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Abstract

:

Ordered semigroups are understood through their subsets. The aim of this article is to study ordered semigroups through some new substructures. In this regard, quasi-filters and   ( m , n )  -quasi-filters of ordered semigroups are introduced as new types of filters. Some properties of the new concepts are investigated, different examples are constructed, and the relations between quasi-filters and quasi-ideals as well as between   ( m , n )  -quasi-filters and   ( m , n )  -quasi-ideals are discussed.
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1. Introduction and Preliminaries


Kehayopulu [1] was the first to investigate filters in   p o e  -semigroups. Lee et al. [2] introduced and described the notion of left (resp. right) filters in   p o  -semigroups in terms of prime right (resp. left) ideals. The notion of  Γ -filters in ordered  Γ -semigroups was developed by Hila [3], while Tang et al. [4] proposed the concept of filters in ordered semihypergroups. Khan et al. [5] introduced the notions of left-m-filters, right-n-filters, and   ( m , n )  -filters in ordered semigroups as a generalization of the concept of left (right) filters of ordered semigroups. Fuzzy set theory was applied to filters of ordered semigroups by Kehayopulu and Tsingelis [6], and the notion of fuzzy filters in ordered semigroups was established. By generalizing the notion of fuzzy filters, Davvaz et al. [7] established the concept of   ( ∈ , ∈ ∨ q )  -fuzzy filters in ordered semigroups. Ali [8] developed generalized rough approximations for fuzzy filters in ordered semigroups; in addition, in [9], Ali et al. proposed the notion of soft filters in soft ordered semigroups.



As novel forms of filters and in continuation of the work initiated in this regard, quasi-filters and   ( m , n )  -quasi-filters of ordered semigroups are introduced herein. Some new concepts and characteristics are studied. Furthermore, relationships between quasi-filters (resp.   ( m , n )  -quasi-filters) and quasi-ideals (resp.   ( m , n )  -quasi-ideals) are discussed.



An ordered semigroup   ( Ω , · , ≤ )   is a semigroup with a partial order relation ≤ that is compatible, i.e.,   ϑ ≤ γ   implies   ϑ κ ≤ γ κ   and   κ ϑ ≤ κ γ   for all   ϑ , γ , κ ∈ Ω  . For   Υ ≠ ∅ ⊆ Ω  , we denote   ( Υ ] = { t ∈ Ω  :  t ≤ a   for   some   a ∈ Υ }   and   [ Υ ) = { t ∈ Ω  :  a ≤ t   for   some   a ∈ Υ }  .



Ordered semigroups have been studied through their subsets (see [5,10,11,12,13].) A subset   Υ ≠ ∅   of  Ω  is called a subsemigroup of  Ω  if   Υ Υ ⊆ Υ  , and  Υ  is called the left (resp. right) ideal of  Ω  if   Ω Υ ⊆ Υ  ( Υ Ω ⊆ Υ )   and   ( Υ ] ⊆ Υ  . If a subset  Υ  is both a left ideal and a right ideal of  Ω , it is called an ideal of  Ω . A subsemigroup  Υ  of  Ω  is called a bi-ideal of  Ω  if   Υ Ω Υ ⊆ Υ   and   ( Υ ] ⊆ Υ  . A non-empty subset  Υ  of  Ω  is called a quasi-ideal of  Ω  if   ( Υ Ω ] ∩ ( Ω Υ ] ⊆ Υ   and   ( Υ ] ⊆ Υ  . Furthermore, a subsemigroup  Υ  of  Ω  is called a left filter (resp. right filter) of  Ω  if for all   a , b ∈ Ω  ,   a b ∈ Υ   implies   a ∈ Υ   (resp.   b ∈ Υ  ) and   [ Υ ) ⊆ Υ  . It is a filter if it is both a left filter and a right filter of  Ω . For positive integers m and n, a subsemigroup Q of  Ω  is an   ( m , n )  -quasi-ideal of  Ω  of   ( Q ] ⊆ Q   and    (  Q m  Ω ]  ∩  ( Ω  Q n  ]  ⊆ Q  .



