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Abstract: In recent years, the m-polar fuzziness structure and the cubic structure have piqued the
interest of researchers and have been commonly implemented in algebraic structures like groupoids,
semigroups, groups, rings and lattices. The cubic m-polar (CmP) structure is a generalization of
m-polar fuzziness and cubic structures. The intent of this research is to extend the CmP structures
to the theory of groups and semigroups. In the present research, we preface the concept of the
CmP groups and probe many of its characteristics. This concept allows the membership grade and
non-membership grade sequence to have a set of m-tuple interval-valued real values and a set of
m-tuple real values between zero and one. This new notation of group (semigroup) serves as a bridge
among CmP structure, classical set and group (semigroup) theory and also shows the effect of the
CmP structure on a group (semigroup) structure. Moreover, we derive some fundamental properties
of CmP groups and support them by illustrative examples. Lastly, we vividly construct semigroup
and groupoid structures by providing binary operations for the CmP structure and provide some
dominant properties of these structures.

Keywords: m-polar structure; cubic m-polar structure; cubic m-polar group; cubic m-polar semigroup
(groupoid) structure

MSC: 06F35; 03G25; 03B52; 03B05

1. Introduction

An algebraic (system) structure is a random set with one or more finitary operations
defined in it. Algebraic structures include a wide range of structures such as semigroups,
groups, rings, fields, vector spaces, lattices, categories and so on. In mathematics, the
theory of groups is one of the most critical aspects of algebra. This theory provides a useful
framework for analyzing an element that appears in the symmetric form. Group theory is
inextricably linked to symmetry in some areas of science such as geometry and chemistry. In
some areas of chemistry, it is an essential tool to classify and study the symmetries of atoms,
molecules, crystal structure and regular polyhedral structure (see [1,2]). Semigroup theory,
a new algebraic structure, is a thriving branch of modern algebra and it is a generalization
of a group because a semigroup is a non-empty set together with an associative binary
operation and need not have an element which has an inverse. Algebraic structures have
been used in numerous domains; in particular, a semigroup is utilized in the theory of
automata, network analogy, formal languages and so on.

There are numerous things inherently ambiguous, uncertain and inaccurate in the
real world, and these things cannot be dealt with effectively using mathematical tech-
niques that are traditionally used to deal with vagueness and uncertainties. However,
one can use a wider range of pioneering theories, such as the theory of fuzzy structures
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(FSs) [3], the theory of bipolar fuzzy (BF ) structures [4], the theory of interval-valued
fuzzy (IVF ) structures [5] and the theory of cubic structures (CSs) [6] for dealing with
vagueness and uncertainties. Zadeh [3] demonstrated the concept of FSs in 1965 as an
essential mathematical structure to characterize and assemble the objects/elements whose
boundary is ambiguous. This concept permits the membership degree (MD) of a crisp
object/element over the interval I = [0, 1]; that is, every crisp object/element assigns a
degree of membership. FSs have grown stupendously over the years, giving rise to the
idea of fuzzy groups proposed in [7]. After that, this concept was extended to many hybrid
structures such as the IVF structure which permits theMD and non-membership degree
(N −MD) of a crisp object/element over the interval [0, 1] and CS combined with IVF
structure and FS , which permits theMD and N −MD of a crisp object/element over
the intervals [I] = [[0, 1]] and I = [0, 1], respectively. As a new hybrid structure of FSs, the
theory of bipolar and intuitionistic fuzzy structures is well known and is propounded by
Zhang [4] and Atanassov [8], respectively. In [4], Zhang used a grade of membership which
is a positive fuzzy value and a grade of non-membership which is a negative fuzzy value
for each ordinary object. In [8], Atanassov used a grade of membership and a grade of non-
membership for each ordinary object, where the sum of them is less than or equal to one.
After that, these hybrid aspects of FSs were connected to algebraic structures, especially in
group theory (see [9–11]). For more information about hybrid fuzziness structures, see [12].

In 2014, Chen and co-workers [13] presented the conceptualization of m-polar fuzzy
(mPF ) structures by using a grade of membership which is an m-tuple fuzzy value for
each object. This concept stems from ordinary sets and FSs, and it is one of the most
popular extensions of BF structures. The notions of FSs and BF structures are specific
cases of the notion of mPF structure; thus, an mPF structure differs from a FS and a BF
structure in the sense that each object contains m-components. Following the introduction
of the mPF structure by Chen and co-workers [13], a lot of publications on generalizations
of mPF structures were conducted, for instance, polarity of generalized neutrosophic
sets [14], polarity of IVF structures [15] and polarity of intuitionistic (spherical) fuzzy
structures [16,17].

Following the generalization of mPF structures, numerous mathematicians used the
concept of generalized mPF structures in a wide range of scientific and technological fields.
In group theory, the mPF group was first implemented by Farooq and co-workers [18].
They proposed the notion of the mPF subgroup and described the concepts of the mPF
coset and the mPF quotient subgroup. In addition, the mPF structure was studied by
Al-Masarwah and Ahmad [19,20] in BCK and BCI algebras, Sarwar and Akram [21] in
matroid theory, and Akram and Shahzadi [22] in Hypergraphs. In polarity of hybrid
fuzziness structures, Kang et al. [16], Muhiuddin and Al-Kadi [23], Dogra and Pal [24]
and Borzooei et al. [14] applied multipolar intuitionistic fuzzy structures, multipolar IVF
structures, picture mPF structures and multipolar generalized neutrosophic structures,
respectively, to BCK and BCI algebras. Uluçay and S. ahin [25] constructed a bridge among
neutrosophic multiset theory, classical set theory and classical group theory. They demon-
strated the effect of neutrosophic multisets on a group structure. Basumatary et al. [26]
studied and discussed several results in neutrosophic multi-topological group theory. In
addition, many researchers studied some real-life applications based on polarity of hybrid
fuzziness structures such as Siraj et al. [27], Akram et al. [28,29] and Hashmi et al. [30].

As a combination between CS and mPF structure and to solve various complex and
uncertain problems, Riaz and Hashmi [31] in 2019 propounded the theory of the CmP
structure by using a grade of N −MD which is a multi-fuzzy value and a grade ofMD
which is a multi-fuzzy interval value for each ordinary object. This notion manipulates not
only multi-attributed information but also cubic information. After that, Garg et al. [32]
presented some new laws and produced some results concerning the CmP structure. In
real-life issues, they applied the concept of the CmP structure in medical diagnosis and
pattern recognition. In [33,34], Riaz et al. studied the topological structures and some real-
life applications based on the CmP structure. In the context of graph theory, Muhiuddin
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and co-workers [35] initiated and studied the polarity of cubic graphs. Al-Masarwah and
Alshehri [36] for the first time applied the theory of the CmP structure to algebraic structures,
especially BCK/BCI algebras. They originated the concepts of CmP subalgebras and CmP
(closed) ideals and discussed many dominant properties of these concepts. Moreover, they
established the CmP extension property for a CmP ideal. By extending the works of [11,18]
and inspired by the above works, the idea of the CmP groups is presented by combining the
notions of mPF groups and cubic groups, and characterizations of them according to the
properties of CmP structures are provided in this present article. Figure 1 depicts a novel
hybrid extension of cubic groups and mPF groups known as CmP groups to demonstrate
the novelty of this extended algebraic structure.

 

Fuzziness groups  

Rosenfeld (1971) 

Bipolar fuzziness groups 

Mahmood and Munir 

(2013) 

Intuitionistic fuzziness 

groups 

Biswas (1989) 

m-polar fuzziness 

groups 

Farooq et al. (2016) 

Cubic groups 

Jun et al. (2011) 

Cubic m-polar 

groups 

Al-Masarwah et al. 

 (This paper) 

Figure 1. Contributions toward CmP groups. (Biswas [9], Jun [11], Rosenfeld [7], Mahmood and
Munir [10], Farooq et al. [18]).

This work is the first attempt to investigate and utilize the CmP structures in group
theory. The proposed work is arranged as follows. In Section 2, some key principles with
respect to groups and CmP structures are given to understand the proposed work. In
Section 3, we preface the idea of the CmP groups and probe many of its characteristics. In
this regard, we show the effect of CmP structures on a group theory. Then, we derive some
fundamental results of CmP groups and support them by illustrative examples. In Section 4,
we vividly construct semigroup and groupoid structures by providing binary operations
for the CmP structure and provide some dominant properties of these structures. Finally,
the conclusion and some potential future studies of this work are offered in Section 5.

