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Abstract: Symmetries are vital in the study of physical phenomena such as quantum physics and
the micro-world, among others. Then, these phenomena reduce to solving nonlinear equations in
abstract spaces. These equations in turn are mostly solved iteratively. That is why the objective of this
paper was to obtain a uniform way to study three-step iterative methods to solve equations defined
on Banach spaces. The convergence is established by using information appearing in these methods.
This is in contrast to earlier works which relied on derivatives of the higher order to establish the
convergence. The numerical example completes this paper.
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1. Introduction

The objective in this paper was to locate a simple solution x∗ ∈ Ω of

G(x) = 0, (1)

given that G : Ω ⊂ X −→ X1 is a continuous operator, X, X1 are Banach spaces and the set
Ω 6= ∅. Numerous methods can be represented for all m = 0, 1, 2, . . . , by

ym = xm − aG ′(xm)
−1G(xm)

zm = xm − AmG(xm) (2)

xm+1 = zm − BmG(zm),

where Am = A(xm, ym), A : Ω×Ω −→ L(X, X1), A−1 ∈ L(X1, X), Bm = B(xm, ym), B :
Ω×Ω −→ L(X, X1) and B−1 ∈ L(X1, X).
Special Cases:
Newton’s method (second order) [1–10]: Set a = 1 and Am = Bm = O,

ym = xm − G ′(xm)
−1G(xm).

This method is of the order of two.
Jarrat’s method (second order) [10]: Set a = 2

3 and Am = Bm = O to obtain

ym = xm −
2
3
G ′(xm)

−1G(xm).
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Traub-like method (fifth order) [10]: Let a = 1 and Am = Bm = G ′(xm)−1 to get

ym = xm − G ′(xm)
−1G(xm)

zm = xm − G ′(xm)
−1G(xm)

xm+1 = xm − G ′(xm))
−1G(zm).

Homeier method (third order) [11]: Set a = 1
2 , Am = G ′(ym)−1) and Bm = O, to obtain

ym = xm −
1
2
G ′(xm)

−1G(xm)

xm+1 = ym − G ′(ym)
−1)G(ym).

Corodero–Torregrosa method (third order) [12]: Set a = 1, Am = 6[G ′(xm)+ 4G ′( xm+ym
2 )+

G ′(ym)]−1 and Bm = O, to obtain

ym = xm − AmG(xm)

or Am = 2[2G ′( 3xm+ym
4 )− G ′( xm+ym

2 ) + 2G ′( xm+3ym
4 )]−1.

Noor–Wasseem method (third order) [13]: a = 1, Am = 4[3G ′( 2xm+ym
3 + G ′(ym)]−1, and

B0 = O.
Xiao–Yin method (third order) [14]: a = 1, Am = 2

3 [(3G ′(ym) − G ′(xm))−1 + G ′(xm)−1]
and Bm = O.
Cordero method (fifth order) [12]: a = 2

3 , Am = 1
2 (3G ′(ym)−G ′(xm))−1(3G ′(ym)+G ′(xm))

G ′(xm)−1 and Bm = ( 1
2G ′(ym) +

1
2G ′(xm))−1 or a = 1, Am = 2(G ′(ym) + G ′(xm))−1 and

Bm = G ′(ym)−1.
Sharma–Arora method (fifth order) [15]: a = 1, Am = G ′(ym)−1 and Bm = 2G ′(ym)−1 −
G ′(xm)−1.
Xiao–Yinmethod (fifth order) [16]: a = 2

3 , Am = 1
4 (3G ′(ym)−1 + G ′(xm)−1) and Bm =

1
3 (3G ′(ym)−1 − G ′(xm)−1).

Other choices are also possible [1–3,8,9,14,15,17–19]. Therefore, it is interesting to
consider the semilocal convergence of these methods not given in earlier papers under
the same convergence criteria in the Banach space setting using the method (2). In earlier
papers, only the local convergence was given in the finite-dimensional Euclidean space
requiring the existence of derivatives one more than the order. Moreover, these derivatives
do not appear on the methods but are only used to show the convergence order.

For example, let X = X1 = R, Ω = [−0.5, 1.5]. Define function ξ on Ω by

ξ(x) =
{

0, i f x = 0
2x3 log x + x5 − x4, i f x 6= 0.

Notice that x∗ = 1. The definition of function ξ gives

ξ ′′′(x) = log x12 + 60x2 − 24x + 22.