An ordered semigroup  Ω  is called   ( m , n )  -regular if for all   ϑ ∈ Ω  , there exists   γ ∈ Ω   such that   ϑ ≤  ϑ m  γ  ϑ n   . For more related details, we refer to [14].




2. Quasi-Filters of Ordered Semigroups: Redefined


In [15], Jirojkul and Chinram introduced quasi-filters of ordered semigroups. In addition, in [16], Yaqoob and Tang used a similar definition to introduce quasi-hyperfilters. Their definition was based on a non-general definition of a quasi-ideal. In this section, we redefine quasi-filters of ordered semigroups in a more general way. Furthermore, we explore some of their properties and relate them to quasi-ideals.



Definition 1.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅ ⊆ Ω  . Then, Q is a quasi-filter of Ω if the following conditions hold for all   α , β , γ , δ ∈ Ω  .




	 (1) 

	
  Q · Q ⊆ Q  ;




	 (2) 

	
  [ Q ) ⊆ Q  ;




	 (3) 

	
If   x ∈ Q   and for some   α , β , γ , δ ∈ Ω  ,   x ≤ α · β   and   x ≤ γ · δ  , then,   { α , δ } ∩ Q ≠ ∅   and   { β , γ } ∩ Q ≠ ∅  .











If we drop the subsemigroup condition in Definition 1, we obtain Q as a generalized quasi-filter of  Ω .



Remark 1.

A quasi-filter Q in a semigroup Ω is a subsemigroup of Ω satisfying the following condition for all   α , β , γ , δ ∈ Ω  .



  α · β = γ · δ ∈ Q   implies   { α , δ } ∩ Q ≠ ∅   and   { β , γ } ∩ Q ≠ ∅  .





Example 1.

Let   (  Z +  ∪  { 0 }  , · , ≤ )   be the semigroup of non-negative integers under standard multiplication and the usual order of numbers. Then,   Z +   is a proper quasi-filter of    Z +  ∪  { 0 }   .





Example 2.

Consider the ordered semigroup    Ω 1  =  { ϑ , κ , ϖ }   , with operation “  · 1  ” and order “   ≤ 1   ” described as follows:



	   · 1   
	  ϑ  
	  κ  
	  ϖ  



	  ϑ  
	  ϑ  
	  ϑ  
	  ϑ  



	  κ  
	  κ  
	  κ  
	  κ  



	  ϖ  
	  ϖ  
	  ϖ  
	  ϖ  







    ≤ 1  : =  {  ( ϑ , ϑ )  ,  ( κ , κ )  ,  ( γ , γ )  ,  ( ϑ , κ )  ,  ( ϑ , ϖ )  }  .   











One can easily see that   { κ , ϖ }   is a quasi-filter of   Ω 1  .





Example 3.

Let   (  M 2   ( Z )  , · ,  ≤ t  )   be the ordered semigroup of two by two matrices with integer coefficients under the standard multiplication of matrices and trivial order. Then,   ℧ = {     a   b     c   d     :  ( b , c , d )  ≠  ( 0 , 0 , 0 )  }   is a generalized quasi-filter of    M 2   ( Z )   , and it is not a quasi-filter of    M 2   ( Z )    as   ℧ 2   is not a subset of   ℧ .   This is clear as       1   1     0   0         1   0     1   0     =     2   0     0   0     ∉ ℧ .  



Now, to show that ℧ is a generalized quasi-filter of    M 2   ( Z )   , it suffices to show that for all   α , β , γ , δ ∈  M 2   ( Z )   , if   α β = γ δ ∈ ℧  , thus,   { α , δ } ∩ ℧ ≠ ∅   and   { β , γ } ∩ ℧ ≠ ∅  . Without loss of generality, suppose that   { α , δ } ∩ ℧ = ∅ .   Then, there exist   a , b ∈ Z   with   α =     a   0     0   0       and   δ =     b   0     0   0     .  



Let   β =     c   d     e   f       and   γ =     g   h     i   j     .   Having   α β =      a c     a d      0   0     =      g b    0      i b    0     = γ δ   implies that   a d = i b = 0 .   The latter implies that   α β = γ δ ∉ ℧ .  





