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Abstract: This paper employs and develops the exact wave-based vibration analysis approach to
investigate the propagation properties of a designed finite lightweight locally resonant (LR) beam
with two-degree-of-freedom (2-DOF) force-moment-type resonators attached periodically inside. By
deriving the propagation, reflection, and transmission matrices of the structural discontinuities, the
vibration of the LR beam can be described as structural waves. By assembling wave relations into the
beam, the approach shows high efficiency because the forced vibration problem of the lightweight
LR structure is turned to be the solution to a related set of matrix equations. The accuracy of the
developed approach is validated with two examples carried out using the finite element method.
In addition, the influence of the main parameters of the LR beam is studied and we found that the
increase in the mass of the resonator and the stiffness of the spring are more sensitive in broadening
the width and increasing the center frequency of the band gap of the designed lightweight LR beam.
The proposed structure and analysis approach in this paper may provide an exact and efficient means
for the design and analysis of structures in which damping and lightweight properties are required,
such as space-arm and the framework of antennas in the field of aerospace.

Keywords: locally resonant beam; lightweight; vibration damping; wave-based vibration analysis

1. Introduction

There has been growing interest in designing phononic crystals (PCs) and acous-
tics/elastic metamaterials (AMs/EMs) [1–3], mainly because these periodic structures can
be designed to prevent the propagation of flexural waves. Based on this characteristic, the
periodic structures have been widely applied in vibration and acoustic equipment. Among
them, the excellent damping effect of locally resonant (LR) beams makes it very promising
in engineering applications [4–6], in which the resonator is a continuous Timoshenko or Eu-
ler beam coupled with one or several spring-mass structures. Increasingly more researchers
have recently studied the propagation properties of the flexural waves in specific frequency
bounds along the LR beams, known as band gaps.

As a general structure for many engineering problems, analysis of the band gap
properties of LR beams is of great significance. The most typical analysis methods include
the transfer matrix method (TMM) [7,8], finite element method (FEM) [9–13], and spectral
element method [14], and increasingly more new methods have been developed. The
band gap properties of a Euler–Bernoulli beam with a four-link mechanism were studied
in [15], where the band gap can be adjusted by the geometrical parameters of the four-link
mechanism. The transition criterion was established in [16], where the trend of the LR beam

Symmetry 2022, 14, 1542. https://doi.org/10.3390/sym14081542 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081542
https://doi.org/10.3390/sym14081542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7208-785X
https://doi.org/10.3390/sym14081542
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081542?type=check_update&version=2


Symmetry 2022, 14, 1542 2 of 18

band structure changing with the spring constant or local resonator mass was analyzed
by an improved TMM. The above studies realized the analysis and expansion of the band
gaps of various periodic LR beams. Furthermore, lightweight LR beams are widely used in
the aerospace field and analysis of their structures and band gap properties has become a
hot research topic.

Recently, some lightweight LR beams and metamaterials have been constructed and
studied for their band gap properties [17–19]. Tan et al. [17] proposed a reusable metama-
terial for energy absorption, and it was verified through a combination of compression
experiments and simulations that the proposed structure has larger specific energy absorp-
tion and higher energy absorption efficiency than that of most traditional negative stiffness
structures. A lightweight LR beam was designed to increase the bending stiffness to
improve the energy dissipation, and experiments under cyclic loading showed that the pro-
posed structure exhibited sequential snap-through transitions with relatively large energy
dissipation [18]. By utilizing prefabricated curved beams and rigid bracing frames, a range
of multidirectional buckling-based metamaterials were proposed and analyzed in [19],
and the analysis results show that the designed metamaterial has a stronger absorption
ability for impact energy. A lightweight and unstable three-dimensional microlattice was
designed in [20], which demonstrates very good repeatable and time-scale-independent
energy dissipation, and Findeise et al. [21] carried out detailed analysis and numerical study
on its dissipation mechanism and deformation, where the behavior of the internal structure
was studied by analyzing the interaction between a periodic cell, a single buckling element,
and multiple unstable elements. Ma et al. [22] designed a self-recoverable and reusable
metamaterial via 3D printing and demonstrated through FEM and experiments that the
newly designed metamaterial can effectively dissipate energy via elastic deformation. By
adding an inclusion with a low natural resonance frequency into a hollow, cellular, polymer
structure, a kind of lightweight LR beam is designed in Ref. [23] for low-frequency band
gap, where the scattering matrix is obtained by measuring the velocities on both sides of
the heterogeneous plate. Owing to these various remarkable characteristics, this structure
can potentially be used to form structures that require both damping and lightweight
properties, such as the space-arm and framework of antennas in the field of aerospace.
Although some methods have been developed to analyze the energy adsorption capacity of
these newly designed lightweight LR beams and metamaterials, the most commonly used
FEM and experimental analysis are very time consuming.

