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Abstract: This is a review addressing soliton-like states in systems with nonlocal nonlinearity. The
work on this topic has long history in optics and related areas. Some results produced by the work
(such as solitons supported by thermal nonlinearity in optical glasses, and orientational nonlinearity,
which affects light propagation in liquid crystals) are well known, and have been properly reviewed
in the literature, therefore the respective models are outlined in the present review in a brief form.
Some other studies, such as those addressing models with fractional diffraction, which is represented
by a linear nonlocal operator, have started more recently, therefore it will be relevant to review
them in detail when more results will be accumulated; for this reason, the present article provides
a short outline of the latter topic. The main part of the article is a summary of results obtained for
two-dimensional solitons in specific nonlocal nonlinear models originating in studies of Bose–Einstein
condensates (BECs), which are sufficiently mature but have not yet been reviewed previously (some
results for three-dimensional solitons are briefly mentioned too). These are, in particular, anisotropic
quasi-2D solitons supported by long-range dipole-dipole interactions in a condensate of magnetic
atoms and giant vortex solitons (which are stable for high values of the winding number), as well
as 2D vortex solitons of the latter type moving with self-acceleration. The vortex solitons are states
of a hybrid type, which include matter-wave and electromagnetic-wave components. They are
supported, in a binary BEC composed of two different atomic states, by the resonant interaction of
the two-component matter waves with a microwave field that couples the two atomic states. The
shape, stability, and dynamics of the solitons in such systems are strongly affected by their symmetry.
Some other topics are included in the review in a brief form. This review uses the “Harvard style” of
referring to the bibliography.

Keywords: collapse prevention; thermal nonlinearity; nematicons; vortex solitons; fractional diffrac-
tion; dipole condensates; binary condensates; hybrid solitons; self-accelerating solitons

1. Introduction

The absolute majority of work that has been performed in the huge area of theoretical
and experimental studies of solitons have dealt with one-dimensional (1D) settings. Exten-
sion of the soliton concepts to the multidimensional world is a very promising, but also
very challenging, direction for the work of theorists and experimentalists. The obvious gain
offered by considering 2D and 3D soliton physics is the possibility to create completely new
species of localized states—in particular, because 2D and 3D geometries make it possible
to build localized topological modes with intrinsic vorticity. Multi-component solitons
can be used to build more sophisticated topological structures, such as famous skyrmions,
hopfions (alias twisted vortex tori in the 3D space), knots, and others, which have no 1D
counterparts [1,2].

However, the work with solitons in the 2D and 3D geometries encounters fundamental
difficulties. First, the most fundamental models that give rise to 1D solitons, such as the
Korteweg–de Vries (KdV), sine-Gordon (SG), and nonlinear Schrödinger (NLS) equations,
are integrable by means of the inverse-scattering transform and related methods [3–5].
Both the SG and NLS equations have straightforward 2D and 3D versions which, however,
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are not integrable and their 2D and 3D counterparts are not integrable. As concerns the
KdV equation, its natural 2D extension, viz., the two celebrated Kadomtsev–Petviashvili
equations (KP-I and KP-II, which differ by the sign of the 2D spatial-dispersion term),
provide exceptional examples of integrable 2D equations (see a review article by Bion-
dini and Pelinovsky [6] ; the integrability of the KP equations and the existence of 2D
solitons produced by them was discovered by Manakov et al. [7]. In fact, the lack of
the integrability of basic 2D and 3D equations in the soliton theory is only a technical
difficulty, because relevant solutions can be readily constructed in the numerical form [8],
and, quite often, by means of approximate analytical methods, such as the ubiquitous
variational approximation (VA); for the first time, the VA was applied to 2D solitons of the
NLS equation by Desaix, Anderson and Lisak [9].