Lemma 1.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅ ⊆ Ω  . If Q is a (generalized) quasi-filter of Ω, then, Q is prime.





Proof. 

Let   α , β ∈ Ω   with   α · β ∈ Q  . By setting   x = α · β  , we see that   x ∈ Q   satisfies   x ≤ α · β  . Having Q a (generalized) quasi-filter of  Ω  implies that   { α , β } ∩ Q ≠ ∅   and, hence,   α ∈ Q   or   β ∈ Q  . □





Lemma 2.

Let   ( Ω , · , ≤ )   be an ordered semigroup,    p 1  ,  p 2  , … ,  p k  ∈ Ω   and   Q ≠ ∅ ⊆ Ω   be a (generalized) quasi-filter of Ω. If    p 1   p 2  …  p k  ∈ Q  , then,   {  p 1  ,  p 2  , … ,  p k  } ∩ Q ≠ ∅  .





Proof. 

Let    p 1   (  p 2  …  p k  )  ∈ Q  . Having Q be a quasi-filter of  Ω  implies that Q is prime (by Lemma 1) and, hence,    p 1  ∈ Q   or    p 2  …  p k  ∈ Q  . If    p 1  ∈ Q  , we are finished. Otherwise,    p 2   (  p 3  …  p k  )  ∈ Q   implies that    p 2  ∈ Q   or    p 3  …  p k  ∈ Q  . If    p 2  ∈ Q  , we are finished. Otherwise,    p 3  …  p k  ∈ Q  . Repeating the same procedure, we see that   {  p 1  ,  p 2  , … ,  p k  } ∩ Q ≠ ∅  . □





Proposition 1.

Let   ( Ω , · , ≤ )   be a commutative ordered semigroup and   Q ≠ ∅ ⊆ Ω  . Then, Q is a quasi-filter of Ω if and only if Q is a filter of Ω.





Proof. 

Let Q be a filter of  Ω  and   α , β , γ , δ ∈ Ω  . Let   x ≤ α · β   and   x ≤ γ · δ  , with   x ∈ Q  . Then,   α · β ∈ Q   and   γ · δ ∈ Q   as   [ Q ) ⊆ Q  . Having Q be a filter of  Ω  implies that   α , β , γ , δ ∈ Q   and, hence, Q is a quasi-filter of  Ω .



Conversely, let Q be a quasi-filter of  Ω  and   α · β ∈ Q  . By setting   x = α · β   and   x ∈ Q  , we see that   x ≤ α · β   and   x ≤ β · α  . aving Q be a quasi-filter of  Ω  implies that   { α } ∩ Q ≠ ∅   and   { β } ∩ Q ≠ ∅  . The latter implies that   { α , β } ⊆ Q   and, hence, Q is a filter of  Ω . □





Proposition 2.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅ ⊆ Ω  . If Q is a left filter (right filter) of Ω, then, Q is a quasi-filter of Ω.





Proof. 

Let Q be a left filter of  Ω  and   α , β , γ , δ ∈ Ω  . Let   x ∈ Q   with   x ≤ α · β   and   x ≤ γ · δ  . Having Q be a left filter of  Ω  implies that   α , γ ∈ Q   and, hence,   { α , δ } ∩ Ω ≠ ∅  , and   { β , γ } ∩ Ω ≠ ∅  . Therefore, Q is a quasi-filter of  Ω . The case Q is a right filter of  Ω  can be handled similarly. □





Proposition 3.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q , F ≠ ∅ ⊆ Ω  . If Q is a (generalized) quasi-filter of Ω, and F is a filter of Ω, then,   Q ∩ F   is either empty or a (generalized) quasi-filter of Ω.





Proof. 