Table 1 contains a list of acronyms used in the study article.

Table 1. List of acronyms.

Acronyms Representation

FS(s) Fuzzy structure(s)
BF Bipolar fuzzy
IVF Interval-valued fuzzy
CS(s) Cubic structure(s)
mPF m-polar fuzzy
CmP Cubic m-polar
MD Membership degree

N −MD Non-membership degree
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2. Basic Definitions

In this segment, we review some key notions for each area, i.e., mPF structure [13],
CS [6], IVF structure [5] and CmP structure [31]. In what follows, let I be the interval
[0, 1].

A groupoid consists of a non-empty set equipped with a binary operation. A semi-
group is an associative groupoid A, i.e., (yr)s = y(rs) for all y, r, s ∈ A. A monoid is a
semigroup B with a neutral element e ∈ B that has the property ey = ye = y for all
y ∈ B. A group is a monoid G such that for all y ∈ G there exists an inverse y−1 such that
y−1y = yy−1 = e.

An interval number õ is defined as [o−, o+], where 0 ≤ o− ≤ o+ ≤ 1. The set of
all intervals is symbolized by [I]. The interval [o, o] is indicated by the number o ∈ I in
what follows. For the interval numbers õl = [o−l , o+l ], ε̃ l = [ε−l , ε+l ] ∈ [I], where l ∈ ∆.
We describe

• õl∧ε̃ l = [o−l ∧ ε−l , o+l ∧ ε+l ],
• õl∨ε̃ l = [o−l ∨ ε−l , o+l ∨ ε+l ],
• õ1 � õ2 ⇔ o−1 ≤ o−2 and o+1 ≤ o+2 ,
• õ1 = õ2 ⇔ o−1 = o−2 and o+1 = o+2 .

To say that õ1 ≺ õ2 (resp. õ1 � õ2), we mean õ1 � õ2 and õ1 6= õ2 (resp. õ1 � õ2 and
õ1 6= õ2).

Definition 1 ([5]). An IVF structure ξ̃ of G( 6= φ) is a mapping

ξ̃ : G→ [I]

defined as
ξ̃ = {〈y, ξ+(y), ξ−(y)〉 | y ∈ G},

where ξ+ : G→ I and ξ− : G→ I are FSs on G.

Definition 2 ([6]). A CS of G( 6= φ) is a mapping

C(ξ̃,ζ) : G→ [I]× I

defined as
C(ξ̃,ζ) = {〈y, ξ̃(y), ζ(y)〉 | y ∈ G},

where ξ̃ : G→ [I] is an IVF structure on G and ζ : G→ I is a FS on G.

Definition 3 ([13]). An mPF structure (or an Im structure) of G( 6= φ) is a mapping

C̃
ζ̃m

: G→ Im

defined as

C̃
ζ̃m

=
{〈

y, ζ̃(j)(y)
〉
| y ∈ G and j ∈ {1, 2, . . . , m}

}
,

where for j ∈ {1, 2, . . . , m}, ζ̃(j) : G→ Im is the j-th projection mapping.

As a connection between an mPF structure and a group theory, the idea of an mPF
group was first implemented by Farooq and co-workers [18] as follows:

Definition 4. An mPF structure C̃
ζ̃m

is called an mPF group of G if for all y, z ∈ G,

(1) ζ̃(j)(yz) ≥ ζ̃(j)(y) ∧ ζ̃(j)(z),

(2) ζ̃(j)(y−1) ≥ ζ̃(j)(y),

for all j ∈ {1, 2, . . . , m}.
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As a combination between a CS and an mPF structure, Riaz and Hashmi [31] pro-
pounded the theory of CmP structure as follows:

Definition 5. A CmP structure of G( 6= φ) is a mapping

Ξ̃
(˜̃ξ,ζ̃)m

: G→ [I]m × Im

defined as

Ξ̃
(˜̃ξ,ζ̃)m

=
{〈

y,
(˜̃ξ(j)

(y), ζ̃(j)(y)
)〉
| y ∈ G and j ∈ {1, 2, . . . , m}

}
,

where for j ∈ {1, 2, . . . , m}, ˜̃ξ(j)
: G→ [I]m and ζ̃(j) : G→ Im are the j-th projection mappings.

That is,

Ξ̃
(˜̃ξ,ζ̃)m

=
{〈

y,
(
[ξ̃(−j)(y), ξ̃(+j)(y)], ζ̃(j)(y)

)〉
| y ∈ G and j ∈ {1, 2, . . . , m}

}
,

where ξ̃(−j), ξ̃(+j) and ζ̃(j) are FSs of G with ξ̃(−j) ≤ ξ̃(+j) for all j ∈ {1, 2, . . . , m}.

Definition 6 ([31]). Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures over G. Then the equal

operation for these structures is defined as follows: Ξ̃
(˜̃ξ,ζ̃)m

= Ξ̃
(˜̃γ,δ̃)m

⇔ ˜̃ξ(y) = ˜̃γ(y) and

ζ̃(y) = δ̃(y) for all y ∈ G.
That is, Ξ̃

(˜̃ξ,ζ̃)m
= Ξ̃

(˜̃γ,δ̃)m
⇔ ξ̃(−j)(y) = γ̃(−j)(y), ξ̃(+j)(y) = γ̃(+j)(y) and ζ̃(j)(y) =

δ̃(j)(y) for all y ∈ G for all j ∈ {1, 2, ..., m} and y ∈ G.

Definition 7 ([31]). Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures over G. Then the subset for

these structures under P-ordering and R-ordering operations, respectively, is defined as follows:

(1) Ξ̃
(˜̃ξ,ζ̃)m

⊆̃PΞ̃
(˜̃γ,δ̃)m

⇔ ˜̃ξ(y) � ˜̃γ(y) and ζ̃(y) ≤ δ̃(y) for all y ∈ G.

That is, Ξ̃
(˜̃ξ,ζ̃)m

⊆̃PΞ̃
(˜̃γ,δ̃)m

⇔ ξ̃(−j)(y) ≤ γ̃(−j)(y), ξ̃(+j)(y) ≤ γ̃(+j)(y) and ζ̃(j)(y) ≤

δ̃(j)(y) for all j ∈ {1, 2, ..., m} and y ∈ G.

(2) Ξ̃
(˜̃ξ,ζ̃)m

⊆̃RΞ̃
(˜̃γ,δ̃)m

⇔ ˜̃ξ(y) � ˜̃γ(y) and ζ̃(y) ≥ δ̃(y) for all y ∈ G.

That is, Ξ̃
(˜̃ξ,ζ̃)m

⊆̃PΞ̃
(˜̃γ,δ̃)m

⇔ ξ̃(−j)(y) ≤ γ̃(−j)(y), ξ̃(+j)(y) ≤ γ̃(+j)(y) and ζ̃(j)(y) ≥

δ̃(j)(y) for all j ∈ {1, 2, ..., m} and y ∈ G.

3. Cubic m-Polar Groups

In this segment, we initiate CmP groups and normal CmP subgroups, and investigate
their fundamental properties. Throughout this article, let (G, �) be a group with the identity
element “e” and a binary operation “�”. Here, y−1 is the inverse of y ∈ G, and we use yz
instead of y � z ∀y, z ∈ G.

Definition 8. Let G be a group and let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP structure. Then, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP
groupoid over G if for all y, z ∈ G,

(1) ˜̃ξ(j)
(yz) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z),

(2) ζ̃(j)(yz) ≤ ζ̃(j)(y) ∨ ζ̃(j)(z)

for all j ∈ {1, 2, . . . , m}.
A CmP structure Ξ̃

(˜̃ξ,ζ̃)m
is a CmP group over G if the CmP groupoid satisfies:
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(1) ˜̃ξ(j)
(y−1) � ˜̃ξ(j)

(y),

(2) ζ̃(j)(y−1) ≤ ζ̃(j)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}.

Example 1. Let (Z3,+3) be a group and Ξ̃
(˜̃ξ,ζ̃)3

: Z3 → [I]3 × I3 be a C3P structure over Z3

defined by:

Ξ̃
(˜̃ξ,ζ̃)3

=



〈
0,

(
[0.8, 0.9], 0.2

)
,
(
[0.7, 0.8], 0.3

)
,(

[0.6, 0.7], 0.4
)〉

,〈
1,

(
[0.7, 0.9], 0.3

)
,
(
[0.6, 0.8], 0.4

)
,(

[0.4, 0.6], 0.5
)〉

,〈
2,

(
[0.7, 0.9], 0.3

)
,
(
[0.6, 0.8], 0.4

)
,(

[0.4, 0.6], 0.5
)〉

.


