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Abstract: Fatigue in a material occurs when it is subjected to fluctuating stress and strain, which
usually results in failure due to the accumulated damage. In statistics, asymmetric distribution,
which is commonly used for describing the fatigue life of materials, is the Birnbaum–Saunders (BS)
distribution. This distribution can be transform to the normal distribution, which is symmetrical.
Furthermore, variance is used to examine the dispersion of the fatigue life data. However, comparing
the variances of two independent samples that follow BS distributions has not previously been
reported. To accomplish this, we propose methods for providing the confidence interval for the ratio
of variances of two independent BS distributions based on the generalized fiducial confidence interval
(GFCI), a Bayesian credible interval (BCI), and the highest posterior density (HPD) intervals based on a
prior distribution with partial information (HPD-PI) and a proper prior with known hyperparameters
(HPD-KH). A Monte Carlo simulation study was carried out to examine the efficacies of the methods
in terms of their coverage probabilities and average lengths. The simulation results indicate that the
HPD-PI performed satisfactorily for all sample sizes investigated. To illustrate the efficacies of the
proposed methods with real data, they were also applied to study the confidence interval for the ratio
of the variances of two 6061-T6 aluminum coupon fatigue-life datasets.

Keywords: Birnbaum–Saunders distribution; confidence interval; variance; fiducial inference;
Bayesian; fatigue life

1. Introduction

Fatigue, defined as the degradation of the mechanical properties of a material under
loading that change over time, is one of the leading causes of machine and structural
failure. A critical characteristic of fatigue is that the load is not sufficiently large to cause
instantaneous failure. Instead, failure occurs after a particular number of load fluctu-
ations have been encountered (i.e., after the cumulative damage has reached a critical
threshold) [1]. As a result, having a good understanding of the fatigue life of materials
is critical for preventing damage caused by their failure, predicting the consequences of
changes in operational conditions, identifying the cause of fatigue failure, and taking
effective mitigating measures. In order to evaluate the fatigue life of materials, statistical
distributions of the fatigue life can be considered. These distributions are often positive
asymmetry or skewness (non-normality) and start from zero, since the fatigue life is always
non-negative. Therefore, the fatigue life of materials cannot be described by either the
normal or symmetrical distributions. In recent decades, asymmetric distribution that has
received considerable attention for describing the fatigue life of materials is the Birnbaum–
Saunders (BS) distribution. It was originally developed in response to a material fatigue
problem and has been extensively used in reliability and fatigue research [2]. The BS distri-
bution explains the total amount of time that will pass until a dominant crack develops
and grows to a point where the cumulative damage exceeds the threshold and causes
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failure. Desmond [3] presented a more generalized extension of the BS distribution based
on a biological model and also contributed to generalizing the actual reasons for using
this distribution by relaxing the assumptions stated by Birnbaum and Saunders [2]. In
addition, Desmond [4] deduced that the BS distribution is a mixture of the inverse Gaussian
distribution with 0.5 as the mixing probability.

Although the BS distribution has its origins in materials science, it has subsequently
been employed in a variety of other fields, including engineering, environmental studies,
agriculture, and finance [5–8]. Many researchers have made significant contributions to
the development of and parameter inference for the BS distribution. For example, Birn-
baum and Saunders [5] solved a nonlinear equation to obtain the maximum likelihood
estimators (MLEs) for shape parameter α and scale parameter β. Engelhardt et al. [9]
investigated the asymptotic joint distribution of the MLEs and demonstrated that they
are asymptotically independent. Based on this asymptotic joint distribution, they calcu-
lated the asymptotic confidence intervals for α and β. Approximations of the posterior
marginal distributions of α and β were used by Achcar [10] to produce Bayesian estimates.
Ng et al. [11] provided modified moment estimators (MMEs) for α and β, and then devised
a bias reduction approach for the MLEs and MMEs. Lemonte et al. [12] examined various
bias correction strategies for the MLEs by using bootstrap methods (both parametric and
nonparametric). Wang [13] proposed a generalized confidence interval for α, as well as
certain critical reliability quantities, such as the mean, quantiles, and a reliability function.
Xu and Tang [14] considered the Bayesian estimators for α and β under the reference
prior and obtained Bayesian estimators by using the idea of Lindley’s approximation and
the Gibbs sampling procedure. Niu et al. [15] proposed two test statistics based on the
exact generalized p-value approach and the delta method for comparing the characteris-
tic quantities of several BS distributions, including the mean, quantiles, and a reliability
function. Wang et al. [16] applied inverse-gamma priors for α and β and presented an
efficient sampling algorithm via the generalized ratio-of-uniforms method to calculate the
Bayesian estimates and credible intervals. Li and Xu [17] utilized fiducial inference for
the parameters of a BS distribution. Guo et al. [18] presented approaches that are hybrids
between the generalized inference method and the large sample theory for interval esti-
mation and hypothesis testing for the common mean of several BS populations. Recently,
Puggard et al. [19] proposed the confidence intervals for the coefficient of variation (CV)
and the difference between the CVs of BS distributions based on the concept of generalized
confidence interval (GCI), a bootstrapped confidence interval (BCI), a Bayesian credible
interval (BayCI), and the highest posterior density (HPD) interval.