Let   x ∈ Q ∩ F ≠ ∅  . One can easily see that   Q ∩ F   is a subsemigroup of  Ω  and that   [ Q ∩ F ) ⊆ Q ∩ F  . Suppose that there exist   α , β , γ , δ ∈ Ω   with   x ≤ α · β   and   x ≤ γ · δ  . Having   x ∈ F   and   [ F ) ⊆ F   implies that   α · β ∈ F , γ · δ ∈ F   and, hence,   { α , β , γ , δ } ⊆ F  . In addition, having Q be a quasi-filter of  Ω  implies that   { α , δ } ∩ Q ≠ ∅   and   { β , γ } ∩ Q ≠ ∅  . We see now that   { α , δ } ∩ ( Q ∩ F ) ≠ ∅   and   { β , γ } ∩ ( Q ∩ F ) ≠ ∅  . Therefore,   Q ∩ F   is a quasi-filter of  Ω . □





Lemma 3.

Let   ( Ω , · , ≤ )   be an ordered semigroup and    Q 1  ,  Q 2  ≠ ∅ ⊆ Ω   be (generalized) quasi-filters of Ω. Then,    Q 1  ∪  Q 2    is a generalized quasi-filter of Ω.





Proof. 

One can easily see that    [  Q 1  ∪  Q 2  )  ⊆  Q 1  ∪  Q 2   . Let   x ∈  Q 1  ∪  Q 2   , with   x ≤ α · β   and   x ≤ γ · δ   for some   α , β , γ , δ ∈ Ω  . We have two cases:   x ∈  Q 1    and   x ∈  Q 2   . We deal with the case   x ∈  Q 1   , and the case   x ∈  Q 2    is handled similarly. Since   Q 1   is a (generalized) quasi-filter of  Ω , it follows that    { α , δ }  ∩  Q 1  ≠ ∅   and    { β , γ }  ∩  Q 1  ≠ ∅  . The latter implies that    { α , δ }  ∩  (  Q 1  ∪  Q 2  )  ≠ ∅   and    { β , γ }  ∩  (  Q 1  ∪  Q 2  )  ≠ ∅   and, hence,    Q 1  ∪  Q 2    is a generalized quasi-filter of  Ω . □





Lemma 4.

Let   ( Ω , · , ≤ )   be an ordered semigroup and    Q 1  ,  Q 2  ≠ ∅ ⊆ Ω   be quasi-filters of Ω. Then,    Q 1  ∪  Q 2    is a quasi-filter of Ω if and only if    Q 1  ∪  Q 2    is a subsemigroup of Ω.





Proof. 

The proof can be easily executed using Lemma 3. □





Lemma 5.

Let   ( Ω , · , ≤ )   be an ordered monoid with identity 1 and   Q ≠ ∅ ⊆ Ω   be a (generalized) quasi-filter of Ω. Then,   1 ∈ Q  .





Proof. 

Let   x ∈ Q ≠ ∅  ; then,   x ≤ x · 1   and   x ≤ 1 · x  . Since Q is a (generalized) quasi-filter of  Ω , it follows that   1 ∈ Q  . □





Corollary 1.

Let   ( Ω , · , ≤ )   be an ordered group. Then,   Q ≠ ∅ ⊆ Ω   is a (generalized) quasi-filter of Ω if and only if   Q = Ω  .





Proof. 

Let   Q ≠ ∅   be a (generalized) quasi-filter of  Ω . Lemma 5 asserts that   1 ∈ Q  . Having   1 = x ·  x  − 1     for all   x ∈ Ω   implies that   1 ≤ x ·  x  − 1     and   1 ≤  x  − 1   · x  . Since Q is a (generalized) quasi-filter of  Ω , it follows that   x ∈ Q   and, hence,   Q = Ω  . □





Proposition 4.

Let   ( Ω , · , ≤ )   be an ordered semigroup with   0 ∈ Ω   satisfying   0 · θ = θ · 0 = 0   for all   θ ∈ Ω   and Q be a (generalized) quasi-filter of Ω. If   0 ∈ Q  , then,   Q = Ω  .





Proof. 

For all   x ∈ Ω  , we have   0 ≤ 0 · x   and   0 ≤ x · 0  . Having Q be a (generalized) quasi-filter of  Ω  implies that   x ∈ Q   and, hence,   Q = Ω  . □





Lemma 6.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅   be a proper subset of Ω. Then,   [ Q ) ⊆ Q   if and only if   ( Ω − Q ] ⊆ Ω − Q  .