To simplify the vibration analysis of LR beams, wave-based methods have been
proposed and developed rapidly in recent years [24–28]. The transmission and reflection
matrices for different discontinuities on a Timoshenko beam were first derived in [24],
which greatly simplifies the wave-based vibration analysis method. Considering the joint
influence of bending and longitudinal vibration on the classical planar frame structure,
Mei et al. [29] proposed an analytical wave-based method to obtain its natural frequency.
In [30], the wave-based method is employed to analyze the band gap properties of a finite
Timoshenko beam carrying periodic two-degree-of-freedom uncoupled force-moment-type
resonators, where the forced vibration problem is transformed into a problem of solving
related matrix equations by assembling the wave relationships of the uncoupled force-
moment-type resonator into the beam. The above studies demonstrated the high efficiency
and wide applicability of the wave-based method.

In this paper, the wave-based methods are further developed and applied to study
the band gap properties of a newly designed lightweight LR beam. In the LR beam, the
2-DOF force-moment-type resonators are attached inside periodically. With the wave-
based analysis approach, the propagation, reflection, and transmission matrices at each
discontinuity are derived and assembled as a module with MATLAB software. The design
work for the lightweight LR beam is significantly simplified as the module can be called
and modified easily through the modeling of the LR structure. The frequency response
functions and band gap properties are obtained using both the wave-based approach and
FEM to verify the efficiency and accuracy of the proposed analysis approach. Furthermore,
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the influence of the main parameters of the LR beam on the band gap properties is studied.
Finally, the increases in the mass of the resonator and the stiffness of the spring are validated
to improve the width and increase the center frequency of the band gap through two
examples. The purpose of this paper is to provide an advantageous means in the design
and analysis of lightweight LR beams for vibration control in the situation of lightweight
requirements, such as in the field of aerospace.

2. Wave-Based Analysis Methodology
2.1. Overview

The motion equations of bending, rotation, and longitudinal vibration of Timoshenko
beams can be expressed as in [31]:

GAκ

(
∂ψ(x, t)

∂x
− ∂2w(x, t)

∂x2

)
+ ρA

∂2w(x, t)
∂t2 = q(x, t) (1)

I
∂2ψ(x, t)

∂x2 + GAκ

(
∂w(x, t)

∂x
− ψ(x, t)

)
− ρI

∂2ψ(x, t)
∂t2 = 0 (2)

ρA
∂2u(x, t)

∂t2 − EA
∂2u(x, t)

∂x2 = p(x, t) (3)

where ψ(x, t) indicates the rotation angle of the total bending section; x denotes the neutral
axis position of the beam; t is time; ∂w(x, t)/∂x denotes the slope of the beam centerline;
w(x, t) and u(x, t) represent the transverse deflection and longitudinal deflection, respec-
tively; and the longitudinal and transverse forces applied on each unit length are expressed
as q(x, t) and p(x, t), respectively. The shear coefficient κ, area moment of inertia I, and
cross-sectional area A are the geometric properties. The shear modulus G, Young’s modulus
E, and mass density ρ are the material properties.