However, ξ ′′′(x) is unbounded on Ω. Thus, the convergence of method (2) is not
verified by the earlier analyses. This paper extends the usage of these methods because no
conditions on derivatives of high order are used to show convergence. This is the novelty
of the paper. The study also includes the semilocal analysis not given in earlier research.
Notice that the branching of the solutions cannot be handled using the iterative method
(2) since the first step required that G′(xm)−1 exists. The paper contains seven sections,
including a numerical and a concluding section.
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2. Real Sequences

Let {pm} and {qm} be nonnegative sequences and η ≥ 0 be a given parameter. Set
S = [0, ∞). Consider functions ϕ0, ϕ : S −→ S to be nondecreasing, continuous, and
sequence {tm}, {sm} and {um} are defined by

t0 = 0, s0 = η,

um = sm + pm(sm − tm),

tm+1 = um + qm(um − sm), (3)

sm+1 = tm+1 +
ψ̄(tm, sm, um)

1− ψ0(tm+1)
,

where ψ̄(tm, sm, um) =
∫ 1

0 ϕ(θ(tm+1 − tm))dθ(tm+1 − tm) + (1 + ϕ0(tm))(tm+1 − sm)+
|1− a|(1 + ϕ0(tm))(sm − tm).

Next, three auxiliary results are given on the convergence of the majorizing se-
quence (3).

Lemma 1. Suppose there exists minimal zero τ of function ϕ0(t)− 1 and

tm ≤ τ0 for all m = 0, 1, 2, . . . . (4)

Then, the sequence {tm} is nondecreasing and convergent to some τ∗ ∈ [0, τ0]. The limit point
τ∗ is the least upper bound of the sequence {tm} and it is unique.

Proof. The result followed by (3) and (4), since the sequence {tm} is bounded from τ and
nondecreasing.

A stronger result follows.

Lemma 2. Sequence {tm} is strictly increasing and

tm ≤ ϕ−1
0 (1). (5)

Then, it holds limm−→+∞ tm = τ∗ ≤ ϕ−1
0 (1).

Proof. Set τ = ϕ−1
0 (1) in Lemma 1.

Next, we define sequences {bm} and {cm} for all m = 0, 1, 2, . . . by

bm = (1 + pm)qm

and

cm =
c1

m
1− ϕ0(tm+1)

,

where c1
m =

∫ 1
0 ϕ(θ(1+ pm)(1+ qm))dθ(sm− tm)((1+ pm)(1+ qm))+ |1− a|(1+ ϕ0(tm))+

(pm + (1 + pm)qm)(1 + ϕ0(tm)) and functions gi, i = 1, 2, 3 by

g1(t) = −t + c1(t) + tϕ0(
η

1− t
),

g2(t) = −t + b(t), g3(t) = −t + c(t)

and c1(t) =
∫ 1

0 ϕ(θ(1 + p)(1 + q))ληdθ(1 + p)(1 + q) + |1− a|(1 + ϕ0(
η

1−t )) + (p + (1 +
p)q)(1 + ϕ0(t)), provided that these exist p, q ≥ 0 such that

pm ≤ p and qm ≤ q. (6)
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The convergence criteria given so far are very general. However, we can consider
stronger ones.

Suppose functions gi have minimal zeros λi ∈ (0, 1) and set

λ = min{λi} and λ̄ = max{p0, b0,
c1

0
1− ϕ0(t1)

}.

Next, we present the third result.

Lemma 3. Suppose:
p0 ≤ λ, (7)

b0 ≤ λ (8)

and
c1

0
1− ϕ0(t1)

≤ λ. (9)

Then, the following items hold for all m = 0, 1, 2, . . .

0 ≤ um − sm ≤ λm+1η, (10)

0 ≤ tm+1 − um ≤ λm+1η, (11)

0 ≤ sm+1 − tm=1 ≤ λm+1η, (12)

and
τ∗ = lim

m−→+∞
tm ≤

η

1− λ
. (13)

Proof. Items (10)–(12) are shown using induction on m. Using (7)–(9), and the definition of
the sequence {tm}

u0 − s0 = p0(s0 − t0) ≤ λη, (14)

t1 − u0 = q0(u0 − s0 + s0 − t0) ≤ q0(p0(s0 − t0) + (s0 − t0))

≤ q0(1 + p0)(s0 − t0) = b0η ≤ λη, (15)

t1 − t0 = t1 − u0 + u0 − s0 + s0 − t0

≤ (q0(1 + p0) + (1 + p0))(s0 − t0),

t1 − s0 = t1 − u0 + u0 − s0 ≤ [q0(1 + p0) + p0](s0 − t0).

Thus,

s1 − t1 =
c1

0
1− ϕ0(t1)

≤ λη. (16)

By (14)–(16), estimates (10)–(12) hold for m = 0. Assume they are true for all integers
m smaller than n. Using the induction

sm ≤ tm + λmη

≤ sm−1 + λm−1η + λmη

...

=
1− λm+1

1− λ
η <

η

1− λ

and

tm+1 ≤ sm + λm+1η ≤ 1− λm+2

1− λ
η <

η

1− λ
.
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Moreover, estimates (14)–(16) shall hold for m replacing 0 if g1(λi) ≤ 0, which is true by
the definition of parameters λi and functions gi. Hence, the induction for estimates (10)–(12)
is terminated. Consequently, it follows limm−→+∞ tm = τ∗ < η

1−λ .