In statistics, variance is used to describe the deviation from the average (mean). It
is determined by squaring the differences between each value in the dataset and the
mean, then dividing the sum of the squares by the total number of values in the dataset.
Moreover, variance is defined as the second central moment, while the square root of the
variance is called the standard deviation [20]. In the case of two independently collected
datasets, determining whether the variance of the first one is significantly different from
that of the second one is a critical statistical problem. To this end, the confidence inter-
val for the ratio of the variances of two independent datasets can be used to compare
the variance between them. If the confidence interval contains 1, it can be concluded
that the variance of the first and second datasets is not significantly different. Many
authors have focused on the construction of the confidence interval for the ratio of vari-
ances of two datasets by using different methods for various distributions. For example,
Bonett [21] proposed an approximate confidence interval for the ratio of variances of
bivariate non-normal distributions. Bebu and Mathew [22] applied the GCI approach
and a modified signed log-likelihood ratio approach to construct the confidence inter-
val for the ratio of variances of bivariate lognormal distributions. Paksaranuwat and
Niwitpong [23] compared the efficacies of adaptive and classical confidence intervals for
the variance and the ratio of variances of non-normal distributions with missing data.
Niwitpong [24] examined the GCI approach for the ratio of variances of lognormal dis-
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tributions. Wongyai and Suwan [25] developed the confidence interval for the ratio of
variances of bivariate non-normal distributions by using a kurtosis estimator. Recently,
Maneerat et al. [26] presented the HPD interval based on the normal-gamma prior and the
method of variance estimates recovery (MOVER) to compute the confidence interval for
the ratio of variances of delta-lognormal distributions. Nevertheless, the construction of
the confidence interval for the ratio of variances of two independent BS distributions has
not yet been reported. Therefore, the goal of the present study is to propose methods for
constructing the confidence interval for the ratio of the variances of two BS distributions
based on the generalized fiducial confidence interval (GFCI), a Bayesian credible interval
(BCI), and the HPD intervals based on a prior with partial information (HPD-PI) and a
proper prior with known hyperparameters (HPD-KH).

The rest of this article is structured as follows. The background on the BS distribution
and the concepts of each of the methods for constructing the confidence interval for the
ratio of variances of two BS distributions are described in Section 2. The simulation studies
and results are presented in Section 3. Section 4 provides an illustration of the proposed
methods with real fatigue datasets from Birnbaum and Saunders [5]. The final section
contains conclusions on the study.

2. Methods

Let Xij = (Xi1, Xi2, . . . , Xini ), i = 1, 2 and j = 1, 2, . . . , ni be non-negative random
samples drawn from BS distributions denoted by Xij∼BS(αi, βi), where αi and βi are the
shape and scale parameters, respectively. The cumulative distribution function (cdf) can be
written as

F(xij) = Φ
[

1
αi

(√ xij

βi
−
√

βi
xij

)]
, (1)

where xij > 0, αi > 0, βi > 0, and Φ(·) is the standard normal cdf. Note that βi is also the
median of the distribution. The corresponding probability density function (pdf) of this cdf
is given by

f (xij, αi, βi) =
1

2αiβi
√

2π
×
{(

βi
xij

) 1
2

+

(
βi
xij

) 3
2
}

exp
[
− 1

2α2
i

( xij

β
+

βi
xij
− 2
)]

. (2)

The following transformation was applied to generate samples from the BS distri-
butions and to enable the derivation of some of their other properties, including various
moments. If Xij∼BS(αi, βi), then

Zij =
1
2

(√Xij

βi
−
√

βi
Xij

)
∼N(0, α2

i /4). (3)

Thus,
Xij = βi(1 + 2Z2

ij + 2Zij

√
1 + Z2

ij). (4)

By applying the above transformation, the expected value and variance of Xij are
E(Xij) = βi