The shear force V(x, t), bending moment M(x, t), and longitudinal force F(x,t) can be
calculated as:

V(x, t) = GAκ

(
∂w(x, t)

∂x
− ψ(x, t)

)
(4)

M(x, t) = EI
∂ψ(x, t)

∂x
(5)

F(x, t) = EA
∂u(x, t)

∂x
(6)

Without considering the suppression time dependence eiωt and loading, the free-wave
propagation Equations (1)–(3) can be calculated as:

w(x, t) = a+1 e−ik1x + a+2 ek2x + a−1 eik1x + a−2 ek2x (7)

ψ(x, t) = −iPa+1 e−ik1x − Na+2 e−k2x + iPa−1 eik1x + Na−2 ek2x (8)

u(x, t) = c+e−ik3x + c−eik3x (9)

where k1, k2, k3 are three wavenumbers; the superscripts − or + indicate the backward or
forward propagating waves; and c, a1, and a2 represent the amplitudes of the propagating
longitudinal waves, propagating soft waves, and near-field soft waves, respectively. iP and
N relate the rotational solution to the transverse displacement solution as:

P = k1

(
1 − ω2

k2
1C2

s

)
, N = k2

(
1 +

ω2

k2
2C2

s

)
(10)
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The relationships about the wavenumber-frequency dispersion can be derived as follows:

k1 =

√√√√√1
2

[(
1

Cs

)2
+

(
Cr

Cb

)2
]

ω2 +

√√√√( ω

Cb

)2
+

1
4

[(
1

Cs

)2
−
(

Cr

Cb

)2
]2

ω4 (11)

k2 =

√√√√√−1
2

[(
1

Cs

)2
+

(
Cr

Cb

)2
]

ω2 +

√√√√( ω

Cb

)2
+

1
4

[(
1

Cs

)2
−
(

Cr

Cb

)2
]2

ω4 (12)

k3 =

√
E
ρ

ω2 (13)

in which the wave speeds for rotation, shear, and bending are defined as:

Cr =

√
ρI
ρA

,Cb =

√
EI
ρA

, Cs =

√
GAκ

ρA
(14)

2.2. Propagation Matrix

The exact wave propagation state in a single frequency along a uniform beam between
discontinuities is expressed by Equations (7)–(9). Suppose points A and B fall between the
discontinuities of a beam spaced at a distance x, which is shown in Figure 1. Since only
bending vibration in the LR beam is considered, the propagation matrix is defined as:

b+ = f(x)a+, a− = f(x)b− (15)

in which:

a+ =

[
a+1
a+2

]
, a− =

[
a−1
a−2

]
, b+ =

[
b+1
b+2

]
, b− =

[
b−1
b−2

]
(16)

where a+ and b+ represent the forward propagating wave coefficients at points A and B, respec-
tively. a− and b− are the backward propagating wave coefficients at points A and B, respectively:

f(x) =
[

e−ik1x 0
0 e−k2x

]
(17)
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Figure 1. Wave propagation between two points of a uniform beam at a distance of x.

2.3. Reflection at a Free Boundary

This paper studies the LR beam with a free endless boundary without considering
transverse forces and bending moments. A reflection matrix can be established to represent
the relationship between the reflected waves a− and incident waves a+ as:

a− = rfa+ (18)

where:

r f =

−Pk1(−N+k2)+ik2 N(k1−P)
Pk1(−N+k2)+ik2 N(k1−P)

2Nk2(−N+k2)
Pk1(−N+k2)+ik2 N(k1−P)

2iPk1(−P+k1)
Pk1(−N+k2)+ik2 N(k1−P)

Pk1(−N+k2)−ik2 N(k1−P)
Pk1(−N+k2)+ik2 N(k1−P)

 (19)
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2.4. Applied Forces and Moments

The waves a and b generated by the external force F at x = 0 are drawn in Figure 2,
and the conditions of equilibrium and continuity can be given as:

b+ − a+ = f (20)

b− − a− = −f (21)

where the amplitude vector of the excited wave is given:

f =
[

iN
P

]
F

GAκ(k2P − k1N)
(22)
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2.5. Transmission and Reflection at the 2-DOF Force-Moment-Type Resonator Attached Point

The LR beam suspended with force-moment-type resonators is shown in Figure 3, in
which m is the mass of the resonator, k is the stiffness of the linear elastic spring, a is the
length of the moment arm, and L is the lattice constant (distance between two adjacent
resonators) of the LR beam.
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Figure 3. A beam with periodic 2-DOF force-moment-type resonators.