3. Semilocal Convergence

The convergence requires conditions:
Assume:

(C1) There exist x0 ∈ Ω, η ≥ 0 such that G ′(x0)
−1 ∈ L(X1, X) and

|a|‖G ′(x0)
−1G(x0)‖ ≤ η.

(C2) ‖G ′(x0)
−1(G ′(v)− G ′(x0)) ≤ ϕ0(‖v− x0‖) for all v ∈ Ω.

(C3) Equation ϕ0(t)− 1 = 0 has a minimal positive solution τ0. Let Ω0 = U(x0, τ0).
(C4) There exist nondecreasing and continuous functions ϕ : Ω0 −→ [0, ∞), p : Ω0 ×

Ω0 −→ [0, ∞), q : Ω0 ×Ω0 ×Ω0 −→ [0, ∞) such that

‖G ′(x0)
−1(G ′(v1)− G ′(v))‖ ≤ ϕ(‖v1 − v‖),

‖aI − A(v, v1)G ′(v)‖ ≤ p(v, v1),

‖A(v, v1)G(v)−U(v, v1)G(v2)‖ ≤ q(v, v1, v2)

for all v1, v2, v ∈ Ω0.
(C5) Conditions of any of the Lemmas in Section 2 hold.
(C6) U[x0, τ∗] ⊂ Ω.

It is worth noticing that if v1 = v− aG ′(v)−1G(v), the resulting (C4) conditions will
have a tighter function ϕ̄ than ϕ. Moreover, the same proof as that of Theorem 2 follows
through (see the numerical Section).

Next, we provide the semilocal convergence.

Theorem 1. Suppose conditions (C1)–(C6) hold. Then, sequence {xm} exists, {xm} ∈ U[x0, τ∗]
and there exists x∗ ∈ U[x0, τ∗] so that G(x∗) = 0 and

‖xm − x∗‖ ≤ τ∗ − tm. (17)

Proof. The iterates y0, z0, x1 exist by (C1) and (2) for m = 0. Then, the estimate is derived
by (C1)

‖y0 − x0‖ = |a|‖G ′(x0)
−1G(x0)‖ ≤ η = s0 − t0 = η.

Thus, the iterate y0 ∈ U[x0, τ∗]. Let v ∈ U[x0, τ∗]. Then, by (C2) and (C6)

‖G ′(x0)
−1(G(v)− G(x0))‖

≤ ϕ0(‖v− x0‖)
≤ ϕ0(τ

∗) < 1,

leading to G ′(v)−1 ∈ L(E1, E) and

‖G ′(v)−1G ′(x0)‖ ≤
1

1− ϕ0(‖v− x0‖)
(18)

by the Banach lemma on the linear operator with inverses [6]. Moreover, by (C4) and
method (2), the following estimates are obtained in turn
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z0 = x0 − aG ′(x0)
−1G(x0)

+aG ′(x0)
−1G(x0)− A0G(x0)

= y0 + (aG ′(x0)
−1 − A0)G(x0)

= y0 + (aG ′(x0)
−1 − A0)G ′(x0)G ′(x0)1G(x0)

= y0 − (aI − A0G ′(x0))(y0 − x0),

‖z0 − y0‖ = ‖(aI − A0G ′(x0))(0−x0)‖
≤ ‖aI − A0G ′(x0)‖‖y0 − x0‖
≤ p(s0 − t0) = u0 − s0, (19)

x1 = x0 − B0G(x0)

= x0 − A0G(x0) + A0G(x0)− B0G(z0)

= z0 + A0G(x0)− B0G(z0),

‖x0 − z0‖ = ‖A0G(x0)− B0G(z0)‖
≤ q0‖z0 − x0‖
≤ q0(u0 − t0) = t1 − u0, (20)

G(x1) = G(x1)− G(x0)− aG ′(x0)(y0 − x0)

= G(x1)− G(x0)− G ′(x0)(x1 − x0)

+G ′(x0)((x1 − y0) + (y0 − x0))− aG ′(x0)(y0 − x0),

‖G ′(x0)
−1G(x1)‖ ≤

∫ 1

0
ϕ(θ‖x1 − x0‖)dθ‖x1 − x0‖

+(1 + ϕ0(‖x0 − x0‖))‖x1 − x0‖
+|1− a|(1 + ϕ0(‖x0 − x0‖))‖y0 − x0‖. (21)

Hence,

‖y1 − x1‖ ≤ ‖G ′(x1)
−1G ′(x0)‖‖G ′(x0)

−1G(x1)‖

≤ Θ
1− ϕ0(t1)

= s1 − t1, (22)

where Θ =
∫ 1

0 ϕ(θ(t1 − t0))dθ(t1 − t0) + (1 + ϕ0(t1 − t0))(t1 − s0) + |1− a|(1 + ϕ0(t0 −
t0))(s0 − t0),

‖z0 − x0‖ = ‖z0 − y0 + y0 − x0‖
≤ ‖z0 − y0‖+ ‖y0 − x0‖ ≤ u0 − s0 + s0 − t0

= u0 − t0 ≤ u0 < τ∗,

and
‖x1 − x0‖ ≤ ‖x1 − z0‖+ ‖z0 − x0‖ ≤ t1 − u0 + u0 − t0 = t1 ≤ τ∗.