Lemma 7.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅   be a proper subset of Ω. Then, Q is a subsemigroup of Ω if and only if   Ω − Q   is a prime subset of   Ω  .





In [2], Lee SK and Lee SS proved that a non-empty proper subset F of  Ω  was a left (right) filter of  Ω  if and only if   Ω − F   was a right (left) ideal of  Ω . The following theorem presents a similar result regarding quasi-filters.



Theorem 1.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅   be a proper subset of Ω. Then, Q is a quasi-filter of Ω if and only if   Ω − Q   is a prime quasi-ideal of Ω.





Proof. 

Let Q be a quasi-filter of  Ω  and   x ∈ ( ( Ω − Q ) Ω ] ∩ ( Ω ( Ω − Q ] )  . If   x ∉ Ω − Q  , then,   x ∈ Q   and, hence, there exist   α , δ ∈ Ω − Q , β , γ ∈ Ω   such that   x ≤ α · β   and   x ≤ γ · δ  . Having Q be a quasi-filter of  Ω  implies that   { α , δ } ∩ Q ≠ ∅   and   { β , γ } ∩ Q ≠ ∅  . The latter contradicts the fact that   { α , δ } ⊆ Ω − Q  . Lemmas 6 and 7 complete the proof.



Conversely, suppose that   Ω − Q   is a quasi-ideal of  Ω , and let   α , β , γ , δ ∈ Ω  . Let   x ≤ α β   and   x ≤ γ · δ  , with   x ∈ Q  . Then,   { α , δ } ∩ Q = ∅   or   { β , γ } ∩ Q ≠ ∅  . Otherwise,   x ∈ ( ( Ω − Q ) Ω ] ∩ ( Ω ( Ω − Q ] ) ⊆ Ω − Q   contradicts the fact that   x ∈ Q  . Thus, Q is a quasi-filter of  Ω . Lemmas 6 and 7 complete the proof. □





Corollary 2.

Let   ( Ω , · , ≤ )   be an ordered semigroup. Then, Ω has no proper quasi-filters if and only if Ω has no proper prime quasi-ideals.





Proof. 

The proof is an immediate consequence of Theorem 1. □





Remark 2.

An ordered semigroup may have proper quasi-ideals but still has no proper quasi-filters. See Example 4.





Example 4.

Let    Ω 2  =  { 0 ,  a ˚  }   , with operation “  · 2  ” and order “    ≤ 2    ” described as follows:



	   · 2   
	0
	   a ˚   



	0
	0
	0



	   a ˚   
	0
	0







    ≤ 2  : =  {  ( 0 , 0 )  ,  ( 0 ,  a ˚  )  ,  (  a ˚  ,  a ˚  )  }  .   











It is clear that   Ω 2   is an ordered semigroup, and that   { 0 }   is a proper quasi-ideal of   Ω 2  . Moreover,   Ω 2   has no proper quasi-filters.





Theorem 2.

Let   ( Ω , · , ≤ )   be an ordered semigroup and   Q ≠ ∅   be a proper subset of Ω. Then, Q is a generalized quasi-filter of Ω if and only if   Ω − Q   is a quasi-ideal of Ω.





Proof. 

The proof is similar to that of Theorem 1. □






3. (m, n)-Quasi-Filters of Ordered Semigroups


In this section, we generalize the concept of (generalized) quasi-filters of ordered semigroups to (generalized)   ( m , n )  -quasi-filters of ordered semigroups. Moreover, we present some non-trivial examples of the new concept and relate them to (generalized)   ( m , n )  -quasi-ideals of ordered semigroups.



Throughout this section, m and n are positive integers.



Definition 2.

Let   m , n > 0   be integers,   ( Ω , · , ≤ )   be an ordered semigroup, and   Q ≠ ∅ ⊆ Ω  . Then, Q is an   ( m , n )  -quasi-filter of Ω if the following conditions hold for all    p 1  , … ,  p  m + 1   ,  q 1  , … ,  q  n + 1   ∈ Ω  .