The resonator is the 2-DOF type because it applies force and moment to the host beam
simultaneously, as depicted in Figure 4. In the figure, wm is the transverse deflections of the
mass blocks m. F is the force caused by the spring. w, u, and ψ are the transverse deflection,
axial deflection, and angular rotation of the host beam at the point the resonator is attached.
F and M are the force and moment of the resonator applied on the host beam, respectively.
Note that the axial deflection u is not involved here because the 2-DOF force-moment-type
resonator does not apply axial force to the host beam.
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Figure 4. Free body diagram of a cell of resonators.

According to Figure 4, the equation of motion of the resonator can be expressed as:

− F = m
..
wm (23)

where:
F = k(wm − w + aψ) (24)

Considering the motion of the system is time harmonic with the frequency ω, by
combining Equations (23) and (24), the displacements of the mass block wm can be expressed
in terms of the deflection at the attachment point w as:

wm =
k

k − mω2 (w + aψ) (25)

Then, the force F and the moment M applied by the resonator to the host beam can be
obtained from Equations (24) and (25):

F = r·(w + aψ) (26)

M = F·a = r·a(w + aψ) (27)

where:

r =
kmω2

k − mω2

As in [30], the applied force and moment generated by the resonators can be con-
sidered as injecting waves into the host beam. Combining Equations (7)–(9), (20) and
(21), and substituting the expressions of the transverse force F and bending moment M in
Equations (26) and (27) into Equation (22), the relations of the vibration waves at the point
the resonator is attached can be obtained as:[

Ap1 An1
Ap2 An2

][
a+

a−

]
+

[
Bp1 Bn1
Bp2 Bn2

][
b+

b−

]
= 0 (28)

where the coefficient matrices in Equation (28) are:

Ap1 =

[
ira2Pβ2 + raNPβ1 − raβ2 + irNβ1 + 1 −iraN2β1 − raβ2 + irNβ1 + ra2Nβ2

Pβ1r + raβ2 − iraP2β1 − ira2Pβ2 rPβ1 − raNPβ1 + raβ2 − ra2Nβ2 + 1

]

Ap2 =

[
ira2Pβ2 − raNPβ1 − raβ2 − irNβ1 iraN2β1 − raβ2 − irNβ1 + ra2Nβ2
−Pβ1r + raβ2 + iraP2β1 − ira2Pβ2 −rPβ1 + raNPβ1 + raβ2 − ra2Nβ2

]
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An1 =

[
−ira2Pβ2 + irNβ1 − raNPβ1 − raβ2 irNβ1 + iraN2β1 − raβ2 − ra2Nβ2

rPβ1 + iraP2β1 + ira2Pβ2 + raβ2 rPβ1 + raNPβ1 + raβ2 + ra2Nβ2

]

An2 =

[
−ira2Pβ2 − irNβ1 + raNPβ1 − raβ2 + 1 −irNβ1 − iraN2β1 − raβ2 − ra2Nβ2

−rPβ1 − iraP2β1 + ira2Pβ2 + raβ2 −rPβ1 − raNPβ1 + raβ2 + ra2Nβ2 + 1

]

Bp1 = Bn2 =

[
−1 0
0 −1

]

Bp2 = Bn1 =

[
0 0
0 0

]

β1 =
1

2(GAκ)(k2P − k1N)

β2 =
1

2(EI)(k1P + k2N)

2.6. Transmission and Reflection at the Point Section Change

For the beam with section change, we denote the incident and transmitted parameters
with the subscripts L and R, respectively. The equations of motion depicted in Figure 5 are:

VL = VR (29)

ML = MR (30)
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The continuity conditions for the point section change are:

wL = wR (31)

ψL = ψR (32)

where the shear force and bending moment in Equations (29) and (30) are expressed as:

VL = (GAκ)L

(
∂wL
∂xL

− ψL

)
, VR = (GAκ)R

(
∂wR
∂xR

− ψR

)
(33)