(
1 + 1

2 α2
i
)

and V(Xij) = (αiβi)
2(1 + 5

4 α2
i
)
, respectively. Since Xij are indepen-

dent, the ratio of the variances simply becomes

θ =
(α1β1)

2(1 + 5
4 α2

1
)

(α2β2)2
(
1 + 5

4 α2
2
) . (5)

2.1. Generalized Fiducial Inference

Generalized fiducial inference can be used to transform the original data into other
distributions that are known. According to the rules of that distribution, the transformed
data are manipulated, and the results are transferred back to the original via an inverse
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transformation [27]. This idea brings us to construct the confidence interval for the ratio of
the variances of two BS distributions. Let

Y = G(η, U) (6)

be the relationship between Y and parameter η ∈ Ξ, where G(·, ·) is a structural equation
and U is a random variable for which the distribution is definitively known and indepen-
dent of any parameters. For any given realization y of Y , inverse η = H(y, u) always exists
for any realization u of U. Since the distribution of U is definitively known, random sample
ũ1, ũ2, . . . , ũM can be generated from it. This random sample of U can be transformed into a
random sample of η via the inverse η̃1 = H(y, ũ1), η̃2 = H(y, ũ2), . . . , η̃M = H(y, ũM),
such that a random sample of η (i.e., a fiducial sample) can be obtained. However,
in some situations, the inverse does not exist, for which Hannig [27,28] proposed the
following solutions.

If G = (G1, G2, . . . , Gn) is a structural equation, Yi = Gi(η, U) for i = 1, 2, . . . , n.
Suppose that parameter η ∈ Ξ ⊆ Rp is p-dimensional and U = (U1, U2, . . . , Un) are
independent identically distributed (i.i.d.) samples from Uniform (0,1). Under certain
differentiability conditions, Hannig [28] illustrated that the generalized fiducial distribution
for η is definitively continuous with

r(η) =
L(y, η)J(y, η)∫

Ξ L(y, η′)J(y, η′)dη′
, (7)

where L(y, η) denotes the likelihood function of the data and function

J(y, η) = ∑
i=(i1,...,ip)

16i1<...<ip6n

∣∣∣∣∣det
((

d
dy

G−1(y, η)

)−1 d
dη

G−1(y, η)

)
i

∣∣∣∣∣. (8)

The above sum covers all possible p-tuples of indexes i = (1 6 i1 < . . . < ip 6 n) ⊂
{1, . . . , n} and dG−1(y, η)/dη and dG−1(y, η)/dy are n× p and n× n Jacobian matrixes,
respectively. For any n × p matrix B, submatrix (B)i is a p × p matrix containing rows
i = (i1, i2, . . . , ip) of B. In addition, if observation y from a definitively continuous distribu-
tion is i.i.d. with cdf Fη(y), then H−1 = (Fη(y1), Fη(y2), . . . , Fη(yn)).

For a BS distribution, the generalized fiducial distribution of (αi, βi) derived by Li and
Xu [17] is in the form

f (αi, βi|xij) ∝ J(xij, (αi, βi))L(xij|αi, βi), (9)

where

L(xij|αi, βi) ∝
1

α
ni
i β

ni
i

ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

exp
[
−

ni

∑
j=1

1
2α2

i

( xij

βi
+

βi
xij
− 2
)]

(10)

and

J(xij, (αi, βi)) = ∑
16j<k6ni

4|xij − xik|
αi(1 +

βi
xij
)(1 + βi

xik
)

. (11)

Note that the symbol “∝” means “is proportional to.” In brief, if a is proportional
to b, then the only difference between a and b is a multiplicative constant. By applying
Equation (11), Li and Xu [17] showed that the priors of αi and βi can be denoted as

π(αi) ∝
1
αi

π(βi) ∝ ∑
16j<k6ni

|xij − xik|
(1 + βi/xij)(1 + βi/xik)

.
(12)
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Thus, f (αi, βi|xij) is proper for the particular case of a prior with partial information
given by the priors of αi and βi (12). Therefore, α̂i and β̂i, which are the generalized fiducial
samples of αi and βi, can be obtained from the generalized fiducial distribution in the same
way as the Bayesian posterior. The adaptive rejection Metropolis sampling (ARMS), which
origins to adaptive rejection sampling (ARS), was used to generate the fiducial samples
(α̂i and β̂i) from the generalized fiducial distribution (9). The ARS was proposed by Gilks
and Wild [29]. It was only suitable for log-concave target densities. In order to address the
limitations of ARS, Gilks et al. [30] improved ARS to handle multivariate distributions and
non-log-concave densities by permitting the proposal distribution to remain lower than
the target in some regions and adding a Metropolis–Hastings step to guarantee that the
accepted samples are properly distributed. This method was called ARMS, which can be
easily implemented via the function arms in package dlm of R software suite (version 3.5.1).
Note that α̂i and β̂i are treated as random variables. Therefore, αi and βi are substituted by
α̂i and β̂i, respectively, resulting in the generalized fiducial estimates of θ being derived as