Therefore,
‖ym − xm‖ ≤ sm − tm, (23)

‖zm − ym‖ ≤ um − sm, (24)

‖xm+1 − zm‖ ≤ tm+1 − um, (25)

‖ym+1 − xm+1‖ ≤ sm+1 − tm+1 (26)
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and
xm, ym, zm, xm+1 ∈ U(x0, τ∗) (27)

hold for m = 0. Estimates preceding (23) hold with indices m, m + 1, replacing 0, 1, respec-
tively. Thus, the induction for estimates (23)–(27) is terminated.

It follows sequence {tm} is fundamental in X which is a Banach space, so x∗ =
limm−→+∞ xm exists and x∗ ∈ U[x0, τ∗]. Then, considering the estimate (see (21))

‖G ′(x0)
−1G ′(xm+1)‖ ≤

∫ 1

0
ϕ(θtm+1)dθ(tm+1 − tm)

+(1 + ϕ0(tm+1))(tm+1 − sm)

+|1− a|(1 + ϕ0(tm))(sm − tm). (28)

Therefore, G(x∗) = 0 follows if m −→ +∞ in (28).

Proposition 1. Suppose:
(i) Point x∗ ∈ U(x0, τ1) for some τ1 > 0 solves the equation G(x) = 0.
(ii) Condition (C2) holds.
(iii) There exists τ2 ≥ τ1 so that ∫ 1

0
ϕ0((1− θ)τ2 + θτ1)dθ < 1. (29)

Let Ω1 = U[x0, τ2] ∩Ω. Then, x∗ solves Equation (1) uniquely in Ω1.

Proof. Let y∗ ∈ Ω1 satisfy G(y∗) = 0. Set T =
∫ 1

0 G
′(x∗ + θ(y∗ − x∗))dθ. By applying (29)

and (C2), one obtains

‖G ′(x0)
−1(T − G ′(x0))‖ ≤

∫ 1

0
ϕ0((1− θ)‖‖y∗ − x0‖+ θ‖x∗ − x0‖)dθ

≤
∫ 1

0
ϕ0((1− θ)τ2 + θτ1)dθ < 1.

Then, it follows that y∗ = x∗ by 0 = G(y∗)− G(x∗) = T(y∗ − x∗) and the implication
T−1 ∈ L(X1, X).

Remark 1. (i) The point η
1−λ which is in closed form may replace τ∗ in the condition (C6).

(ii) Proposition 2 is not using all conditions of Theorem 2. However, if all conditions are assumed
then, set τ1 = τ∗.

4. Local Convergence Analysis

Some auxiliary scalar functions and parameters are first introduced based on which
the local convergence analysis of method (2) shall be given. Set S = [0,+∞). Let function
ψ0 : S −→ R be continuous and nondecreasing.

Suppose:
(H1) Equation ψ0(t) − 1 = 0 has a smallest solution r0 ∈ S − {0}. Set S1 = [0, r0). Let
function ψ1 : S1 −→ R be continuous and nondecreasing. Define function g1 : S1 −→ R by

g1(t) =
1

1− ψ0(t)
[
∫ 1

0
ψ((1− θ)t)dθ + |1− a|(1 +

∫ 1

0
ψ0((1− θ)t)dθ)].

(H2) Equation
g1(t)− 1 = 0
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has a smallest solution r1 ∈ S−{0}. Let H1 ≥ 0 be a parameter. Define function g2 : S1 −→ R
by

g2(t) =
1

1− ψ0(t)
[
∫ 1

0
ψ((1− θ)t)dθ + H1(1 +

∫ 1

0
ψ0((1− θ)t)dθ)].

(H3) Equation
g2(t)− 1 = 0

has a smallest solution r2 ∈ S−{0}. Let H2 ≥ 0 be a parameter. Define function g3 : S1 −→ R
by

g3(t) =
1

1− ψ0(t)
[
∫ 1

0
ψ((1− θ)t)dθ + H2(1 +

∫ 1

0
ψ0((1− θ)t)dθ)g2(t)].

(H4) Equation
g3(t)− 1 = 0

has a smallest solution r3 ∈ S− {0}. The parameter r defined for j = 1, 2, 3 as

r = min{rj}. (30)

is proven to be a radius of convergence for method (2) in Theorem 2. Set S1 = [0, r). In view
of these definitions, we have that for all t ∈ S1

0 ≤ ψ0(t) < 1, (31)

and
0 ≤ g1(t) < 1. (32)

Next, the relationship is given between the aforementioned functions and the operators
appearing on the method (2). Consider the conditions.