ML = (EI)L
∂ψL
∂xL

, MR = (EI)R
∂ψR
∂xR

(34)
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Assumed that two beams with different sections are joined at x = 0, as depicted in
Figure 6. The incident waves b+ generate reflected waves b− and transmitted waves e+, which
are related to the incident waves through the reflection and transmission matrices by:

b− = rLL b+, e+ = tLR b+ (35)
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Considering Equations (29)–(35) can be put into a matrix form in terms of the reflection
and transmission matrices rLL and tLR, one has:[

1 1
iPL NL

]
rLL +

[
−1 −1
iPR NR

]
tLR =

[
−1 −1
iPL NL

]
(36)

ErLLrLL + EtLRtLR = E1 (37)

where:

Er11 =

[
(GAκ)L(ikL1 − iPL) (GAκ)L(kL2 − NL)

−(EI)L·kL1·PL (EI)L·kL2·NL

]
Et12 =

[
−(GAκ)R(−ikR1 + iPR) −(GAκ)R(−kR2 + NR)

(EI)R·kR1·PR −(EI)R·kR2·NR

]
E1 =

[
−(GAκ)L(−ikL1 + iPL) −(GAκ)L(−kL2 + NL)

(EI)L·kL1·PL −(EI)L·kL2·NL

]
The reflection and transmission matrices rLL and tLR can be obtained by solving

Equations (36) and (37).

3. Vibration Analysis with the Wave-Based Approach

Figure 7 denotes the designed lightweight LR beam suspended periodically with eight
2-DOF force-moment-type resonators inside. The physical parameters are marked in the
figure. In each cell, the length of the hollow beam is L1 and the length of the solid beam is
L2. Based on the approach described above, the designed beam can be considered as shown
in Figure 8. Note that the distance d between the point resonator attached and the point
section changed is defined as a very small number to match the model in Figure 7.
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Figure 8. Equivalent model of the proposed LR beam for the wave-based approach.

Figure 9 illustrates the vibration wave components in the LR beam. As shown in the
figure, the force-moment resonators are attached at points R1, R2, R3, R4, R5, R6, R7, and R8.
The section-change points are labeled as B1, B2, B3, B4, B5, B6, B7, and B8 (section changes
from a solid beam to a hollow beam), and C1, C2, C3, C4, C5, C6, C7, and C8 (section changes
from a hollow beam to a solid beam). The boundary condition of the LR beam is free. The
external force is applied at point G, and the insert force generates waves g+11, g−11, g+12, and
g−12. The distance between the point G and the left end of the host beam (point A) is L11,
and the distance from point G to point R1 (the first resonator attached point) is L12. The
length from the end of the last hollow beam to the right end of the host beam (point D) is L.
Based on the propagation, transmission, and reflection relations described in Section 2, the
relations of waves at discontinuities of the LR beam can be obtained as follows.
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[
Ap1 An1
Ap2 An2

][
r81

+

r81
−

]
+

[
Bp1 Bn1
Bp2 Bn2

][
r82

+

r82
−

]
= 0 (45)

We use rss and tsh to present the reflection and transmission matrices at the point the
section changes from a solid beam to a hollow beam. Similarly, rhh and ths present the
reflection and transmission matrices at the point the section changes from a hollow beam to a
solid beam. Thus, at the points the section changes from a solid beam to a hollow beam B1:

b+12 = tshb+11 + rhhb−12 (46)

b−11 = rssb+11 + thsb−12 (47)

At point B2:
b+22 = tshb+21 + rhhb−22 (48)

b−21 = rssb+21 + thsb−22 (49)

At point B3:
b+32 = tshb+31 + rhhb−32 (50)

b−31 = rssb+31 + thsb−32 (51)

At point B4:
b+42 = tshb+41 + rhhb−42 (52)

b−41 = rssb+41 + thsb−42 (53)

At point B5:
b+52 = tshb+51 + rhhb−52 (54)

b−51 = rssb+51 + thsb−52 (55)

At point B6:
b+62 = tshb+61 + rhhb−62 (56)

b−61 = rssb+61 + thsb−62 (57)