θ̂ =
(α̂1 β̂1)

2(1 + 5
4 α̂2

1
)

(α̂2 β̂2)2
(
1 + 5

4 α̂2
2
) . (13)

Finally, the 100(1− γ)% GFCI for θ is [θ̂(γ/2), θ̂(1− γ/2)], where θ̂(ν) is the 100ν%
percentile of θ̂. Algorithm 1 summarizes the steps for constructing GFCI for θ, as seen below.

Algorithm 1 : GFCI

1. Generate datasets xij, i = 1, 2, j = 1, 2, . . . , ni from a BS distribution.
2. Generate K samples of αi and βi by applying the arms function in the dlm package of

the R software suite.
3. Burn-in B samples (the number of remaining samples is K− B).
4. Thin the samples by applying sampling lag L > 1 (the final number of samples is

K′ = (K− B)/L). Note that the generated samples are not independent, and so we
need to reduce the autocorrelation by thinning the samples.

5. Calculate θ̂ by applying Equation (13) and obtain θ̂(1), θ̂(2), . . . , θ̂(K′).
6. Calculate the 100(1− γ)% GFCI.

2.2. Bayesian Inference

For this method, Xu and Tang [14] illustrated that the reference prior of a BS dis-
tribution (a type of Jeffreys’ prior) results in an improper posterior distribution. Thus,
to guarantee its propriety, proper priors with known hyperparameters are obtained by
assuming that an inverse-gamma distribution with parameters ai and bi is the prior of βi
and an inverse-gamma distribution with parameters ci and di is the prior of λi = α2

i [16].
In accordance with Bayes’ theorem, the joint posterior density function of (αi, βi) can

be written as

p(λi, βi|xij) ∝ L(xij|αi, βi)π(βi|ai, bi)π(λi|ci, di)

∝
1

(λi)
ni
2 β

ni
i

ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

exp
[
−

ni

∑
j=1

1
2λi

( xij

βi
+

βi
xij
− 2
)]

× β
−ai−1
i exp

(
− bi

βi

)
(λi)

−ci−1exp
(
− di

λi

)
.

(14)
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Integrating the joint posterior density function (14) with respect to αi yields the
marginal posterior distribution of βi as follows:

π(βi|xij) ∝ β
−(ni+ai+1)
i exp

(
− bi

βi

) ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

×
[ ni

∑
j=1

1
2

( xij

βi
+

βi
xij
− 2
)
+ di

]−(ni+1)
2−ci

.

(15)

From the joint posterior density function (14), it is clear that the fully conditional
posterior distribution of λi given βi is given by

π(λi|xij, βi) ∝ IG
(

ni
2
+ ci,

1
2

ni

∑
j=1

( xij

βi
+

βi
xij
− 2
)
+ di

)
. (16)

Posterior samples are drawn by adopting the Markov chain Monte Carlo technique.
Since the marginal posterior distribution (15) cannot be written as if it were known, gen-
erating posterior samples of βi from this density is impossible using the usual methods.
There are three common approaches, such as the random-walk Metropolis procedure, the
Metropolis–Hastings algorithm and the slice sampler by introducing an auxiliary variable
to simplify the sampling problem that might be considered to sample from the marginal
posterior distribution (15). However, all three approaches are susceptible to serially corre-
lated draws, indicating that a very large sample size is frequently required to produce a
reasonable estimate of any desired attribute of the posterior distribution. To avoid these po-
tential problems when generating the posterior samples, the generalized ratio-of-uniforms
method of Wakefield et al. [31] is used to generate posterior samples of βi (denoted as β̃i).
The concept of the generalized ratio-of-uniforms method is as follows.