Suppose:
(A1) There exists a solution x∗ ∈ Ω such that G ′(x∗) is invertible.
(A2) ‖G ′(x∗)−1(G(x)− G ′(x∗))‖ ≤ ψ0(‖x− x∗‖) for all x ∈ Ω. Set U0 = U(x∗, r0) ∩Ω.
(A3) ‖G ′(x∗)−1(G ′(x)− G ′(y))‖ ≤ ψ(‖x− y‖)

‖G ′(x∗)−1(I − G ′(x)A(x, y))‖ ≤ h1(x, y),

‖G ′(x∗)−1(I − G ′(x)B(x, y, z))‖ ≤ h2(x, y, z),

h1(x, y) ≤ H1

and
h2(x, y, z) ≤ H2

for all x, y ∈ U0, where functions h1 : U0 ×U0 −→ R and h2 : U0 ×U0 ×U0 −→ R are
continuous.
(A4) The parameter given by the Formula (30) exists and
(A5) U[x∗, r] ⊂ Ω.

The main local convergence result follows for the method (2).

Theorem 2. Suppose conditions (A1)–(A5) hold. Then, sequence {xm} produced by method (2) for
x0 ∈ U(x∗, r)− {x∗} exists in U(x∗, r), remains in U(x∗, r) for all m = 0, 1, 2, . . . and converges
to x∗. Moreover, the following items hold for all m = 0, 1, 2, . . .

‖ym − x∗‖ ≤ ψ1(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖ < r, (33)

‖ym − x∗‖ ≤ ψ2(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖ (34)
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and
‖ym − x∗‖ ≤ ψ3(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖, (35)

where the functions ϕj, j = 1, 2, 3 are previously defined and the radius r is given by (3).

Proof. Mathematical induction is utilized to prove items (8)–(10). Let v ∈ U(x∗, r)− {x∗}.
Let w ∈ U(x∗, r) be arbitrary. By applying conditions (A1) and (A2)

‖G ′(x∗)−1(G ′(x∗)− G ′(w))‖ ≤ ψ0(‖x∗ − w)‖ ≤ ψ0(r) < 1. (36)

Then, the linear operator G ′(w)−1 exists and

‖G ′(w)−1G ′(x∗)‖ ≤ 1
1− ψ0(‖x∗ − w‖) . (37)

If w = x0, then the iterative y0 exists by method (2). It follows

y0 − x∗ = x0 − x∗ − G ′(x0)
−1G(x0) + (1− a)G ′(x0)

−1G(x0).

Then, by applying (A3) and (37) (for w = x0)

‖y0 − x∗‖ ≤ (

∫ 1
0 ψ((1− θ)‖x0 − x∗‖)

1− ψ0(‖x0 − x∗‖) dθ

+|1− a|(1 +
∫ 1

0
ψ0((1− θ)‖x0 − x∗‖)dθ))‖x0 − x∗‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r. (38)

Hence, the iterate y0 ∈ U(x∗, r) and (33) is true for m = 0, where we also use the estimate

G(x0) = G(x0)− G(x∗) = (
∫ 1

0
G ′(x∗ + θ(x0 − x∗))− G ′(x∗) + G ′(x∗)(x0 − x∗))(x0 − x∗)

so,

‖G ′(x∗)−1G(x0)‖ ≤ ‖G ′(x∗)−1(G ′(x∗ +
∫ 1

0
G ′(x∗) + θ(x0 − x∗)dθ − G ′(x∗))(x0 − x∗)‖

≤ (1 +
∫ 1

0
ψ0(θ‖x0 − x∗‖)dθ)‖x0 − x∗‖

Similarly, by the second substep of method (2), we can write

z0 − x∗ = x0 − x∗ − A0G(x0) = x0 − x∗ − G ′(x0)
−1G(x0)

+(G ′(x0)
−1 − A0)G(x0)

= x0 − x∗ − G ′(x0)
−1G(x0) + G ′(x0)

−1(I − G ′(x0)A0)G(x0).

By applying (A3), and (37) (for w = x0), we obtain in turn that

‖z0 − x∗‖ ≤
∫ 1

0 ψ((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− ψ0(‖x0 − x∗‖)

+
h1(x0, y0)

1− ψ0(‖x0 − x∗‖) (1 +
∫ 1

0
ψ0((1− θ)‖x0 − x∗‖)dθ)‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (39)
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Thus, the iterate z0 ∈ U(x∗, r) and estimate (34) hold for n = 0. Then, again, by the
third substep of method (2), we obtain:

x1 − x∗ = x0 − x∗ − G ′(x0)
−1G(x0) + (G ′(x0)

−1 − B0)G(z0)

= x0 − x∗ − G ′(x0)
−1G(x0) + G ′(x0)

−1(I − G ′(x0)B0)G(z0).