At point B7:
b+72 = tshb+71 + rhhb−72 (58)

b−71 = rssb+71 + thsb−72 (59)

At point B8:
b+82 = tshb+81 + rhhb−82 (60)

b−81 = rssb+81 + thsb−82 (61)

At the points the section changes from a hollow beam to a solid beam C1:

c+12 = thsc+11 + rssc−12 (62)

c−11 = rhhc+11 + tshc−12 (63)

At point C2:
c+22 = thsc+21 + rssc−22 (64)

c−21 = rhhc+21 + tshc−22 (65)

At point C3:
c+32 = thsc+31 + rssc−32 (66)

c−31 = rhhc+31 + tshc−32 (67)

At point C4:
c+42 = thsc+41 + rssc−42 (68)



Symmetry 2022, 14, 1542 11 of 18

c−41 = rhhc+41 + tshc−42 (69)

At point C5:
c+52 = thsc+51 + rssc−52 (70)

c−51 = rhhc+51 + tshc−52 (71)

At point C6:
c+62 = thsc+61 + rssc−62 (72)

c−61 = rhhc+61 + tshc−62 (73)

At point C7:
c+72 = thsc+71 + rssc−72 (74)

c−71 = rhhc+71 + tshc−72 (75)

At point C8:
c+82 = thsc+81 + rssc−82 (76)

c−81 = rhhc+81 + tshc−82 (77)

At the free support boundaries A and D:

a+ = rfa− (78)

d− = rfd+ (79)

In total, 26 pairs of propagation relations along the beam elements are included for
the LR structure: AG, GR1, R1B1, B1C1, C1R2, R2B2, B2C2, C2R3, R3B3, B3C3, C3R4, R4B4,
B4C4, C4R5, R5B5, B5C5, C5R6, R6B6, B6C6, C6R7, R7B7. B7C7, C7R8, R8B8, B8C8, and C8D.
In the equations, fs and fh denote the propagation matrices along the solid and hollow
beam, respectively:

Along AG:
g+11 = fs(L11)a+, a− = fs(L11)g−11 (80)

Along GR1:
r+11 = fs(L12)g+12, g−12 = fs(L12)r−11 (81)

Along R1B1:
b+11 = fs(d)r

+
12, r−12 = fs(d)b

−
11 (82)

Along B1C1:
c+11 = fh(L1)b+12, b−12 = fh(L1)c−11 (83)

Along C1R2:
r+21 = fs(L2)c+12, c−12 = fs(L2)r−21 (84)

Along R2B2:
b+21 = fs(d)r

+
22, r−22 = fs(d)b

−
21 (85)

Along B2C2:
c+21 = fh(L1)b+22, b−22 = fh(L1)c−21 (86)

Along C2R3:
r+31 = fs(L2)c+22, c−22 = fs(L2)r−31 (87)

Along R3B3:
b+31 = fs(d)r

+
32, r−32 = fs(d)b

−
31 (88)

Along B3C3:
c+31 = fh(L1)b+32, b−32 = fh(L1)c−31 (89)

Along C3R4:
r+41 = fs(L2)c+32, c−32 = fs(L2)r−41 (90)
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Along R4B4:
b+41 = fs(d)r

+
42, r−42 = fs(d)b

−
41 (91)

Along B4C4:
c+41 = fh(L1)b+42, b−42 = fh(L1)c−41 (92)

Along C4R5:
r+51 = fs(L2)c+42, c−42 = fs(L2)r−51 (93)

Along R5B5:
b+51 = fs(d)r

+
52, r−52 = fs(d)b

−
51 (94)

Along B5C5:
c+51 = fh(L1)b+52, b−52 = fh(L1)c−51 (95)

Along C5R6:
r+61 = fs(L2)c+52, c−52 = fs(L2)r−61 (96)

Along R6B6:
b+61 = fs(d)r

+
62, r−62 = fs(d)b

−
61 (97)

Along B6C6:
c+61 = fh(L1)b+62, b−62 = fh(L1)c−61 (98)