	 (1) 

	
  Q · Q ⊆ Q  ;




	 (2) 

	
  [ Q ) ⊆ Q  ;




	 (3) 

	
If   x ∈ Q  ,   x ≤  p 1  …  p m   p  m + 1     and   x ≤  q 1  …  q n   q  n + 1    , then,   {  p 1  , … ,  p m  ,  q 2  , … ,  q  n + 1   } ∩ Q ≠ ∅  , and   {  p 2  , … ,  p  m + 1   ,  q 1  , … ,  q n  } ∩ Q ≠ ∅  .











If we drop the subsemigroup condition in Definition 2, we obtain Q as a generalized   ( m , n )  -quasi-filter.



Proposition 5.

Let   m > 0   be an integer,   ( Ω , · , ≤ )   be an ordered semigroup, and   Q ≠ ∅ ⊆ Ω   be an   ( m , m )  -quasi filter (generalized   ( m , m )  -quasi filter) of Ω. Then, for all    p 1  , … ,  p m  ,  p  m + 1   ∈ Ω  ,    p 1  …  p m   p  m + 1   ∈ Q   implies that    p i  ∈ Q   for some   i ∈ { 1 , … , m + 1 }  .





Proof. 

Let   x =  p 1  …  p m   p  m + 1   ∈ Q  . Then,   x ≤  p 1  …  p m   p  m + 1   ∈ Q   implies that   {  p 1  , … ,  p m  ,      p  m + 1    }   ∩   Q ≠ ∅   . □





Proposition 6.

Let   m , n > 0   be integers,   ( Ω , · , ≤ )   be an ordered semigroup, and   Q ≠ ∅ ⊆ Ω   be a (generalized) quasi-filter of Ω. Then, Q is a (generalized)   ( m , n )  -quasi-filter of Ω.





Proof. 

Let   x ∈ Q  ,   x ≤  p 1  …  p m   p  m + 1    , and   x ≤  q 1  …  q n   q  n + 1    . Having Q be a (generalized) quasi-filter of  Ω ,   x ≤  p 1   (  p 2  …  p m   p  m + 1   )   , and   x ≤  q 1   (  q 2  …  q n   q  n + 1   )    implies that   {  p 1  ,  q 2  …  q n   q  n + 1   } ∩ Q ≠ ∅   and   {  q 1  ,  p 2  …  p m   p  m + 1   } ∩ Q ≠ ∅  . We have the following four cases.



Case    p 1  ,  q 1  ∈ Q  . Having


   q 1  ∈  {  q 1  , … ,  q n  ,  p 2  , …  p m  ,  p  m + 1   }  ∩ Q  and   p 1  ∈  {  p 1  , … ,  p m  ,  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q  








implies that


   {  p 1  , … ,  p m  ,  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ≠ ∅  and   {  q 1  , … ,  q n  ,  p 2  , …  p m  ,  p  m + 1   }  ∩ Q ≠ ∅ .  











Case    p 1  ,  p 2  …  p m   p  m + 1   ∈ Q  . Having    p 2  …  p m   p  m + 1   ∈ Q   and Q be a (generalized) quasi-filter of  Ω , we see that   {  p 2  , … ,  p m  ,  p  m + 1   } ∩ Q ≠ ∅   (by Lemma 2). We see now that


   p 1  ∈  {  p 1  , … ,  p m  ,  q 2  , … ,  q  n + 1   }  ∩ Q  and   {  p 2  , … ,  p m  ,  p  m + 1   }  ∩ Q .  











The latter implies that


   {  p 1  , … ,  p m  ,  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ≠ ∅  and   {  q 1  , … ,  q n  ,  p 2  , …  p m  ,  p  m + 1   }  ∩ Q ≠ ∅ .  











Case    q 1  ,  q 2  …  q n   q  n + 1   ∈ Q  . Having    q 2  …  q n   q  n + 1   ∈ Q   and Q a (generalized) quasi-filter of  Ω , we see that   {  q 2  , … ,  q n  ,  q  n + 1   } ∩ Q ≠ ∅  . We see now that


   {  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ⊆  {  p 1  , … ,  p m  ,  q 2  , … ,  q  n + 1   }  ∩ Q  and   q 1  ∈  {  q 1  , … ,  q n  ,  p 2  , … ,  p  m + 1   }  .  