Suppose that a pair of variables (ui, vi) is uniformly distributed inside region

A(ri) =

{
(ui, vi) : 0 < ui ≤

[
π

(
vi

uri
i
|xij

)]1/(ri+1)}
, (17)

where ri ≥ 0 is a constant term and π(·|xij) is specified by using the marginal posterior
distribution (15). Subsequently, the pdf of βi = vi/uri

i becomes π(βi|xij)/
∫

π(βi |xij)dβi.
For generating random points uniformly distributed in A(ri), the accept–reject method
from a convenient enveloping region (usually from the minimal bounding rectangle) is
applied. According to Wakefield et al. [31], the minimal bounding rectangle for A(ri) is
given by

[0, a(ri)]× [b−(ri), b+(ri)], (18)

where
a(ri) = sup

βi>0
{[π(βi|xij)]

1/(ri+1)}, (19)

b−(ri) = inf
βi>0
{βi[π(βi|xij)]

ri/(ri+1)}, (20)

and
b+(ri) = sup

βi>0
{βi[π(βi|xij)]

ri/(ri+1)}. (21)

Note that π(βi|xij) → 0 as βi → 0+ and π(βi|xij) → O(β
−(ai+ci+3/2)
i ) as βi → +∞.

Hence, b−(ri) = 0, a(ri) is finite, and b+(ri) is also finite when choosing an appropriate
value for ri [16]. The generalized ratio-of-uniforms method consists of the following
three steps.

1. Compute a(ri) and b+(ri).
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2. Draw ui and vi from U(0, a(ri)) and U(0, b+(ri)), where U(v, w) refers to a uniform
distribution with parameter v and w, and compute ρi = vi/uri

i .
3. Set β̃i = ρi if ui ≤ [π(ρi|xij)]

1/(ri+1); otherwise, the process is repeated.

Meanwhile, λ̃i, which are the posterior samples of λi, can be obtained from the
conditional posterior distribution (16) by applying the LearnBayes package from the R
software suite. Subsequently, the posterior samples of αi (denoted as α̃i) comprise the
square roots of λ̃i. Note that α̃i and β̃i are also treated as random variables. Hence, the
Bayesian estimates for θ can be written as

θ̃ =
(α̃1 β̃1)

2(1 + 5
4 α̃2

1
)

(α̃2 β̃2)2
(
1 + 5

4 α̃2
2
) . (22)

Finally, the 100(1− γ)% BCI for θ is [θ̃(γ/2), θ̃(1− γ/2)], where θ̃(ν) is the 100ν%
percentile of θ̃. In conclusion, BCI for θ can be obtained by using Algorithm 2.

Algorithm 2 : BCI

1. Set ai, bi, ci and di, where i = 1, 2.
2. Compute a(ri) and b+(ri).
3. At the mth steps,

(a) Generate ui∼U(0, a(ri)) and vi∼U(0, b+(ri)), and then compute ρi = vi/uri
i .

(b) If ui ≤ [π(ρi|xij)]
1/(ri+1), set β̃i,(m) = ρi; otherwise, repeat Step (a).

(c) Generate λ̃i,(m)∼IG
(

ni
2 + ci, 1

2

ni
∑

j=1

(
xij

βi,(m)
+

βi,(m)

xij
− 2
)
+ di

)
, and then

α̃i,(m) =
√

λ̃i,(m).

(d) Compute the Bayesian estimates for θ by applying Equation (22).
4. Repeat Step (3), M times.
5. Calculate the 100(1− γ)% BCI.

2.3. The Highest Posterior Density (HPD) Interval

The HPD interval is where the posterior density for every point within the interval is
higher than the posterior densities of the points outside of it, indicating that the interval
contains the more likely values of the parameter while excluding the less likely ones.
According to Box and Tiao [32], the HPD interval has two main properties:

1. Every point within the interval has a higher probability density than the points outside
of it.

2. For given probability level (1− γ), the interval has the narrowest length.

By applying Equation (11), Li and Xu [17] showed that J(xij, (αi, βi)) is a special case
of a prior with partial information, and the generalized fiducial estimates of αi and βi can
be obtained by using the same method as for the Bayesian posterior. Therefore, at Step (6)
in Algorithm 1, we applied the HDInterval package (version 0.2.2) from the R software
suite to compute the HPD interval based on a prior with partial information (HPD-PI).
Moreover, we also applied the HDInterval package at Step (5) in Algorithm 2 to compute
the HPD interval based on a proper prior with known hyperparameters (HPD-KH).