Along C6R7:
r+71 = fs(L2)c+62, c−62 = fs(L2)r−71 (99)

Along R7B7:
b+71 = fs(d)r

+
72, r−72 = fs(d)b

−
71 (100)

Along B7C7:
c+71 = fh(L1)b+72, b−72 = fh(L1)c−71 (101)

Along C7R8:
r+81 = fs(L2)c+72, c−72 = fs(L2)r−81 (102)

Along R8B8:
b+81 = fs(d)r

+
82, r−82 = fs(d)b

−
81 (103)

Along B8C8:
c+81 = fh(L1)b+82, b−82 = fh(L1)c−81 (104)

Along C8D:
d+ = fs(L)c+82, c−82 = fs(L)d− (105)

The relations between the external force and the generated wave amplitudes are:

g+12 − g+11 = q (106)

g−12 − g−11 = −q (107)

Combining Equations (38)–(107) and putting it into matrix algebraic form gives:

Afzf = F (108)

where Af is a 208 × 208 coefficient matrix, zf is a 208 × 1 component vector, and F is a
208 × 1 vector holding the external transverse forces to the host beam.

4. Numerical Results and Discussion

It is considered that the material of the designed LR beam, as shown in Figure 7, is
resin as an example. Some relevant parameters are as follows: the Poisson’s ratio v = 0.23,
the Young’s modulus E = 2.46 GN/m2, and the mass density ρ = 1100 kg/m3. The
shear coefficient is calculated by κ = 10(1 + v)/(12 + 11v), and the shear modulus can be
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obtained from G = E/2(1 + v) [32]. The width B and height H of the solid beam are both
25 mm, respectively. The inside width b and height h of the hollow beam are both 20 mm.
The external excitation is applied at the position L11 = 8 mm from the left end of the host
beam, and L12 = 22 mm. Meanwhile, the measured point is located at the point with a
distance Lo = 8 mm from the right end of the host beam. The length from the end of the last
hollow beam to the right end of the host beam is (point D) L = 30 mm.

In this example, we investigate the influence of five resonator parameters on the band
gap properties of the LR beam alone. They are the resonator mass m, spring stiffness k, arm
length a, and the length of the solid and hollow beam L1 and L2. The variation trend of the
band gaps with a certain parameter is calculated by fixing the other four parameters. First,
the influence of the resonator mass m on the band gaps of the LR beam is investigated by
varying m from 2 to 10 g, and the other four parameters are fixed as: k= 8.1921 × 103 N/m,
a = 10 mm, L1 = 50 mm, and L2 = 5 mm. As shown in Figure 10, the width of the
band gap gradually increases with the resonator mass m and changes towards the lower
frequency range. However, a pass band appears between the higher and lower-frequency
band gaps, and the width of the pass band increases significantly with the resonator mass
m. To study the effect of the spring stiffness k of the resonator on the width and frequency
range of the band gaps of the LR beam, the band gaps corresponding to the variation of the
spring stiffness from 2000 to 12,000 are calculated and are shown in Figure 11. The other
four resonator parameters are: m = 2.0135 g, a = 10 mm, L1 = 50 mm, and L2 = 5 mm.
It can be seen from Figure 11 that the width of the band gaps increases slightly with the
spring stiffness k, and the band gaps move significantly to the higher frequency range.
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In addition, the influence of the three length parameters a, L1, and L2 of the resonator
on the band gaps of the LR beam are also studied. Figure 12 shows the variation trend
of the band gaps with the arm length a, where the other four parameters are fixed as:
m = 2.0135 g, k = 8.1921 × 103 N/m, L1 = 50 mm, and L2 = 5 mm. It can be seen from
Figure 12 that the width of the band gap of the LR beam increases slightly with the arm
length a, and the frequency range remains nearly unchanged, thus illustrating the small
effect of the arm length a on the band gaps of the LR beam. Similarly, the separate effects of
the other two length parameters L1 and L2 on the band gaps of the LR beam are shown in
Figures 13 and 14, respectively. The range of L1 varies from 50 to 100 mm and L2 varies
from 1 to 10 mm. From Figure 13, we can see that the width of the band gap decreases with
the increase in the length of L1, and Figure 14 shows that the width of both the first and
second band gaps decreases with the increase in L2.
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Overall, the location of the band gaps of the proposed LR beam is determined by the
stiffness of the spring and the mass of the resonator. Meanwhile, the width of the band
gaps is related more to the mass of the resonator.