It is not difficult to demonstrate that Ξ̃

(˜̃ξ,ζ̃)3
is a C3P group over Z3. However, the C3P structure

Ξ̃
(˜̃γ,δ̃)3

=



〈
0,

(
[0.6, 0.8], 0.4

)
,
(
[0.7, 0.8], 0.3

)
,(

[0.6, 0.7], 0.4
)〉

,〈
1,

(
[0.7, 0.9], 0.3

)
,
(
[0.6, 0.8], 0.4

)
,(

[0.4, 0.6], 0.5
)〉

,〈
2,

(
[0.7, 0.9], 0.3

)
,
(
[0.6, 0.8], 0.4

)
,(

[0.4, 0.6], 0.5
)〉

.


is not a C3P group of Z3, since ˜̃γ(1)

(0) = ˜̃γ(1)
(1+ 2) = [0.6, 0.8] � [0.7, 0.9] = ˜̃γ(1)

(1)∧˜̃γ(1)
(2)

and δ̃(1)(0) = δ̃(1)(1 + 2) = 0.4 ≥ 0.3 = δ̃(1)(1) ∨ δ̃(1)(2).

Definition 8 and Example 1 illustrate that a CmP group is an extension case of a cubic
group and an mPF group.

Next, we define the inverse of a CmP group over G.

Definition 9. Let G be a group and let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP structure. Then, Ξ̃−1
(˜̃ξ,ζ̃)m

is defined as:

Ξ−1
(˜̃ξ,ζ̃)m

=
{〈

y,
(˜̃ξ(j)−1

(y), ζ̃(j)−1
(y)
)〉
| y ∈ G and j ∈ {1, 2, . . . , m}

}
,

where ˜̃ξ(j)−1

(y) = ˜̃ξ(j)
(y−1) = [ξ̃(−j)(y−1), ξ̃(+j)(y−1)]

and
ζ̃(j)−1

(y) = ζ̃(j)(y−1)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Here, Ξ̃−1
(˜̃ξ,ζ̃)m

is the inverse of Ξ̃
(˜̃ξ,ζ̃)m

over G.

The next theorem suggests the necessary and sufficient condition under which the
inverse of the CmP group will be a CmP group.

Theorem 1. Let G be a group. A CmP structure Ξ̃
(˜̃ξ,ζ̃)m

over G is a CmP group if and only if

Ξ̃−1
(˜̃ξ,ζ̃)m

is a CmP group over G.
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Proof. Let y, z ∈ G and Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group over G. Then,

˜̃ξ(j)−1

(yz) = ˜̃ξ(j)
((yz)−1)

= ˜̃ξ(j)
(z−1y−1)

� ˜̃ξ(j)
(z−1)∧˜̃ξ(j)

(y−1)

= ˜̃ξ(j)−1

(z)∧˜̃ξ(j)−1

(y)

and

ζ̃(j)−1
(yz) = ζ̃(j)((yz)−1)

= ζ̃(j)(z−1y−1)

≤ ζ̃(j)(z−1) ∨ ζ̃(j)(y−1)

= ζ̃(j)−1
(z) ∨ ζ̃(j)−1

(y).

Moreover,

˜̃ξ(j)−1

(y−1) = ˜̃ξ(j)
((y−1)−1) � ˜̃ξ(j)

(y−1) = ˜̃ξ(j)−1

(y)

and

ζ̃(j)−1
(y−1) = ζ̃(j)((y−1)−1) ≤ ζ̃(j)(y−1) = ζ̃(j)−1

(y)

for all y, z ∈ G and j ∈ {1, 2, . . . , m}. Thus, Ξ̃−1
(˜̃ξ,ζ̃)m

is a CmP group over G.

Conversely, let Ξ̃−1
(˜̃ξ,ζ̃)m

be a CmP group over G. Then,

˜̃ξ(j)
(yz) = ˜̃ξ(j)

(((yz)−1)−1)

= ˜̃ξ(j)−1

((yz)−1)

= ˜̃ξ(j)−1

(z−1y−1)

� ˜̃ξ(j)−1

(z−1)∧˜̃ξ(j)−1

(y−1)

= ˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

and

ζ̃(j)(yz) = ζ̃(j)(((yz)−1)−1)

= ζ̃(j)−1
((yz)−1)

= ζ̃(j)−1
(z−1y−1)

≤ ζ̃(j)−1
(z−1) ∨ ζ̃(j)−1

(y−1)

= ζ̃(j)(y) ∨ ζ̃(j)(z).

Moreover,

˜̃ξ(j)
(y−1) = ˜̃ξ(j)−1

(y) = ˜̃ξ(j)−1

((y−1)−1) � ˜̃ξ(j)−1

(y−1) � ˜̃ξ(j)
(y)

and
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ζ̃(j)(y−1) = ζ̃(j)−1
(y) = ζ̃(j)−1

((y−1)−1) ≤ ζ̃(j)−1
(y−1) ≤ ζ̃(j)(y)

for all y, z ∈ G and j ∈ {1, 2, . . . , m}. Hence, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group over G.

Theorem 2. Let G be a group and Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group. Then,

(i) ˜̃ξ(j)
(e) � ˜̃ξ(j)

(y) and ζ̃(j)(e) ≤ ζ̃(j)(y) ∀y ∈ G and j ∈ {1, 2, . . . , m}.

(ii) ˜̃ξ(j)
(y−1) = ˜̃ξ(j)

(y) and ζ̃(j)(y−1) = ζ̃(j)(y) ∀y ∈ G and j ∈ {1, 2, . . . , m}.

Proof. (i) Since Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group over G, then

˜̃ξ(j)
(e) = ˜̃ξ(j)

(yy−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(y−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(y)

= ˜̃ξ(j)
(y)

and

ζ̃(j)(e) = ζ̃(j)(yy−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(y−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(y)

= ζ̃(j)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}.

(ii) Since Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group over G, therefore ˜̃ξ(j)
(y−1) � ˜̃ξ(j)

(y) and ζ̃(j)(y−1) ≤

ζ̃(j)(y) for all y ∈ G and j ∈ {1, 2, . . . , m}. Replacing y by y−1, it is obtained that ˜̃ξ(j)
(y) �˜̃ξ(j)

(y−1) and ζ̃(j)(y) ≤ ζ̃(j)(y−1) for all y ∈ G and j ∈ {1, 2, . . . , m}. Thus, ˜̃ξ(j)
(y−1) =˜̃ξ(j)

(y) and ζ̃(j)(y−1) ≤ ζ̃(j)(y) ∀y ∈ G and j ∈ {1, 2, . . . , m}.

Theorem 3. Let G be a group and let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP structure of G. If Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group,

then ˜̃ξ(j)
(yn) � ˜̃ξ(j)

(y) and ζ̃(j)(yn) ≤ ζ̃(j)(y) for all y ∈ G and j ∈ {1, 2, . . . , m}.

Proof. Since Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group over G, then

˜̃ξ(j)
(yn) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(yn−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(y)∧...∧˜̃ξ(j)
(y)

= ˜̃ξ(j)
(y)

and

ζ̃(j)(yn) ≤ ζ̃(j)(y) ∨ ζ̃(j)(yn−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(y) ∨ ...∨ ζ̃(j)(y)

= ζ̃(j)(y)
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for all y ∈ G and j ∈ {1, 2, . . . , m}.

The next Theorem suggests the necessary and sufficient condition under which a CmP
structure will be a CmP group.

Theorem 4. Let G be a group and let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP structure of G. Then, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP

group if and only if ˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z) and ζ̃(j)(yz−1) ≤ ζ̃(j)(y) ∨ ζ̃(j)(y) for all

y, z ∈ G and j ∈ {1, 2, . . . , m}.