Consequently,

‖x1 − x∗‖ ≤
∫ 1

0 ψ((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− ψ0(‖x0 − x∗‖)

+
h2(x0, y0, z0)

1− ψ0(‖x0 − x∗‖) (1 +
∫ 1

0
ψ0(θ‖z0 − x∗‖dθ)‖z0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (40)

where we also used (39) and

G(z0) = G(z0)− G(x∗) =
∫ 1

0
G ′(x∗ + θ(z0 − x∗))dθ(z0 − x∗)

= (
∫ 1

0
G ′(x∗ + θ(z0 − x∗))dθ − G ′(x∗) + G ′(x∗))(z0 − x∗).

Hence,

‖G ′(x∗)−1G(z0)‖ ≤ (1 +
∫ 1

0
ψ0(θ‖z0 − x∗‖)dθ)‖z0 − x∗‖.

It follows from estimate (40) that iterate x1 is well defined and (35) holds for m = 0.
Therefore, the induction for assertions (33)–(35) is completed if the iterates xi, yi, zi, xi+1 are
exchanged with the iterates x0, y0, z0, x1, respectively, in the previous calculations. Finally,
from the calculation

‖xi+1 − x∗‖ ≤ u‖xi − x∗‖ < r, (41)

where u = ϕ3(‖x0 − x∗‖ ∈ [0, 1), we obtain that limi−→+∞ xi = x∗ and the iterate xi+1 ∈
U(x∗, r).

The uniqueness of the solution result follows.

Proposition 2. Suppose: there exists a simple solution x∗ ∈ U(x∗, ρ) ⊂ Ω of equation G(x) = 0
for some ρ > 0 and (A2) holds. Furthermore, suppose equation ψ0(t) − 1 = 0 has a smallest
positive solution ρ1. Set Ω2 = U[x∗, ρ1] ∩U(x∗, ρ). Then, the point x∗ is the only solution of
equation G(x) = 0 in the region Ω2.

Proof. Let y∗ ∈ Ω2 with G(y∗) = 0. Let the linear operator T =
∫ 1

0 G
′(x∗ + θ(y∗ − x∗))dθ.

Then, by applying condition (A3)

‖G ′(x∗)−1(T − G ′(x∗))‖ ≤
∫ 1

0
ψ0(θ‖y∗ − x∗‖)dθ < 1.

Hence, y∗ = x∗ is implied by the inverse of T and the application T(x∗ − y∗) =
G(x∗) − G(y∗) = 0− 0 = 0. gives x∗ − y∗ = T−1(0) = 0. Therefore, we conclude that
y∗ = x∗.
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5. A Specialization of Method

Set a = 1, Am = G ′(xm) and Bm = G ′(xm) for all m = 0, 1, 2, . . . . Then, method (2)
reduces to

ym = xm − G ′(xm)
−1G(xm)

zm = ym − G ′(ym)
−1G(xm) (42)

xm+1 = zm − G ′(zm)
−1G(zm).

This is Newton’s three-step fifth-order method, also called Traub’s extended three-
step method. It seems to be the most interesting special case of method (2) to study as
an application.

Consider the popular choices:
Semilocal case:
ψ0(t) = L0t and ψ(t) = Lt. We can also set pm = p = 0. However, for determining qm

and q, let us start with

‖G ′(x)−1(G(x)− G(y))‖ = ‖G ′(x)−1
∫ 1

0
G ′(y + θ(x− y))dθ(x− y)‖

≤ ‖G ′(x)−1G(x)‖

‖
∫ 1

0
G ′(x)−1(G ′(y + θ(x− y))dθ − G ′(x∗) + G ′(x∗))(x− y)

≤ (1 +
L‖y− x‖2

2(1− L0‖x− x0‖)
)‖y− x‖

It follows that we can set

qm = (1 +
L‖um − tm‖2

2(1− L0tm)
)‖um − tm‖).

Local case: ψ0(t) = l0(t) and ψ(t) = lt. Then, we obtain h1 = h2 = H1 = H2 = 0.
These choices are used in the examples of the numerical section.

6. Numerical Examples

We verify the convergence criteria using method (42). Moreover, we compare the
Lipschitz constants L0, L, L1, and m.

In particular, we used the first example to show that the ratio L0
L1

can be arbitrar-
ily small.

Example 1. Let X = X1 = Ω = R. Define the function

λ1(x) = γ0x + γ1 + γ2 sin γ3x, x0 = 0,

where γj, j = 0, 1, 2, 3 are fixed parameters. It follows that for γ3 large and γ2 small, L0
L1

can be

small (arbitrarily), so that L0
L1
−→ 0.