To verify the accuracy of the wave-based method, the frequency response functions
(FRF) of the LR beams with two different resonators are analyzed using the wave-based
approach and FEM, respectively. Both of the resonators are selected to have the same
natural frequency, where the mass m and stiffness k of resonator 1 are half that of resonator
2. The natural frequency and physical parameters of the two resonators are listed in Table 1.

Table 1. Different mass and spring stiffness values of the resonator samples.

Resonator m (g) k (N/m) Mode 1 (Hz)

Resonator 1 2.0135 8.1921 × 103 321
Resonator 2 4.027 1.63842 × 104 321

The FEM simulation is carried out using the ANSYS Workbench software. In the
simulation, the two ends of the beam are free supported. Figure 15 shows the geometrical
FEM simulation. In the simulation, the element size is set as default, and the average
surface area is 9.2129 × 10−4 m2. The element type is SOILD187. The number of total
elements is 1836. The order of the accuracy of the numerical scheme is 1 × 10−4. The red
arrow depicts the harmonic force excitation applied vertically on the beam at the point
with a distance L11 = 8 mm from the left end of the host beam. The frequency range of
the excitation is from 50 to 500 Hz with a step of 2 Hz. The measured point is set with a
distance Lo = 8 mm from the right end of the host beam.
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Figure 16 plots the FRFs of the LR beam suspended with resonator 1 inside, and
Figure 17 shows the FRFs of the LR beam with resonator 2. As shown in Figures 16 and 17,
the FRF curves calculated by the proposed wave-based method and FEM have very strong
consistency, thus verifying the high accuracy of the wave-based method.
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To further investigate the effect of the resonator on the band gaps of the designed LR
beam, the FRF curves of the LR beam with two resonators are compared in Figure 18. As
shown in Figure 18, the starting frequency of the band gaps of the LR beam with resonator
1 and 2 is the same. However, the width of the band gap of the LR beam with resonator 2 is
85.6% wider than that of the LR beam with resonator 1, thus demonstrating that increasing
the resonator mass and spring stiffness can significantly improve the band gap width and
increase the band gap center frequency of the LR beam.
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5. Concluding Remarks

In this paper, the wave-based vibration analysis approach was employed and devel-
oped to analyze the forced vibrations of a finite lightweight LR beam suspended periodically
with 2-DOF force-moment-type resonators inside. The applied force of the resonator was
considered to generate waves into the host beam. The reflection and transmission matrices
at the points the resonator attached were derived, and at the points of the section of the
beam. Then, the propagation characteristics of the finite lightweight LR beam suspended
with eight 2-DOF force-moment-type resonators were analyzed. Due to the advantage of
the wave-based approach, the vibration analysis procedure was only a simple assembly
of the involved reflection and transmission matrices. This approach showed the high effi-
ciency of the derived analytical method in vibration analysis of finite LR beams. The high
accuracy of the developed wave-based approach was then validated with two examples
through comparison with the results obtained by FEM. Thus, the developed wave-based
analysis approach was verified as a valuable tool in design and vibration analysis of finite
lightweight LR beams. Moreover, the influence of the main parameters of the designed LR
beam on the band gap properties was investigated. It was found that the mass and spring
stiffness m and k of the resonator influenced the width and center frequency of the band
gap while the length of arm a, and the length of the solid and hollow beam L1 and L2 barely
had an influence on the band gap properties of the proposed LR beam. The results in this
paper offer guidance in the design and analysis of a structure formed by lightweight LR
beams, especially for vibration attenuation in a situation requiring lightweight properties,
such as the space-arm and framework of antennas in the field of aerospace.

The resonator investigated in this paper was a linear type. To achieve broader band gaps,
the design and analysis of an LR beam with non-linear type resonators is our future interest.
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