The latter implies that


   {  p 1  , … ,  p m  ,  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ≠ ∅  and   {  q 1  , … ,  q n  ,  p 2  , …  p m  ,  p  m + 1   }  ∩ Q ≠ ∅ .  











Case    p 2  …  p m   p  m + 1   ,  q 2  …  q n   q  n + 1   ∈ Q  . Having    p 2  …  p m   p  m + 1   ,  q 2  …  q n   q  n + 1   ∈ Q   and Q a (generalized) quasi-filter of  Ω , we see that   {  p 2  , … ,  p  m + 1   } ∩ Q ≠ ∅   and   {  q 2  , … ,  q  n + 1   } ∩ Q ≠ ∅  . We see now that


   {  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ⊆  {  p 1  , … ,  p m  ,  q 2  , … ,  q  n + 1   }  ∩ Q  








and


   {  p 2  , … ,  p  m + 1   }  ∩ Q ⊆  {  q 1  , … ,  q n  ,  p 2  , … ,  p  m + 1   }  ∩ Q .  











The latter implies that


   {  p 1  , … ,  p m  ,  q 2  , … ,  q n  ,  q  n + 1   }  ∩ Q ≠ ∅  and   {  q 1  , … ,  q n  ,  p 2  , …  p m  ,  p  m + 1   }  ∩ Q ≠ ∅ .  











□





Remark 3.

An   ( m , n )  -quasi-filter of an ordered semigroup may fail to be a quasi-filter. See Example 5.





Example 5.

Let    Ω 3  =  {  a ˙  ,  b ˙  ,  c ˙  ,  d ˙  }   , with operation “   · 3   ” and order relation “   ≤ 3   ” described as follows:



	   · 3   
	   a ˙   
	   b ˙   
	   c ˙   
	   d ˙   



	   a ˙   
	   a ˙   
	   a ˙   
	   a ˙   
	   a ˙   



	   b ˙   
	   b ˙   
	   b ˙   
	   b ˙   
	   b ˙   



	   c ˙   
	   c ˙   
	   c ˙   
	   c ˙   
	   c ˙   



	   d ˙   
	   a ˙   
	   b ˙   
	   b ˙   
	   a ˙   








   ≤ 3  : =  {  (  a ˙  ,  a ˙  )  ,  (  a ˙  ,  b ˙  )  ,  (  b ˙  ,  b ˙  )  ,  (  b ˙  ,  c ˙  )  ,  (  c ˙  ,  c ˙  )  ,  (  d ˙  ,  d ˙  )  }  .   One can easily see that   (  Ω 3  ,  · 3  ,  ≤ 3  )   is an ordered semigroup, and that   {  b ˙  ,  c ˙  }   is a   ( 2 , 2 )  -quasi-filter of   Ω 3   that is not a quasi-filter of   Ω 3  . This is clear because    b ˙  ≤  b ˙   · 3   d ˙  =  d ˙   · 3  b ∈  { b , c }    and   d ∉ { b , c } .  





Theorem 3.

Let   m , n > 0   be integers,   ( Ω , · , ≤ )   be an ordered semigroup, and   Q ≠ ∅   be a proper subset of Ω. Then, Q is an   ( m , n )  -quasi-filter of Ω if and only if   Ω − Q   is a prime generalized   ( m , n )  -quasi-ideal of Ω.





Proof. 

Let Q be an   ( m , n )  -quasi-filter of  Ω  and   x ∈  (   ( Ω − Q )  m  Ω ]  ∩  ( Ω   ( Ω − Q )  n  ]   . Then, there exist    p 1  , … ,  p m  ,  q 1  , … ,  q n  ∈ Ω − Q  ,   α , β ∈ Ω   such that   x ≤  p 1  …  p m  α   and   x ≤ β  q 1  …  q n   . If   x ∉ Ω − Q  , then,   x ∈ Q  . Having Q an   ( m , n )  -quasi-filter of  Ω  implies that   {  p 1  , … ,  p m  ,  q 1  , … ,  q n  } ∩ Q ≠ ∅   and   {  p 2  , … ,  p m  , α , β ,  q 1  , … ,  q  n − 1   } ∩ Q ≠ ∅  . Having   {  p 1  , … ,  p m  ,  q 1  , … ,  q n  } ∩ Q ≠ ∅   contradicts the fact that   {  p 1  , … ,  p m  ,  q 1  , … ,  q n  } ⊆ Ω − Q  . Lemmas 6 and 7 complete the proof.