The parameters L0, L, K and L1 are computed in the next example, where L1 is the
Lipschitz parameter on Ω used by Kantorovich [6], whereas K is the parameter replacing L
if, as noted in Section 3, for v ∈ Ω, we choose v1 = v− aG ′(v)−1G(v) in (C4). Moreover,
the convergence conditions by Kantorovich [6] are compared to those of Lemma 1.

Example 2. Let X = X1 = R. Define scalar function G on the interval Ω = U[v0, 1− α] for
α ∈ (0, 1

2 ) by
G(v) = v3 − α.
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Pick v0 = 1. Then, the estimates are η = 1−α
3 ,

|G ′(v0)
−1(G ′(v)− G ′(v0))| = |v2 − v2

0|
≤ |v + v0||v− v0| ≤ (|v− v0|+ 2|v0|)|v− v0|
= (1− α + 2)|v− v0| = (3− α)|v− v0|,

for all v ∈ Ω, so L0 = 3− α, Ω0 = U(v0, 1
L0
) ∩Ω = U(v0, 1

L0
),

|G ′(v0)
−1(G ′(w)− G ′(v)| = |w2 − v2|

≤ |w + v||w− v| ≤ (|w− v0 + v− v0 + 2v0|)|w− v|
= (|w− v0|+ |v− v0|+ 2|v0|)|w− v|

≤ (
1
L0

+
1
L0

+ 2)|w− v| = 2(1 +
1
L0

)|w− v|,

for all v, w ∈ Ω and so K = 2(1 + 1
L0
).

|G ′(v0)
−1(G ′(w)− G ′(v)| = (|w− v0|+ |v− v0|+ 2|v0|)|w− v|

≤ (1− α + 1− α + 2)|w− v| = 2(2− α)|w− v|,

for all v, w ∈ Ω and L1 = 2(2− α).
Notice that for all α ∈ (0, 1

2 )
L0 < K < L1.

Next, set w = v− G ′(v)−1G(v), v ∈ Ω. Then, we have

w + v = v− G ′(v)−1G(v) + v =
5v3 + α

3v2 .

Define function Ḡ on the set Ω = [α, 2− α] by

Ḡ(v) = 5v3 + α

3v2 .

Then, we obtain by this definition that

Ḡ ′(v) =
15v4 − 6vα

9v4κ

=
5(v− α)(v2 + vα + α2)

3v3 ,

with s = 3
√

2α
5 being the critical point of function Ḡ. Notice that α < s < 2− α. It follows that

this function is decreasing on the interval (α, p) and increasing on the interval (α, 2− α), since
v2 + vα + α2 > 0 and v3 > 0. Hence, we can set

K2 =
5(2− α)2 + α

9(2− α)2

and
K2 < L0.

However, if v ∈ Ω0 = [1− 1
L0

, 1 + 1
L0
], then

L =
5v3 + α

9v2 ,
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where v = 4−α
3−α and K < K1 for all α ∈ (0, 1

2 ). Then, the Kantorovich criterion 2L1η ≤ 1 [6] is
not satisfied for all α ∈ (0, 1

2 ). Therefore, there is no assurance that method (2) is convergent to
v∗ = 3

√
α.

Let us test the convergence criteria of Lemma 1 by selecting α = 0.4. Then, we have the
following Table 1, verifying the convergence condition (6) for τ0 = 1

L0
.

Table 1. Real sequence (42).

n 1 2 3 4 5 6

ui 0.2330 0.2945 0.3008 0.3009 0.3009 0.3009
si 0.2000 0.2896 0.3008 0.3009 0.3009 0.3009

tn+1 0.2341 0.2946 0.3008 0.3009 0.3009 0.3009
L0si 0.5200 0.7530 0.7820 0.7824 0.7824 0.7824
L0ui 0.6058 0.7658 0.7822 0.7824 0.7824 0.7824

L0ti+1 0.6087 0.7659 0.7822 0.7824 0.7824 0.7824

Example 3. Let Ω = U[0, 1] for X = X1 = C[0, 1]. Then, the boundary value problem [4]

µ(0) = 0, µ(1) = 1,

µ′′ = −µ− γµ2

is transformed as the integral equation

µ(s) = s +
∫ 1

0
G(s, s1)(µ

3(s1) + γµ2(s1))ds1

where γ is a constant and G(s, s1) is due to Green’s function given by

G(s, s1) =

{
s1(1− s), s1 ≤ s
s(1− s1), s < s1.

Consider G : Ω −→ X1 as

[G(x)](s) = x(s)− s−
∫ 1

0
G(s, s1)(x3(s1) + γx2(s1))ds1.

Let us pick µ0(s) = s and Ω = U(µ0, κ0). Then, clearly U(µ0, κ0) ⊂ U(0, κ0 + 1), since
‖µ0‖ = 1. If 2γ < 5. Then, conditions (H1)–(H4) are satisfied for

L0 =
2γ + 3κ0 + 6

8
, L =

γ + 6κ0 + 3
4

.