3. Simulation Studies

To compare the performance of the proposed methods, a Monte Carlo simulation
study was conducted with various sample sizes and parameter values. Equal sample sizes
were set as (n1, n2) = (10, 10), (20, 20), (30, 30), (50, 50), or (100, 100) and unequal sample
sizes as (10, 20), (30, 20), (30, 50), or (100, 50) while the values for the shape parameters
(α1, α2) were set as (0.25, 0.25), (0.25, 0.50), (0.25, 1.00), (0.50, 0.50), (0.50, 1.00), or (1.00, 1.00).
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Without loss of generality, scale parameters β1 and β2 were set as 1 in all scenarios. The
confidence intervals were calculated at the nominal level of 0.95. All simulation results
were obtained by running 1000 replications with K = 3000 and B = 1000 for GFCI and
HPD-PI while M = 1000 for BCI and HPD-KH. According to Wang et al. [16], BCI and
HPD-KH were considered with r1 = r2 = 2 and hyperparameters ai = bi = ci = di = 10−4.
The criteria for evaluating the performances of the proposed methods are their coverage
probabilities and average lengths. The method with a coverage probability greater than or
close to the nominal level 0.95 and with the narrowest average length was chosen as the
best performing method for a particular scenario.

Tables 1 and 2 report the simulation results, while Figures 1 and 2 summarize the
coverage probabilities and average lengths in Tables 1 and 2. The simulation results from
Tables 1 and 2 indicate that the coverage probabilities of the four methods were greater
than or close to 0.95 under all configurations. In addition, it was found that the differences
in coverage probability among the four methods were very small. Moreover, HPD-PI
provided the narrowest average lengths while BCI provided the longest ones under all
circumstances. The average lengths of HPD-IP were mostly narrower than GFCI, while
the average lengths of HPD-KH were mostly narrower than those of BCI. Moreover, the
average length of the four methods decreased as the sample sizes (n1, n2) increased.

Table 1. Coverage probabilities and average lengths of the 95% confidence interval for the ra-
tio of variances of two BS distributions with equal sample sizes (n1 = n2) constructed via the
various methods.

Coverage Probability Average Length

(n1, n2) (α1, α2) GFCI BCI HPD-PI HPD-KH GFCI BCI HPD-PI HPD-KH

(10, 10) (0.25, 0.25) 0.945 0.950 0.941 0.943 6.0636 6.6395 4.7856 5.1260
(0.25, 0.50) 0.922 0.939 0.935 0.941 1.4846 1.6160 1.1602 1.2418
(0.25, 1.00) 0.923 0.925 0.936 0.946 0.3996 0.4311 0.3032 0.3231
(0.50, 0.50) 0.932 0.944 0.932 0.938 11.447 12.746 8.0329 8.7739
(0.50, 1.00) 0.942 0.949 0.943 0.949 2.4825 2.7433 1.7235 1.8892
(1.00, 1.00) 0.931 0.935 0.949 0.951 46.848 50.345 26.871 28.443

(20, 20) (0.25, 0.25) 0.940 0.947 0.948 0.948 2.8954 3.0005 2.5508 2.6280
(0.25, 0.50) 0.925 0.923 0.937 0.941 0.6826 0.7011 0.5969 0.6111
(0.25,1.00) 0.942 0.944 0.943 0.950 0.1414 0.1450 0.1201 0.1227
(0.50, 0.50) 0.939 0.940 0.935 0.939 4.3582 4.5050 3.6126 3.7198
(0.50, 1.00) 0.932 0.942 0.935 0.939 0.8850 0.9149 0.7180 0.7383
(1.00, 1.00) 0.941 0.946 0.944 0.952 9.2748 9.4142 6.8587 6.9256

(30, 30) (0.25, 0.25) 0.938 0.939 0.942 0.941 2.0301 2.0760 1.8599 1.8937
(0.25, 0.50) 0.932 0.932 0.936 0.940 0.4906 0.4988 0.4469 0.4524
(0.25, 1.00) 0.942 0.945 0.934 0.934 0.0945 0.0960 0.0844 0.0851
(0.50, 0.50) 0.954 0.958 0.941 0.945 2.7533 2.8141 2.4221 2.4720
(0.50, 1.00) 0.946 0.953 0.948 0.952 0.5621 0.5713 0.4841 0.4910
(1.00, 1.00) 0.946 0.945 0.948 0.947 5.5838 5.6471 4.4982 4.5328

(50, 50) (0.25, 0.25) 0.936 0.936 0.939 0.941 1.4400 1.4564 1.3603 1.3747
(0.25, 0.50) 0.943 0.947 0.939 0.938 0.3322 0.3354 0.3127 0.3156
(0.25, 1.00) 0.954 0.957 0.953 0.956 0.0658 0.0663 0.0610 0.0613
(0.50, 0.50) 0.953 0.955 0.945 0.951 1.9450 1.9674 1.7917 1.8075
(0.50, 1.00) 0.954 0.953 0.946 0.946 0.3509 0.3548 0.3187 0.3212
(1.00, 1.00) 0.948 0.952 0.944 0.944 3.2806 3.2875 2.8341 2.8475