Proof. Since Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group over G, therefore

˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

and

ζ̃(j)(yz−1) ≤ ζ̃(j)(y) ∨ ζ̃(j)(z−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(z)

for all y ∈ G and j ∈ {1, 2, . . . , m}.
Conversely, assume the given conditions are satisfied. Then,

˜̃ξ(j)
(y−1) = ˜̃ξ(j)

(ey−1)

� ˜̃ξ(j)
(e)∧˜̃ξ(j)

(y)

= ˜̃ξ(j)
(y)

and

ζ̃(j)(y−1) = ζ̃(j)(ey−1)

≤ ζ̃(j)(e) ∨ ζ̃(j)(y)

= ζ̃(j)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Moreover,

˜̃ξ(j)
(yz) = ˜̃ξ(j)

(y(z−1)−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(z−1)

� ˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

and

ζ̃(j)(yz) = ζ̃(j)(y(z−1)−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(z−1)

≤ ζ̃(j)(y) ∨ ζ̃(j)(z)

for all y, z ∈ G and j ∈ {1, 2, . . . , m}. Hence, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group of G.

Theorem 5. Let G be a group and Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group. Then, the following are equivalent for

all y, z ∈ G and j ∈ {1, 2, . . . , m},



Symmetry 2022, 14, 1493 10 of 22

(i) ˜̃ξ(j)
(yz) = ˜̃ξ(j)

(zy) and ζ̃(j)(yz) = ζ̃(j)(zy).

(ii) ˜̃ξ(j)
(yzy−1) = ˜̃ξ(j)

(z) and ζ̃(j)(yzy−1) = ζ̃(j)(z).

(iii) ˜̃ξ(j)
(yzy−1) � ˜̃ξ(j)

(z) and ζ̃(j)(yzy−1) ≤ ζ̃(j)(z).

(iv) ˜̃ξ(j)
(yzy−1) � ˜̃ξ(j)

(z) and ζ̃(j)(yzy−1) ≥ ζ̃(j)(z).

Proof. Let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group and y, z ∈ G. Then, for all j ∈ {1, 2, . . . , m}, we have

(i)⇒ (ii) :

˜̃ξ(j)
(yzy−1) = ˜̃ξ(j)

(y−1yz) = ˜̃ξ(j)
(z) and ζ̃(j)(yzy−1) = ζ̃(j)(y−1yz) = ζ̃(j)(z).

Thus, condition (ii) holds.
(ii)⇒ (iii) : Immediate.
(iii)⇒ (iv) :˜̃ξ(j)

(yzy−1) � ˜̃ξ(j)
(y−1yz(y−1)−1) = ˜̃ξ(j)

(z) and ζ̃(j)(yzy−1) ≥ ζ̃(j)(y−1yz(y−1)−1) = ζ̃(j)(z).

Therefore, condition (iii) holds.
(iv)⇒ (i) :

˜̃ξ(j)
(yz) = ˜̃ξ(j)

(yzyy−1) � ˜̃ξ(j)
(zy) and ζ̃(j)(yz) ≥ ζ̃(j)(yzyy−1) = ζ̃(j)(zy).

Hence, condition (i) holds.

Definition 10. Let H be a subgroup of a group G. Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures

of G and H, respectively, such that Ξ̃
(˜̃γ,δ̃)m

⊆̃P (resp., ⊆̃R) Ξ̃
(˜̃ξ,ζ̃)m

. If Ξ̃
(˜̃γ,δ̃)m

is itself a CmP group

of H, then Ξ̃
(˜̃γ,δ̃)m

is a CmP subgroup of Ξ̃
(˜̃ξ,ζ̃)m

over G and denoted by Ξ̃
(˜̃γ,δ̃)m

- Ξ̃
(˜̃ξ,ζ̃)m

.

Example 2. Let us assume the group (Z3,+3) and a C3P structure Ξ̃
(˜̃ξ,ζ̃)3

given in Example 1.

Define a C3P structure Ξ̃
(˜̃γ,δ̃)3

over (Z3,+3) by:

Ξ̃
(˜̃γ,δ̃)3

=



〈
0,

(
[0.6, 0.7], 0.1

)
,
(
[0.5, 0.6], 0.2

)
,(

[0.4, 0.5], 0.3
)〉

,〈
1,

(
[0.5, 0.7], 0.2

)
,
(
[0.4, 0.6], 0.3

)
,(

[0.2, 0.4], 0.4
)〉

,〈
2,

(
[0.5, 0.7], 0.2

)
,
(
[0.4, 0.6], 0.3

)
,(

[0.2, 0.4], 0.4
)〉

.


It is clear that Ξ̃

(˜̃γ,δ̃)3
⊆̃P Ξ̃

(˜̃ξ,ζ̃)3
and Ξ̃

(˜̃γ,δ̃)3
itself is a C3P group over Z3. Thus, Ξ̃

(˜̃γ,δ̃)3
is a

C3P subgroup of Ξ̃
(˜̃ξ,ζ̃)3

over Z3, and denoted by Ξ̃
(˜̃γ,δ̃)3

- Ξ̃
(˜̃ξ,ζ̃)3

.

From Definition 10 and Example 2, it is clear that a CmP subgroup is itself a CmP
group over G.
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Definition 11. Let G be a group, Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group over G and Ξ̃
(˜̃γ,δ̃)m

be a CmP sub-

group of Ξ̃
(˜̃ξ,ζ̃)m

over G. Then, Ξ̃
(˜̃γ,δ̃)m

is called a normal CmP subgroup of Ξ̃
(˜̃ξ,ζ̃)m

, denoted by

Ξ̃
(˜̃γ,δ̃)m

B̃Ξ̃
(˜̃ξ,ζ̃)m

if ˜̃γ(j)
(yz) = ˜̃γ(j)

(zy) and δ̃(j)(yz) = δ̃(j)(zy) (1)

for all y, z ∈ G and j ∈ {1, 2, . . . , m}.

Example 3. Let (S3, ◦) be a symmetric group, where S3 = {e, (12), (13), (23), (123), (132)} and
Ξ̃
(˜̃ξ,ζ̃)3

: S3 → [I]3 × I3 be a C3P structure over S3 defined by:

Ξ̃
(˜̃ξ,ζ̃)3

(y) =


〈(

[0.7, 0.9], 0.2
)

,
(
[0.5, 0.7], 0.2

)
,
(
[0.6, 0.8], 0.2

)〉
, y ∈ A1,〈(

[0.4, 0.6], 0.6
)

,
(
[0.3, 0.5], 0.6

)
,
(
[0.4, 0.6], 0.6

)〉
, y ∈ A2,〈(

[0.6, 0.8], 0.3
)

,
(
[0.5, 0.7], 0.3

)
,
(
[0.6, 0.8], 0.3

)〉
, y ∈ A3,


where A1 = {e}, A2 = {(12), (13), (23)} and A3 = {(123), (132)}. Then, Ξ̃

(˜̃ξ,ζ̃)3
is a C3P group

of S3. Since ˜̃γ(j)
(yz) = ˜̃γ(j)

(zy) and δ̃(j)(yz) = δ̃(j)(zy) for all y, z ∈ G and j ∈ {1, 2, . . . , m},
then Ξ̃

(˜̃ξ,ζ̃)3
is a C3P normal subgroup over S3.

Remark 1. Let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group over G and Ξ̃
(˜̃γ,δ̃)m

be a CmP subgroup of Ξ̃
(˜̃ξ,ζ̃)m

over G.

If G is abelian group, then Ξ̃
(˜̃γ,δ̃)m

is a normal CmP subgroup of Ξ̃
(˜̃ξ,ζ̃)m

over G.

Example 4. Let us consider the C3P group Ξ̃
(˜̃ξ,ζ̃)3

over Z3 in Example 1. Since Z3 is an abelian

group, then Ξ̃
(˜̃ξ,ζ̃)3

is a normal C3P subgroup over Z3.

Theorem 6. Let Ξ̃
(˜̃γ,δ̃)m

be a normal CmP subgroup of G. Then, the conditions (1) and (H) are
equivalent, where

(H)
{ ˜̃γ(j)

(yzy−1) = ˜̃γ(j)
(z) and δ̃(j)(yzy−1) = δ̃(j)(z)

}
for all y. z ∈ G and j ∈ {1, 2, . . . , m}.

Proof. Let Ξ̃
(˜̃γ,δ̃)m

be a normal CmP subgroup of G. Taking zy−1 instead of z in (1) and by
Theorem 5 (ii), we have

˜̃γ(j)
(yzy−1) = ˜̃γ(j)

(z) and δ̃(j)(yzy−1) = δ̃(j)(z)

for all y, z ∈ G and j ∈ {1, 2, . . . , m}.
Conversely, assume that condition (H) holds. Taking zy instead of z in (H), then

condition (1) is shown easily.