Conversely, let   Ω − Q   be a prime generalized   ( m , n )  -quasi-filter of  Ω  and   x ∈ Q  , with   x ≤  p 1  …  p m   p  m + 1     and   x ≤  q 1  …  q n   q  n + 1     for some    p 1  , … ,  p m  ,  p  m + 1   ,  q 1  , … ,  q n  ,  q  n + 1   ∈ Ω  . Suppose that   {  p 1  , … ,  p m  ,  q 2  , … ,  q  n + 1   } ∩ Q = ∅   or   {  p 2  , … ,  p  m + 1   ,  q 2  , … ,  q n  } ∩ Q = ∅  . Then,    p 1  …  p m   p  m + 1   ∈  (   ( Ω − Q )  m  Ω ]   , and    q 1  …  q n   q  n + 1   ∈  ( Ω   ( Ω − Q )  n  ]   . Having   Ω − Q   be a prime generalized   ( m , n )  -quasi-ideal of  Ω  implies that   x ∈  (   ( Ω − Q )  m  Ω ]  ∩  ( Ω   ( Ω − Q )  n  ]  ⊆ Ω − Q  , which contradicts the fact that   x ∈ Q  . Lemmas 6 and 7 complete the proof. □





Theorem 4.

Let   m , n > 0   be integers,   ( Ω , · , ≤ )   be an ordered semigroup, and   Q ≠ ∅   be a proper subset of Ω. Then, Q is a generalized   ( m , n )  -quasi-filter of Ω if and only if   Ω − Q   is a generalized   ( m , n )  -quasi-ideal of Ω.





Proof. 

The proof is similar to that of Theorem 3. □





Theorem 5.

Let   m , n > 0   be integers,   ( Ω , · , ≤ )   be an   ( m , n )  -regular semigroup, and   Q ≠ ∅ ⊆ Ω  . Then, Q is a (generalized)   ( m , n )  -quasi-filter of Ω if and only if Q is a (generalized) quasi-filter of Ω.





Proof. 

Let Q be a (generalized)   ( m , n )  -quasi-filter of  Ω  and   α , β , γ , δ ∈ Ω  . Since  Ω  is an   ( m , n )  -regular semigroup, it follows that there exist    z 1  ,  z 2  ,  z 3  ,  z 4  ∈ Ω   such that   α ≤  α m   z 1   α n   ,   β ≤  β m   z 2   β n   ,   γ ≤  γ m   z 3   γ n   , and   δ ≤  δ m   z 4   δ n   . Let   x ∈ Q  , with   x ≤ α · β   and   x ≤ γ · δ  . Then,   x ≤  α m   (  z 1   α n   β m   z 2  )   β n   , and   x ≤  γ m   (  z 3   γ n   δ m   z 4  )   δ n   . Having Q be a (generalized)   ( m , n )  -quasi-filter of  Ω  implies that   { α , δ } ∩ Q ≠ ∅   and   { β , γ } ∩ Q ≠ ∅   and, hence, Q is a (generalized) quasi-filter of  Ω . □






4. Conclusions and Future Directions


This paper introduced new types of filters in ordered semigroups. More precisely, it discussed quasi-filters and   ( m , n )  -quasi-filters of ordered semigroups by exploring their properties and finding their relationships with quasi-ideals and   ( m , n )  -quasi-ideals. The main results were formulated in five theorems, i.e., Theorems 1–5.



For future work, we raise the following ideas:




	
Study quasi-filters in certain special ordered semigroups, such as regular semigroups and intra-regular semigroups.



	
Define quasi-filters and   ( m , n )  -quasi-filters in other ordered algebraic structures, such as ordered semirings.
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