(100, 100) (0.25,0.25) 0.945 0.949 0.948 0.936 0.9518 0.9558 0.9197 0.9242
(0.25, 0.50) 0.949 0.953 0.937 0.943 0.2175 0.2183 0.2102 0.2106
(0.25, 1.00) 0.964 0.959 0.964 0.962 0.0423 0.0424 0.0405 0.0406
(0.50, 0.50) 0.938 0.934 0.943 0.951 1.2308 1.2399 1.1757 1.1813
(0.50, 1.00) 0.941 0.947 0.954 0.956 0.2265 0.2270 0.2144 0.2151
(1.00, 1.00) 0.953 0.952 0.953 0.956 1.8445 1.8532 1.7034 1.7082

GFCI, the generalized fiducial confidence interval; BCI, the Bayesian credible interval; HPD-PI, the highest
posterior density interval based on a prior with partial information; HPD-KH, the highest posterior density
interval based on the proper prior with known hyperparameters.
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Table 2. Coverage probabilities and average lengths of the 95% confidence interval for the ratio
of variances of two BS distributions with unequal sample sizes (n1 6= n2) constructed via the
various methods.

Coverage Probability Average Length

(n1, n2) (α1, α2) GFCI BCI HPD-PI HPD-KH GFCI BCI HPD-PI HPD-KH

(10,20) (0.25,0.25) 0.943 0.953 0.927 0.941 4.2072 4.8670 3.3413 3.7992
(0.25,0.50) 0.930 0.938 0.924 0.938 1.0368 1.1881 0.8214 0.9220
(0.25,1.00) 0.933 0.948 0.931 0.946 0.1935 0.2184 0.1506 0.1679
(0.50,0.50) 0.926 0.940 0.922 0.937 8.1924 9.6088 5.7758 6.7158
(0.50,1.00) 0.945 0.952 0.938 0.954 1.4323 1.6745 1.0112 1.1602
(1.00,1.00) 0.935 0.948 0.930 0.949 27.601 30.801 15.728 17.728

(30,20) (0.25,0.25) 0.948 0.951 0.946 0.953 2.4309 2.4642 2.2196 2.2377
(0.25,0.50) 0.939 0.944 0.958 0.954 0.5910 0.5920 0.5342 0.5325
(0.25,1.00) 0.945 0.948 0.940 0.947 0.1273 0.1273 0.1113 0.1107
(0.50,0.50) 0.936 0.937 0.939 0.946 3.4294 3.4549 2.9905 3.0062
(0.50,1.00) 0.940 0.947 0.952 0.952 0.6915 0.6953 0.5865 0.5876
(1.00,1.00) 0.946 0.947 0.949 0.949 7.1486 7.0966 5.6707 5.6205

(30,50) (0.25,0.25) 0.951 0.952 0.949 0.952 1.8153 1.8767 1.6645 1.7200
(0.25,0.50) 0.936 0.938 0.936 0.945 0.4030 0.4144 0.3683 0.3779
(0.25,1.00) 0.943 0.946 0.944 0.950 0.0743 0.0764 0.0672 0.0689
(0.50,0.50) 0.952 0.954 0.945 0.955 2.4422 2.5389 2.1544 2.2279
(0.50,1.00) 0.954 0.953 0.950 0.955 0.4475 0.4633 0.3915 0.4032
(1.00,1.00) 0.945 0.947 0.942 0.945 4.4938 4.6107 3.6559 3.7389

(100,50) (0.25,0.25) 0.936 0.937 0.936 0.933 1.1848 1.1830 1.1426 1.1422
(0.25,0.50) 0.942 0.947 0.947 0.945 0.2873 0.2858 0.2759 0.2741
(0.25,1.00) 0.945 0.944 0.943 0.938 0.0581 0.0577 0.0547 0.0544
(0.50,0.50) 0.939 0.942 0.941 0.936 1.5533 1.5555 1.4779 1.4747
(0.50,1.00) 0.947 0.951 0.949 0.948 0.3059 0.3039 0.2854 0.2832
(1.00,1.00) 0.959 0.957 0.956 0.954 2.4564 2.4478 2.2328 2.2283

GFCI, the generalized fiducial confidence interval; BCI, the Bayesian credible interval; HPD-PI, the highest
posterior density interval based on a prior with partial information; HPD-KH, the highest posterior density
interval based on the proper prior with known hyperparameters.