Definition 12. Let Ξ̃
(˜̃ξ,ζ̃)m

be any CmP structure over G, [̃ρ, τ] ∈ [I]m and σ̃ ∈ Im. Define the

[̃ρ, τ]-level and σ̃-level of Ξ̃
(˜̃ξ,ζ̃)m

as follows:

˜̃ξ
([̃ρ,τ]

=
{

y ∈ G | ˜̃ξ(y) � [̃ρ, τ]
}

and ζ̃σ̃ =
{

y ∈ G | ζ̃(y) ≤ σ̃
}

.

That is,

˜̃ξ
([̃ρ,τ]

=
{

y ∈ G | ˜̃ξ(j)
(y) � [ρj, τj]

}
and ζ̃σ̃ =

{
y ∈ G | ζ̃(j)(y) ≤ σj

}
,
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where [ρj, τj] ∈ [I] and σj ∈ I for each j ∈ {1, 2, . . . , m}.

The following theorem reflects on [̃ρ, τ]-level and σ̃-level of a CmP structure Ξ̃
(˜̃ξ,ζ̃)m

.

It actually tells about the condition imposed on [̃ρ, τ]-level and σ̃-level of a CmP structure
under which a CmP structure will be a CmP group.

Theorem 7. Let G be a group and Ξ̃
(˜̃ξ,ζ̃)m

be a CmP structure over G. Then, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP

group if [̃ρ, τ]-level, ˜̃ξ
([̃ρ,τ]

and σ̃-level, ζ̃σ̃ are crisp subgroups of G.

Proof. Let y, z ∈ G, with [ρj, τj] =
˜̃ξ(j)

(y)∧˜̃ξ(j)
(z) and σj = ζ̃(j)(y) ∨ ζ̃(j)(z) for all j ∈

{1, 2, . . . , m}. Then, [ρj, τj] ∈ [I] and σj ∈ I. It is observed that

˜̃ξ(j)
(y) � [ρj, τj] =

˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

ζ̃(j)(y) ≤ σj = ζ̃(j)(y) ∨ ζ̃(j)(z)

for all j ∈ {1, 2, . . . , m}. Moreover,

˜̃ξ(j)
(z) � [ρj, τj] =

˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

ζ̃(j)(z) ≤ σj = ζ̃(j)(y) ∨ ζ̃(j)(z)

for all j ∈ {1, 2, . . . , m}. Thus,

˜̃ξ(j)
(y) � [ρj, τj],

ζ̃(j)(y) ≤ σj,˜̃ξ(j)
(z) � [ρj, τj],

ζ̃(j)(z) ≤ σj.

It follows that y, z ∈ ˜̃ξ
[̃ρ,τ]

and y, z ∈ ζ̃σ̃. Since ˜̃ξ
[̃ρ,τ]

and ζ̃σ̃ are crisp subgroups of G,

then yz−1 ∈ ˜̃ξ
[̃ρ,τ]

and yz−1 ∈ ζ̃σ̃. Therefore,

˜̃ξ(j)
(yz−1) � [ρj, τj] =

˜̃ξ(j)
(y)∧˜̃ξ(j)

(z)

ζ̃(j)(yz−1) ≤ σj = ζ̃(j)(y) ∨ ζ̃(j)(z)

for all j ∈ {1, 2, . . . , m}. Since y, z are arbitrary elements ofG, then ˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z)

and ζ̃(j)(yz−1) ≤ ζ̃(j)(y) ∨ ζ̃(j)(z). Thus, Ξ̃
(˜̃ξ,ζ̃)m

is a CmP group of G.

Theorem 8. Let G be a group and Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group of G. Then, the nonempty set

Ω = {y ∈ G | ˜̃ξ(j)
(y) = ˜̃ξ(j)

(e), ζ̃(j)(y) = ζ̃(j)(e)∀j ∈ {1, 2, . . . , m}}

forms a crisp subgroup of G.
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Proof. Let y, z ∈ Ω. Then, ˜̃ξ(j)
(y) = ˜̃ξ(j)

(e), ˜̃ξ(j)
(z) = ˜̃ξ(j)

(e), ζ̃(j)(y) = ζ̃(j)(e) and ζ̃(j)(z) =
ζ̃(j)(e) for all j ∈ {1, 2, . . . , m}. It follows that

˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z−1) = ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z) = ˜̃ξ(j)

(e)∧˜̃ξ(j)
(e) = ˜̃ξ(j)

(e)

and

ζ̃(j)(yz−1) ≤ ζ̃(j)(y) ∨ ζ̃(j)(z−1) = ζ̃(j)(y) ∨ ζ̃(j)(z) = ζ̃(j)(e) ∨ ζ̃(j)(e) = ζ̃(j)(e)

for all j ∈ {1, 2, . . . , m}. Since ˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(e) and ζ̃(j)(yz−1) ≥ ζ̃(j)(e) for all j ∈

{1, 2, . . . , m}, then ˜̃ξ(j)
(yz−1) = ˜̃ξ(j)

(e) and ζ̃(j)(yz−1) = ζ̃(j)(e), implying that yz−1 ∈ Ω
and Ω is a crisp subgroup of G.

The following Theorem reflects on [̃ρ, τ]-level and σ̃-level of a CmP group Ξ̃
(˜̃ξ,ζ̃)m

. From

Definition 12, we notice that [̃ρ, τ]-level and σ̃-level are crisp sets. From the next theorem,

we will know that [̃ρ, τ]-level and σ̃-level are crisp subgroups of G.

Theorem 9. Let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP group over a group G. Then, for all [̃ρ, τ] ∈ [I]m and σ̃ ∈ Im,

[̃ρ, τ]-level, ˜̃ξ
([̃ρ,τ]

6= ∅ and σ̃-level, ζ̃σ̃ 6= ∅ of Ξ̃
(˜̃ξ,ζ̃)m

are crisp subgroups of G.

Proof. Let Ξ̃
(˜̃ξ,ζ̃)m

be a CmP subgroup of a group G, [̃ρ, τ] ∈ [I]m and σ̃ ∈ Im. Let y, z ∈˜̃ξ
([̃ρ,τ]

. By assumption,

˜̃ξ(j)
(yz−1) � ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z−1) = ˜̃ξ(j)

(y)∧˜̃ξ(j)
(z) � [ρj, τj]

for all j ∈ {1, 2, . . . , m}. Hence, yz−1 ∈ ˜̃ξ
([̃ρ,τ]

. Similarly, let y, z ∈ ζ̃σ̃. Then,

ζ̃(j)(yz−1) ≤ ζ̃(j)(y) ∨ ζ̃(j)(z−1) = ζ̃(j)(y) ∨ ζ̃(j)(z) ≤ σj

for all j ∈ {1, 2, . . . , m}. Hence, yz−1 ∈ ζ̃σ̃. Therefore, ˜̃ξ
([̃ρ,τ]

and ζ̃σ̃ are crisp subgroups

of G.

4. Commutative Semigroup Structures of Cubic m-Polar Structures

In this section, we construct a commutative semigroup structure and a commutative
groupoid structure by providing binary operations for the CmP structure Ξ̃

(˜̃ξ,ζ̃)m
. In the

current section,

• We use the group G as the universe set (domain of discourse).
• LCmP denotes the collection of all CmP structures over G.

Definition 13. Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures on a set G. Then, the symmetric

difference of Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃ψ,µ̃)m

, denoted by Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

, is defined as Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)m

in which

˜̃ξ � ˜̃γ : G→ [I]m and ζ̃ � δ̃ : G→ Im,
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where

(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
|ξ̃−(j)(y)− γ̃−(j)(y)|, |ξ̃+(j)(y)− γ̃+(j)(y)|

]
and

(ζ̃ � δ̃)(y) = |ζ̃(j)(y)− δ̃(j)(y)|

for all y ∈ G and j ∈ {1, 2, . . . , m}.