Hence, L0 < L1.

The next two examples concern the local convergence of the method (2) and radii rj, r
computed using Formula (30) and the functions ϕj.

Example 4. Consider X = X1 = C[0, 1] and Ω = U[0, 1]. Consider G : Ω −→ X1 given as

G( f )(x) = ϕ(x)− 5
∫ 1

0
xτ f (τ)3dτ. (43)

This definition gives

G ′( f (ξ))(x) = ξ(x)− 15
∫ 1

0
xτ f (τ)2ξ(τ)dτ, for all ξ ∈ Ω.

The max-norm is used. Then, since x∗ = 0, conditions (A1)–(A5) hold, provided that `0 = 7.5
and ` = 15. Then, the radii are:
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r = r1 = 0.0533, r2 = 0.1499, and r3 = 0.1660.

Example 5. Let the system of differential equations

G ′1(µ1) = eµ1 , G ′2(µ2) = (e− 1)µ2 + 1, G ′3(µ3) = 1

with G1(0) = G2(0) = G3(0) = 0. Let G = (G1,G2,G3). Let X = X1 = R3, Ω = U[0, 1]. Then,
x∗ = (0, 0, 0)cr. Let function G on Ω for µ = (µ1, µ2, µ3)

cr given as

G(µ) = (eµ1 − 1,
e− 1

2
µ2

2 + µ2, µ3)
cr.

Then, the derivative due to Fréchet is given by

G ′(µ) =

 eµ1 0 0
0 (e− 1)µ2 + 1 0
0 0 1

.

This definition implies that G ′(x∗) = I. Let µ ∈ R3 with µ = (µ1, µ2, µ3)
cr. Moreover, the

norm for ∆ ∈ R3 ×R3 is

‖∆‖ = max
1≤k≤3

3

∑
i=1
‖δk,i‖.

We need to verify the conditions (A1)–(A5). To achieve this, we study G(c) = ec − 1 on
Ω = [−1, 1], so c∗ = 1, hence G ′(c∗) = 1, and

|G ′(c)− G ′(c∗)| = |c + c2

2
+ . . . +

cj

j!
+ . . . |

= |1 + c− 0
2!

+ . . . +
c− 0)j−1

j!
+ . . . ||c− 0|.

It follows that `1 = e− 1. Then, Ω1 = U(x∗, 1
e−1 ) ∩Ω = U(x∗, 1

e−1 ). This time, we obtain

|G ′(c)− G ′(c∗)| ≤ `0|c− 0|,

where
`0 = 1 +

1
(e− 1)2!

+ . . . +
1

(e− 1)j−1 j!
+ . . . ≈ 1.43 < `1.

Then, we obtain for all c ∈ Ω1

|s| = |c− G ′(c)−1G(c)| = |c− 1 + e−c|

= | (−c)2

2!
+ . . . +

(−c)j

j!
+ . . . |

= |c|( |c|
2!

+ . . . +
|c|j−1

j!
+ . . .) ≤ `0 − 1

e− 1
.

Moreover,

|G ′(s)− G ′(c∗)| = |es − 1|

≤ |s|(1 + |s|
2!

+ . . . +
|s|j−1

j!
+ . . .)

≤ |c| `0 − 1
e− 1

(1 +
`0 − 1

(e− 1)2!
+ . . . +

(
`0 − 1
e− 1

)j−1 1
j!
+ . . .)

= `2(c− 0),
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where `2 ≈ 0.49 < `1. We can set `3 = `2.
Therefore, the computed radii are r = r1 = 0.2409 = r, r2 = 0.3101, and r3 = 0.3588.

Discussion: It is important to mention some more applications. Notice that the branching
of the solutions cannot be handled using the iterative method (2) since the existence of
G′(xm)−1 is required in the first step. It is worth noticing that the present results can also
apply to notable references by Singh et al. [10] and Vijayakumar et al. [20,21] involving
the solution of differential equations. This is provided that the Banach space X1 = X is
specialized to be the space of all Bockner integrable functions and the involved operator
is defined as a Riemann–Liouville integral, Riemann–Liouville fractional derivative, or
Caputo fractional derivative of a certain order in the interval (1, 2] [10].

In the references [20,21], the evolution differential inclusions should be in Banach
space. In particular, the control function should belong in L2(I, X), which is the Banach
space of admissible functions with X1 = X.

7. Conclusions

Sufficient conditions unify the convergence of generalized three-step methods. Their
specializations provide a finer convergence analysis since smaller Lipschitz parameters
and tighter real majorizing sequences are used than in [3,4,6,11,12,17,18].

More areas of application can be found in [3,4,6,9,19] and the references therein. These
ideas can be immediately extended to include multistep as well as multipoint iterative
methods along the same lines. This is the topic of future work.
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