Figure 1. A summary of the coverage probabilities of the methods in Tables 1 and 2. (A) Equal sample
sizes and (B) unequal sample sizes.

Figure 2. A summary of the average lengths of the methods in Tables 1 and 2. (A) Equal sample sizes
and (B) unequal sample sizes.

4. Application of the Methods to Real Fatigue Life Data

To illustrate the effectiveness of the confidence interval construction methods proposed
in this study in a real-life scenario, we used real datasets concerning the fatigue life of
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6061-T6 aluminum coupons that were cut parallel to the rolling direction and oscillated at
18 cycles per second [5]. As reported in Table 3, there are two groups consisting of 101 and
102 observations with maximum stress levels per cycle of 21,000 and 26,000 psi, respectively
(the summary statistics of each group are provided in Table 4). Hence, the ratio of variances
was 0.0254. We chose ri = 2 and ai = bi = ci = di = 10−4, where i = 1, 2, for the Bayesian
credible interval and HPD-KH.

Table 3. Fatigue lifetime data of 6061-T6 aluminum coupons.

Group 1 370 706 716 746 785 797 844 855 858 886 886
930 960 988 990 1000 1010 1016 1018 1020 1055 1085
1102 1102 1108 1115 1120 1134 1140 1199 1200 1200 1203
1222 1235 1238 1252 1258 1262 1269 1270 1290 1293 1300
1310 1313 1315 1330 1355 1390 1416 1419 1420 1420 1450
1452 1475 1478 1481 1485 1502 1505 1513 1522 1522 1530
1540 1560 1567 1578 1594 1602 1604 1608 1630 1642 1674
1730 1750 1750 1763 1768 1781 1782 1792 1820 1868 1881
1890 1893 1895 1910 1923 1940 1945 2023 2100 2130 2215
2268 2440

Group 2 233 258 268 276 290 310 312 315 318 321 321
329 335 336 338 338 342 342 342 344 349 350
350 351 351 352 352 356 358 358 360 362 363
366 367 370 370 372 372 374 375 376 379 379
380 382 389 389 395 396 400 400 400 403 404
406 408 408 410 412 414 416 416 416 420 422
423 426 428 432 432 433 433 437 438 439 439
443 445 445 452 456 456 460 464 466 468 470
470 473 474 476 476 486 488 489 490 491 503
517 540 560

Table 4. Summary statistics for the fatigue lifetime data of 6061-T6 aluminum coupons.

Group n Min. Median Mean Max. Variance

1 101 370 1416 1400.9110 2440 153,134.5
2 102 233 400 397.8824 560 3834.3030

The results for the 95% confidence interval for the ratio of variances reported in
Table 5 indicate that the length provided by HPD-PI was the narrowest while that of the
Bayesian credible interval was the longest. These results are in accordance with those from
the simulation studies where (n1, n2) = (100, 100). In addition, the confidence intervals
constructed by using the various methods did not contain 1, and so it can be concluded
that there is no significant difference in terms of variance for the fatigue lifetime of 6061-T6
aluminum coupons with maximum stress per cycle of 21,000 and 26,000 psi, respectively.

Table 5. The 95% confidence interval for the ratio of variances of the fatigue lifetime data of 6061-T6
aluminum coupons with maximum stress levels per cycle of 21,000 and 26,000 psi.

Methods Interval Length

GFCI 0.0138–0.0332 0.0193
BCI 0.0138–0.0337 0.0199
HPD-PI 0.0132–0.0315 0.0184
HPD-KH 0.0126–0.0315 0.0189

GFCI, the generalized fiducial confidence interval; BCI, the Bayesian credible interval; HPD-PI, the highest
posterior density interval based on a prior with partial information; HPD-KH, the highest posterior density
interval based on the proper prior with known hyperparameters.

5. Conclusions

Four methods, namely GFCI, BCI, HPD-PI, and HPD-KH, were proposed for con-
structing the confidence interval for the ratio of variances of two BS distributions. A Monte
Carlo simulation study was conducted to assess their performances based on their coverage
probabilities and average lengths. The simulation study results indicate that the coverage
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probabilities of all of the methods were greater than or close to the nominal level of 0.95.
However, HPD-PI outperformed the others by providing the narrowest average lengths in
all of the scenarios studied. In addition, the results of using fatigue lifetime data of 6061-T6
aluminum coupons coincided with those from the simulation study. Therefore, HPD-PI
can be recommended for constructing the confidence interval for the ratio of variances of
two BS distributions.
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