Example 5. Consider the set G = {1, α, α2} under the ordinary multiplication “.”, where α3 = 1.
Then, it is clear that (G, .) is a group. Let Ξ̃

(˜̃ξ,ζ̃)4
: G→ [I]4 × I4 and Ξ̃

(˜̃γ,δ̃)4
: G→ [I]4 × I4 be

two C4P structures on a set G defined by:

Ξ̃
(˜̃ξ,ζ̃)4

=



〈
1,

(
[0.4, 0.8], 0.3

)
,
(
[0.3, 0.7], 0.4

)
,(

[0.3, 0.8], 0.4
)

,
(
[0.2, 0.3], 0.1

)〉
,〈

α,
(
[0.3, 0.8], 0.3

)
,
(
[0.1, 0.4], 0.4

)
,(

[0.3, 0.5], 0.4
)

,
(
[0.1, 0.2], 0.2

)〉
,〈

α2,
(
[0.3, 0.8], 0.2

)
,
(
[0.3, 0.8], 0.3

)
,(

[0.1, 0.8], 0.4
)

,
(
[0.3, 0.8], 0.2

)〉
.


and

Ξ̃
(˜̃γ,δ̃)4

=



〈
1,

(
[0.2, 0.5], 0.4

)
,
(
[0.3, 0.6], 0.2

)
,(

[0.3, 0.4], 0.4
)

,
(
[0.3, 0.4], 0.3

)〉
,〈

α,
(
[0.3, 0.4], 0.4

)
,
(
[0.1, 0.2], 0.3

)
,(

[0.7, 0.9], 0.6
)

,
(
[0.1, 0.3], 0.4

)〉
,〈

α2,
(
[0.3, 0.5], 0.4

)
,
(
[0.3, 0.4], 0.3

)
,(

[0.0, 0.4], 0.5
)

,
(
[0.3, 0.4], 0.4

)〉
.


Then, the symmetric difference Ξ̃

(˜̃ξ,ζ̃)4
� Ξ̃

(˜̃γ,δ̃)4
of Ξ̃

(˜̃ξ,ζ̃)4
and Ξ̃

(˜̃γ,δ̃)4
is given as follows:

Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)4

=



〈
1,

(
[0.2, 0.3], 0.1

)
,
(
[0.0, 0.1], 0.2

)
,(

[0.0, 0.4], 0.0
)

,
(
[0.1, 0.1], 0.2

)〉
,〈

α,
(
[0.0, 0.4], 0.1

)
,
(
[0.0, 0.2], 0.1

)
,(

[0.4, 0.4], 0.2
)

,
(
[0.0, 0.1], 0.2

)〉
,〈

α2,
(
[0.0, 0.3], 0.2

)
,
(
[0.0, 0.4], 0.0

)
,(

[0.1, 0.4], 0.1
)

,
(
[0.0, 0.4], 0.2

)〉
.


Theorem 10. (LCmP ,�) is a commutative groupoid with identity element Ξ̃

(˜̃0,0̃)m
.

Proof. Let Ξ̃
(˜̃ξ,ζ̃)m

, Ξ̃
(˜̃γ,δ̃)m

∈ LCmP . Then,
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(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
|ξ̃−(j)(y)− γ̃−(j)(y)|, |ξ̃+(j)(y)− γ̃+(j)(y)|

]
=

[
|γ̃−(j)(y)− ξ̃−(j)(y)|, |γ̃+(j)(y)− ξ̃+(j)(y)|

]
=

[
(γ̃� ξ̃)−(j)(y), (γ̃� ξ̃)+(j)(y)

]
= (˜̃γ� ˜̃ξ)(y)

and

(ζ̃ � δ̃)(y) = |ζ̃(j)(y)− δ̃(j)(y)|
= |δ̃(j)(y)− ζ̃(j)(y)|
= (δ̃� ζ̃)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Thus, Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

= Ξ̃
(˜̃γ,δ̃)m

� Ξ̃
(˜̃ξ,ζ̃)m

. Moreover,

for all Ξ̃
(˜̃ξ,ζ̃)m

, Ξ̃
(˜̃γ,δ̃)m

∈ LCmP , we have Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

= Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)m

∈ LCmP . Finally, for

any Ξ̃
(˜̃ξ,ζ̃)m

∈ LCmP , we have

(˜̃ξ � ˜̃0)(y) =
[
(ξ̃ � 0̃)−(j)(y), (ξ̃ � 0̃)+(j)(y)

]
=

[
|ξ̃−(j)(y)− 0̃−(j)(y)|, |ξ̃+(j)(y)− 0̃+(j)(y)|

]
=

[
ξ̃−(j)(y), ξ̃+(j)(y)

]
= ˜̃ξ(y)

and

(ζ̃ � 0̃)(y) = |ζ̃(j)(y)− 0̃(j)(y)|
= ζ̃(j)(y)

= ζ̃(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Similarly, for all y ∈ G and j ∈ {1, 2, . . . , m}, we obtain,

(˜̃0� ˜̃ξ)(y) = [ξ̃−(j)(y), ξ̃+(j)(y)
]
= ˜̃ξ(y) and (0̃� ζ̃)(y) = ζ̃(j)(y) = ζ̃(y). Therefore,

Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃0,0̃)m

= Ξ̃
(˜̃ξ,ζ̃)m

= Ξ̃
(˜̃0,0̃)m

� Ξ̃
(˜̃ξ,ζ̃)m

.

Hence, (LCmP ,�) is a commutative groupoid with identity element Ξ̃
(˜̃0,0̃)m

.

The following example shows that a binary operation� is not associative in (LCmP ,�),
where m = 4. Hence, � is not associative in (LCmP ,�), so (LCmP ,�) is not a semigroup.
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Example 6. Let us assume the group G, a C4P structure Ξ̃
(˜̃ξ,ζ̃)4

and a C4P structure Ξ̃
(˜̃γ,δ̃)4

in

Example 5. Let Ξ̃
(˜̃χ,ω̃)4

: G→ [I]4 × I4 be another C4P structure on a set G defined by:

Ξ̃
(˜̃χ,ω̃)4

=



〈
1,

(
[0.4, 0.8], 0.6

)
,
(
[0.2, 0.4], 0.3

)
,(

[0.1, 0.6], 0.5
)

,
(
[0.2, 0.3], 0.6

)〉
,〈

α,
(
[0.1, 0.6], 0.4

)
,
(
[0.1, 0.3], 0.4

)
,(

[0.4, 0.6], 0.7
)

,
(
[0.1, 0.6], 0.5

)〉
,〈

α2,
(
[0.0, 0.9], 0.5

)
,
(
[0.1, 0.6], 0.3

)
,(

[0.3, 0.7], 0.5
)

,
(
[0.1, 0.6], 0.3

)〉
.


Then, Ξ̃

(˜̃ξ,ζ̃)4
� Ξ̃

(˜̃γ,δ̃)4
is given as in Example 5 and

(
Ξ̃
(˜̃ξ,ζ̃)4

� Ξ̃
(˜̃γ,δ̃)4

)
� Ξ̃

(˜̃χ,ω̃)4
is given

as:

Ξ̃
((˜̃ξ�˜̃γ)�˜̃χ,(ζ̃�δ̃)�ω̃)4

=



〈
1,

(
[0.2, 0.5], 0.5

)
,
(
[0.2, 0.3], 0.1

)
,(

[0.1, 0.2], 0.5
)

,
(
[0.1, 0.2], 0.4

)〉
,〈

α,
(
[0.1, 0.2], 0.3

)
,
(
[0.1, 0.1], 0.3

)
,(

[0.0, 0.2], 0.5
)

,
(
[0.1, 0.5], 0.3

)〉
,〈

α2,
(
[0.0, 0.6], 0.3

)
,
(
[0.1, 0.2], 0.3

)
,(

[0.2, 0.3], 0.4
)

,
(
[0.1, 0.2], 0.1

)〉
.


Moreover, Ξ̃

(˜̃γ,δ̃)4
� Ξ̃

(˜̃χ,ω̃)4
is given as:

Ξ̃
(˜̃γ�˜̃χ,δ̃�ω̃)4

=



〈
1,

(
[0.2, 0.3], 0.2

)
,
(
[0.1, 0.2], 0.1

)
,(

[0.2, 0.2], 0.1
)

,
(
[0.1, 0.1], 0.3

)〉
,〈

α,
(
[0.2, 0.2], 0.0

)
,
(
[0.0, 0.1], 0.1

)
,(

[0.3, 0.3], 0.1
)

,
(
[0.0, 0.3], 0.1

)〉
,〈

α2,
(
[0.3, 0.4], 0.1

)
,
(
[0.2, 0.2], 0.0

)
,(

[0.3, 0.3], 0.0
)

,
(
[0.2, 0.2], 0.1

)〉


and Ξ̃

(˜̃ξ,ζ̃)4
�
(

Ξ̃
(˜̃γ,δ̃)4

� Ξ̃
(˜̃χ,ω̃)4

)
is given as:

Ξ̃
(˜̃ξ�(˜̃γ�˜̃χ),ζ̃�(δ̃�ω̃))4

=



〈
1,

(
[0.2, 0.5], 0.1

)
,
(
[0.2, 0.5], 0.3

)
,(

[0.1, 0.6], 0.3
)

,
(
[0.1, 0.2], 0.2

)〉
,〈

α,
(
[0.1, 0.6], 0.3

)
,
(
[0.1, 0.3], 0.3

)
,(

[0.0, 0.2], 0.3
)

,
(
[0.1, 0.1], 0.1

)〉
,〈

α2,
(
[0.0, 0.4], 0.1

)
,
(
[0.1, 0.6], 0.3

)
,(

[0.2, 0.5], 0.4
)

,
(
[0.1, 0.6], 0.1

)〉
.


