
21. Li, X.; Niu, J.; Kumari, S.; Liao, J.; Liang, W.; Khan, M.K. A new authentication protocol for healthcare applications using wireless

medical sensor networks with user anonymity. Secur. Commun. Netw. 2016, 9, 2643–2655. [CrossRef]
22. Sharma, G.; Kalra, S. A Lightweight User Authentication Scheme for Cloud-IoT Based Healthcare Services. Iran. J. Sci. Technol.

Trans. Electr. Eng. 2019, 43, 619–636. [CrossRef]
23. Xu, Z.; Xu, C.; Liang, W.; Xu, J.; Chen, H. A lightweight mutual authentication and key agreement scheme for medical internet of

things. IEEE Access 2019, 7, 53922–53931. [CrossRef]
24. Park, K.; Noh, S.; Lee, H.; Das, A.K.; Kim, M.; Park, Y.; Wazid, M. LAKS-NVT: Provably Secure and Lightweight Authentication

and Key Agreement Scheme without Verification Table in Medical Internet of Things. IEEE Access 2020, 8, 119387–119404.
[CrossRef]

25. Shin, S.; Kwon, T. A Lightweight Three-Factor Authentication and Key Agreement Scheme in Wireless Sensor Networks for
Smart Homes. Sensors 2019, 19, 2012. [CrossRef]

26. Zhu, L.; Xiang, H.; Zhang, K. A Light and Anonymous Three-Factor Authentication Protocol for Wireless Sensor Networks.
Symmetry 2022, 14, 46. [CrossRef]

27. Soni, M.; Singh, D.K. LAKA: Lightweight Authentication and Key Agreement Protocol for Internet of Things Based Wireless
Body Area Network. Wirel. Pers. Commun. 2021. [CrossRef]

28. Shreya, S.; Chatterjee, K.; Singh, A. A smart secure healthcare monitoring system with Internet of Medical Things. Comput. Electr.
Eng. 2022, 101, 107969. [CrossRef]

29. Tiplea, F.L.; Vamanu, L.; Vârlan, C. Reasoning about minimal anonymity in security protocols. Future Gener. Comput. Syst. 2013,
29, 828–842. [CrossRef]

30. Pfitzmann, A.; Kohntopp, M. Anonymity, Unobservability, and Pseudonymity—A Proposal for Terminology. In Lecture Notes in
Computer Science (LNCS 2009); Springer: Berlin/Heidelberg, Germany, 2001; Volume 2009.

31. Wang, D.; Wang, P. Offline dictionary attack on password authentication schemes using smart cards. In Information Security;
Desmedt, Y., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 7807, pp. 221–237.

32. Goh, A.; Ngo, D.C. Computation of Cryptographic Keys from Face Biometrics. In Proceedings of the 7th IFIP-TC6 TC11 In-
ternational Conference, CMS 2003, Torino, Italy, 2–3 October 2003; Lecture Notes in Computer Science (LNCS 2828); Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2828.

33. Jin, A.T.B.; Ling, D.N.C.; Goh, A. Biohashing: Two factor authentication featuring fingerprint data and tokenised random number.
Pattern Recognit. 2004, 37, 2245–2255. [CrossRef]

34. Sandhya, M.; Prasad, M. Biometric template protection: A systematic literature review of approaches and modalities. In Biometric
Security and Privacy. Signal Processing for Security Technologies; Jiang, R., Al-maadeed, S., Bouridane, A., Crookes, P., Beghdadi, A.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 14.

35. ProVerif. Available online: https://bblanche.gitlabpages.inria.fr/proverif/ (accessed on 15 July 2022).
36. Das, A.K.; Zeadally, S.; He, D. Taxonomy and analysis of security protocols for Internet of Things. Future Gener. Comput. Syst.

2018, 89, 110–125. [CrossRef]
37. Mayes, K. An introduction to smart cards. In Smart Cards, Tokens, Security and Applications, 2nd ed.; Mayes, K., Markantonakis, K.,

Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–29.
38. Hajny, J.; Malina, L.; Martinasek, Z.; Tethal, O. Performance evaluation of primitives for privacy-enhancing cryptography on

current smart-cards and smart-phones. In Data Privacy Management and Autonomous Spontaneous Security, Lecture Notes in Computer
Science; Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; Volume LNCS 8247, pp. 17–33.

39. Cremers, C.J.; Mauw, S.; de Vink, E.P. Injective synchronisation: An extension of the authentication hierarchy. Theor. Comput. Sci.
2006, 367, 139–161. [CrossRef]

http://dx.doi.org/10.3390/s19051141
http://dx.doi.org/10.1007/s11276-018-1694-3
http://dx.doi.org/10.1080/1206212X.2017.1398214
http://dx.doi.org/10.1109/ACCESS.2019.2921822
http://dx.doi.org/10.1109/JBHI.2017.2753464
http://dx.doi.org/10.1093/comjnl/bxaa104
http://dx.doi.org/10.1109/ACCESS.2016.2638038
http://dx.doi.org/10.3390/fi3010031
http://dx.doi.org/10.1109/TIE.2016.2585081
http://dx.doi.org/10.1002/sec.1214
http://dx.doi.org/10.1007/s40998-018-0146-5
http://dx.doi.org/10.1109/ACCESS.2019.2912870
http://dx.doi.org/10.1109/ACCESS.2020.3005592
http://dx.doi.org/10.3390/s19092012
http://dx.doi.org/10.3390/sym14010046
http://dx.doi.org/10.1007/s11277-021-08565-2
http://dx.doi.org/10.1016/j.compeleceng.2022.107969
http://dx.doi.org/10.1016/j.future.2012.02.001
http://dx.doi.org/10.1016/j.patcog.2004.04.011
https://bblanche.gitlabpages.inria.fr/proverif/
http://dx.doi.org/10.1016/j.future.2018.06.027
http://dx.doi.org/10.1016/j.tcs.2006.08.034

Symmetry 2022, 14, 1483 21 of 21

40. Shah, Y.; Choyi, V.; Schmidt, A.U.; Subramanian, L. Multi-factor authentication as a service. In Proceedings of the 3rd IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2015, San Francisco, CA, USA,
30 March–3 April 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 144–150.

41. de Mello, B.H.; Rigo, S.J.; da Costa, C.A.; da Rosa Righi, R.; Donida, B.; Bez, M.R.; Schunke, L.C. Semantic interoperability in
health records standards: A systematic literature review. Health Technol. 2022, 12, 255–272. [CrossRef]

http://dx.doi.org/10.1007/s12553-022-00639-w

	Introduction
	Previous Work
	Protocols
	Discovered Weaknesses
	The Use of XOR for Secrecy
	Missing Secrecy of some Messages
	Ambiguous Definition of Anonymity
	Smart Cards Vulnerable to Offline Password Guessing
	Renewal of Some Values Each Session

	Our Protocol Design
	Network Architecture
	Initialization and Registration
	Authentication Steps
	Renewal of Passwords and Keys
	Revocation of Smart Card Device

	Analysis of Protocol
	Features and Comparison with Previous Works
	Performance Analysis
	Informal Security Analysis
	Authentication
	Session Key
	Forward Secrecy
	Relationship Anonymity
	Access Control

	Resistance to Common Attacks
	Formal Security Analysis
	Implementation Issues and Limitations

	Conclusions and Future Work
	References