Hence,

(
Ξ̃
(˜̃ξ,ζ̃)4

� Ξ̃
(˜̃γ,δ̃)4

)
� Ξ̃

(˜̃χ,ω̃)4
6= Ξ̃

(˜̃ξ,ζ̃)4
�
(

Ξ̃
(˜̃γ,δ̃)4

� Ξ̃
(˜̃χ,ω̃)4

)
. Therefore, a binary

operation � is not an associative in (LC4P ,�).

Remark 2. (LCmP ,�) is non-idempotent.
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The following example shows that (LCmP ,�) is non-idempotent, where m = 4.

Example 7. Let us assume the group G and a C4P structure Ξ̃
(˜̃ξ,ζ̃)4

in Example 5. Then, Ξ̃
(˜̃ξ,ζ̃)4

�

Ξ̃
(˜̃ξ,ζ̃)4

= Ξ̃
(˜̃ξ�˜̃ξ,ζ̃�ζ̃)4

(y) = ( ˜[0.0, 0.0], 0̃.0) 6= Ξ̃
(˜̃ξ,ζ̃)4

(y) for all y ∈ G. Hence, (LC4P ,�) is

non-idempotent.

Definition 14. Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures on a set G. Then, the sum of Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

, denoted by Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

, is defined as a CmP structure Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)m

in which

˜̃ξ � ˜̃γ : G→ [I]m and ζ̃ � δ̃ : G→ Im,

where

(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
ξ̃−(j)(y) + γ̃−(j)(y)− ξ̃−(j)(y).γ̃−(j)(y),

ξ̃+(j)(y) + γ̃+(j)(y)− ξ̃+(j)(y) · γ̃+(j)(y)
]

and
(ζ̃ � δ̃)(y) = ζ̃(j)(y) + δ̃(j)(y)− ζ̃(j)(y) · δ̃(j)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}.

Example 8. Let us assume the group G in Example 5. Let Ξ̃
(˜̃ξ,ζ̃)3

: G → [I]3 × I3 and Ξ̃
(˜̃γ,δ̃)3

:

G→ [I]3 × I3 be two C3P structures on a set G defined by:

Ξ̃
(˜̃ξ,ζ̃)3

=



〈
1,

(
[0.0, 0.0], 0.3

)
,
(
[0.09, 0.1], 0.4

)
,(

[0.18, 0.20], 0.4
)〉

,〈
α,

(
[0.27, 0.30], 0.3

)
,
(
[0.36, 0.4], 0.4

)
,(

[0.45, 0.5], 0.4
)〉

,〈
α2,

(
[0.54, 0.6], 0.2

)
,
(
[0.63, 0.7], 0.3

)
,(

[0.72, 0.8], 0.4
)〉

.


and

Ξ̃
(˜̃γ,δ̃)3

=



〈
1,

(
[0.0, 0.0], 0.4

)
,
(
[0.01, 0.01], 0.2

)
,(

[0.02, 0.04], 0.4
)〉

,〈
α,

(
[0.04, 0.09], 0.4

)
,
(
[0.08, 0.16], 0.3

)
,(

[0.12, 0.25], 0.6
)〉

,〈
α2,

(
[0.18, 0.36], 0.4

)
,
(
[0.24, 0.49], 0.3

)
,(

[0.32, 0.64], 0.5
)〉

.


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Then, the sum Ξ̃
(˜̃ξ,ζ̃)3

� Ξ̃
(˜̃γ,δ̃)3

of Ξ̃
(˜̃ξ,ζ̃)3

and Ξ̃
(˜̃γ,δ̃)3

is given as follows:

Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)3

=



〈
1,

(
[0.0000, 0.0000], 0.5800

)
,
(
[0.0991, 0.1090], 0.5200

)
,(

[0.1964, 0.2320], 0.6400
)〉

,〈
α,

(
[0.2992, 0.3630], 0.5800

)
,
(
[0.4112, 0.4960], 0.5800

)
,(

[0.5160, 0.6250], 0.7600
)〉

,〈
α2,

(
[0.62228, 0.74440], 0.52

)
,
(
[0.7188, 0.8470], 0.5100

)
,(

[0.8096, 0.9280], 0.7000
)〉

.


Theorem 11. (LCmP ,�) is a commutative semigroup with identity element Ξ̃

(˜̃0,0̃)m
.

Proof. Let Ξ̃
(˜̃ξ,ζ̃)m

, Ξ̃
(˜̃γ,δ̃)m

∈ LCmP . Then,

(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
ξ̃−(j)(y) + γ̃−(j)(y)− ξ̃−(j)(y).γ̃−(j)(y),

ξ̃+(j)(y) + γ̃+(j)(y)− ξ̃+(j)(y).γ̃+(j)(y)
]

=
[
γ̃−(j)(y) + ξ̃−(j)(y)− γ̃−(j)(y).ξ̃−(j)(y),

γ̃+(j)(y) + ξ̃+(j)(y)− γ̃+(j)(y).ξ̃+(j)(y)

=
[
(γ̃� ξ̃)−(j)(y), (γ̃� ξ̃)+(j)(y)

]
= (˜̃γ� ˜̃ξ)(y)

and

(ζ̃ � δ̃)(y) = ζ̃(j)(y) + δ̃(j)(y)− ζ̃(j)(y) · δ̃(j)(y)

= δ̃(j)(y) + ζ̃(j)(y)− δ̃(j)(y) · ζ̃(j)(y)

= (δ̃� ζ̃)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Thus, Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

= Ξ̃
(˜̃γ,δ̃)m

� Ξ̃
(˜̃ξ,ζ̃)m

. Moreover, for

any Ξ̃
(˜̃ξ,ζ̃)m

∈ LCmP , we have

(˜̃ξ � ˜̃0)(y) =
[
(ξ̃ � 0̃)−(j)(y), (ξ̃ � 0̃)+(j)(y)

]
=

[
ξ̃−(j)(y) + 0̃−(j)(y)− ξ̃−(j)(y).0̃−(j)(y),

ξ̃+(j)(y) + 0̃+(j)(y)− ξ̃+(j)(y).0̃+(j)(y)
]

=
[
ξ̃−(j)(y), ξ̃+(j)(y)

]
= ˜̃ξ(y)

and

(ζ̃ � 0̃)(y) = ζ̃(j)(y) + 0̃(j)(y)− ζ̃(j)(y) · 0̃(j)(y)

= ζ̃(j)(y)

= ζ̃(y)



Symmetry 2022, 14, 1493 19 of 22

for all y ∈ G and j ∈ {1, 2, . . . , m}. Similarly, for all y ∈ G and j ∈ {1, 2, . . . , m}, we obtain,

(˜̃0� ˜̃ξ)(y) = [ξ̃−(j)(y), ξ̃+(j)(y)
]
= ˜̃ξ(y) and (0̃� ζ̃)(y) = ζ̃(j)(y) = ζ̃. Thus,

Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃0,0̃)m

= Ξ̃
(˜̃ξ,ζ̃)m

= Ξ̃
(˜̃0,0̃)m

� Ξ̃
(˜̃ξ,ζ̃)m

.

Hence, (LCmP ,�) is a commutative semigroup and Ξ̃
(˜̃0,0̃)m

is the identity element of

(LCmP ,�). Thus, (LCmP ,�) is a monoid.

Remark 3. (LCmP ,�) is non-idempotent.

The following example shows that (LCmP ,�) is non-idempotent, where m = 4.

Example 9. Let us assume the group G and a C4P structure Ξ̃
(˜̃ξ,ζ̃)4

in Example 5. Then,

Ξ̃
(˜̃ξ,ζ̃)4

� Ξ̃
(˜̃ξ,ζ̃)4

=



〈
1,

(
[0.64, 0.96], 0.51

)
,
(
[0.51, 0.91], 0.64

)
,(

[0.51, 0.96], 0.64
)

,
(
[0.36, 0.51], 0.19

)〉
,〈

α,
(
[0.51, 0.96], 0.51

)
,
(
[0.19, 0.64], 0.64

)
,(

[0.51, 0.75], 0.64
)

,
(
[0.19, 0.36], 0.36

)〉
,〈

α2,
(
[0.51, 0.96], 0.36

)
,
(
[0.51, 0.96], 0.51

)
,(

[0.19, 0.96], 0.64
)

,
(
[0.51, 0.96], 0.36

)〉
.


for all y ∈ G. Therefore, Ξ̃

(˜̃ξ,ζ̃)4
� Ξ̃

(˜̃ξ,ζ̃)4
6= Ξ̃

(˜̃ξ,ζ̃)4
. Hence, (LC4P ,�) is non-idempotent.

Definition 15. Let Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

be two CmP structures on a set G. Then, the product

of Ξ̃
(˜̃ξ,ζ̃)m

and Ξ̃
(˜̃γ,δ̃)m

, denoted by Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

, is defined as a CmP structure Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)m

in which ˜̃ξ � ˜̃γ : G→ [I]m and ζ̃ � δ̃ : G→ Im,

where

(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
ξ̃−(j)(y) · γ̃−(j)(y), ξ̃+(j)(y) · γ̃+(j)(y)

]
and

(ζ̃ � δ̃)(y) = ζ̃(j)(y) · δ̃(j)(y)

y ∈ G and j ∈ {1, 2, . . . , m}.

Example 10. Let us assume the group G in Example 5, a C3P structure Ξ̃
(˜̃ξ,ζ̃)3

and C3P structure

Ξ̃
(˜̃γ,δ̃)3

in Example 8. Then, the product Ξ̃
(˜̃ξ,ζ̃)3

� Ξ̃
(˜̃γ,δ̃)3

of Ξ̃
(˜̃ξ,ζ̃)3

and Ξ̃
(˜̃γ,δ̃)3

is given as follows:

Ξ̃
(˜̃ξ�˜̃γ,ζ̃�δ̃)3

=



〈
1,

(
[0.0, 0.0], 0.12

)
,
(
[0.0009, 0.001], 0.08

)
,(

[0.0036, 0.008], 0.16
)〉

,〈
α,

(
[0.0108, 0.027], 0.12

)
,
(
[0.0288, 0.064], 0.12

)
,(

[0.054, 0.125], 0.24
)〉

,〈
α2,

(
[0.0972, 0.216], 0.08

)
,
(
[0.1512, 0.343], 0.09

)
,(

[0.2304, 0.512], 0.2
)〉

.


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Theorem 12. (LCmP ,�) is a commutative semigroup.

Proof. Let Ξ̃
(˜̃ξ,ζ̃)m

, Ξ̃
(˜̃γ,δ̃)m

, Ξ̃
(˜̃χ,ω̃)m

∈ LCmP . Then,

((˜̃ξ � ˜̃γ)� ˜̃χ)(y) =
[
(ξ̃ � γ̃)−(j)(y) · χ̃−(j)(y), (ξ̃ � γ̃)+(j)(y) · χ̃+(j)(y)

]
=

[
(ξ̃−(j)(y) · γ̃−(j)(y)) · χ̃−(j)(y), (ξ̃+(j)(y) · γ̃+(j)(y)) · χ̃+(j)(y)

]
=

[
ξ̃−(j)(y) · (γ̃−(j)(y) · χ̃−(j)(y)), ξ̃+(j)(y) · (γ̃+(j)(y) · χ̃+(j)(y))

]
=

[
ξ̃−(j)(y) · (γ̃� χ̃)−(j)(y), ξ̃+(j)(y) · (γ̃� χ̃)+(j)(y)

]
= (˜̃ξ � (˜̃γ� ˜̃χ))(y)

and

((ζ̃ � δ̃)� ω̃)(y) =
[
(ζ̃ � δ̃)(j)(y) · ω̃(j)(y), (ζ̃ � δ̃)(j)(y) · ω̃(j)(y)

]
=

[
(ζ̃(j)(y) · δ̃(j)(y)) · ω̃(j)(y), (ζ̃(j)(y) · δ̃(j)(y)) · ω̃(j)(y)

]
=

[
ζ̃(j)(y) · (δ̃(j)(y) · ω̃(j)(y)), ζ̃(j)(y) · (δ̃(j)(y) · ω̃(j)(y))

]
=

[
ζ̃(j)(y) · (δ̃� ω̃)(j)(y), ζ̃(j)(y) · (δ̃� ω̃)(j)(y)

]
= (ζ̃ � (δ̃� ω̃))(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Thus,(
Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

)
� Ξ̃

(˜̃χ,ω̃)m
= Ξ̃

(˜̃ξ,ζ̃)m
�
(

Ξ̃
(˜̃γ,δ̃)m

� Ξ̃
(˜̃χ,ω̃)m

)
.

Moreover, we have

(˜̃ξ � ˜̃γ)(y) =
[
(ξ̃ � γ̃)−(j)(y), (ξ̃ � γ̃)+(j)(y)

]
=

[
ξ̃−(j)(y) · γ̃−(j)(y), ξ̃+(j)(y) · γ̃+(j)(y)

]
=

[
γ̃−(j)(y) · ξ̃−(j)(y), γ̃+(j)(y) · ξ̃+(j)(y)

]
=

[
(γ̃� ξ̃)−(j)(y), (γ̃� ξ̃)+(j)(y)

]
= (˜̃γ� ˜̃ξ)(y)

and

(ζ̃ � δ̃)(y) = ζ̃(j)(y) · δ̃(j)(y)

= δ̃(j)(y) · ζ̃(j)(y)

= (ζ̃ � δ̃)(y)

for all y ∈ G and j ∈ {1, 2, . . . , m}. Thus, Ξ̃
(˜̃ξ,ζ̃)m

� Ξ̃
(˜̃γ,δ̃)m

= Ξ̃
(˜̃γ,δ̃)m

� Ξ̃
(˜̃ξ,ζ̃)m

. Therefore,

(LCmP ,�) is a commutative semigroup.

Remark 4. (LCmP ,�) is non-idempotent.

The following example shows that (LCmP ,�) is non-idempotent, where m = 4.

Example 11. Let us assume the group G and a C4P structure Ξ̃
(˜̃ξ,ζ̃)4

in Example 5. Then,
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Ξ̃
(˜̃ξ,ζ̃)4

� Ξ̃
(˜̃ξ,ζ̃)4

=



〈
1,

(
[0.16, 0.64], 0.09

)
,
(
[0.09, 0.49], 0.16

)
,(

[0.09, 0.64], 0.16
)

,
(
[0.04, 0.09], 0.01

)〉
,〈

α,
(
[0.09, 0.64], 0.09

)
,
(
[0.01, 0.16], 0.16

)
,(

[0.09, 0.25], 0.16
)

,
(
[0.01, 0.04], 0.04

)〉
,〈

α2,
(
[0.09, 0.64], 0.04

)
,
(
[0.09, 0.64], 0.09

)
,(

[0.01, 0.64], 0.16
)

,
(
[0.09, 0.64], 0.04

)〉
.


for all y ∈ G. Therefore, Ξ̃

(˜̃ξ,ζ̃)4
� Ξ̃

(˜̃ξ,ζ̃)4
6= Ξ̃

(˜̃ξ,ζ̃)4
. Hence, (LC4P ,�) is non-idempotent.

5. Conclusions

The conception of a CmP structure is a generalization of an mPF structure which deals
with a two-pronged approach of decision analysis and data imprecision by taking into con-
sideration both the polarity of the IVF structure and the mPF structure, simultaneously.
In this article, we originated the idea of CmP groups and probed many of its characteristics.
We gave an an essential bridge between ordinary group theory and CmP group theory. We
investigated the effect of the CmP structure on group (semigroup) structures. We derived
some basic properties of CmP groups and supported them by illustrative examples. Fi-
nally, we provided one binary operation to assign a groupoid structure to the set of CmP
structures and two binary operations to assign a semigroup structure to the set of CmP
structures. Moreover, we thoroughly investigated some important properties of groupoid
and semigroup structures, and gave some illustrative examples to support these properties.

The results of this study can be further extended to normed subrings, hemirings,
fields and ordered gamma semigroups (see [37–40]). Furthermore, the conception of a CmP
structure used in this manuscript can be studied according to the idea in [41], which will be
the way for much future research.
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