A principal problem is that the exit from 1D models to the 2D and 3D world leads to
versatile instabilities, which do not occur in 1D. The problem is clearly exhibited by the
NLS equation with the self-attractive cubic nonlinearity, which represents the Kerr term in
optics [10], or attractive inter-atomic interactions in Bose–Einstein condensates (BECs) [11]
While stationary soliton solutions of the 1D NLS equations are commonly known to be
completely stable, the 2D and 3D versions of the same equation produce soliton families
that are completely unstable, due to the fact that precisely the same NLS equation gives rise
to the collapse, alias blowup, i.e., catastrophic self-compression of the wave field, leading
to the formation of a true singularity after a finite evolution time [12–14] , as illustrated
by Figure 1a. The collapse is critical in 2D, and supercritical in 3D, meaning that the 2D
collapse sets in if the norm of the input exceeds a certain finite critical (threshold) value,
while in 3D the threshold is zero, i.e., an arbitrarily weak input may initiate the supercritical
collapse. In 2D, the input whose norm falls below the threshold value does not blow up,
but instead decays into “radiation” (small-amplitude waves). Thus, small perturbations
added to any soliton of the 3D NLS equation trigger its blowup, while in 2D the addition
of small perturbations initiates either the blowup or decay. In this connection, it is relevant
to mention that the first species of solitons, which was ever considered in optics, is the
family of the so-called Townes solitons (TSs), predicted by Chiao, Garmire, and Townes [10],
without the analysis of their stability. As shown in Figure 1b, these are stationary solutions
of the 2D NLS equation that predict self-trapped shapes of laser beams propagating in the
bulk Kerr medium, under the condition of paraxial diffraction. In the original work, these
beams were not called solitons, as this term was coined only the next year by Zabusky
and Kruskal [15]. Many other species of optical solitons, which were predicted later, have
been created in the experiment, but the TSs in their pure form have never been observed
in optics, as they are unstable states that represent the separatrix between collapsing and
decaying solutions of the 2D NLS equation (recently, experimental observation of TSs, at
the pre-blowup stage, in the effectively two-dimensional self-attractive BECs in an ultracold
atomic gas was reported by Chen and Hung [16,17]).

As concerns 2D and 3D solitons with embedded vorticity (alias vortex rings, VRs),
they are subject to the annular modulational instability, which develops faster than the
collapse, leading to spontaneous splitting of the VR into two or several fragments, which
are close to the corresponding fundamental (zero-vorticity) solitons. The exact number
of the fragments is determined by the integer winding number (vorticity) carried by the
VR, as shown in Figure 2. At a later stage of the evolution, the secondary solitons are
destroyed by the collapse. In particular, vorticity-carrying varieties of the (unstable) 2D
TSs were introduced in the works by [18–20].
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(a) (b)

Figure 1. (a) Development of the collapse of the 2D Townes soliton, shown in its radial cross-
section. (b) The full spatial profile of the same soliton in the stationary state (source: https://www2
.mathematik.uni-halle.de/dohnal/SOLIT_WAVES/NLS_blowup.pdf) Accessed on 29 June 2022.

Figure 2. Spontaneous splitting of unstable 2D VRs (vortex rings) with winding numbers S = 1
(panels (a,d)) and S = 2 (b,e) into fundamental (zero-vorticity) solitons (panel (c) is not included).
Panels (a,b) display the real part of the complex wave function of the initial VRs, while (d,e) show
the intensity distribution in the fragments produced by the splitting. These results were produced
by simulations of the 2D NLS equations with saturable, rather than cubic, self-focusing nonlinearity,
which stabilizes zero-vorticity solitons against the collapse, but does not stabilize the VRs against the
splitting. Note that the total angular momentum is conserved, as the spin momentum of the initial
VR is transformed into the orbital momentum of the emerging fragments [21]).

While the NLS equation with the self-attractive nonlinearity is a relevant model for
many physical realizations in optics [22], BEC [23], physics of Langmuir waves in plas-
mas [24], etc., the occurrence of the collapse implies that these physical settings cannot
be used for the straightforward creation of multidimensional solitons. Therefore, a cardi-
nal problem is the search for physically realistic multidimensional systems that include
additional ingredients that make it possible to suppress the collapse and help to predict
and create stable (or maybe metastable) 2D and 3D solitons, see reviews by [25–29], and a
new book by Malomed [30]. This can be done in various physical setups. In particular,
stable 2D and 3D optical solitons can be predicted, and, eventually, experimentally created,
if the optical medium features, in addition to the cubic self-focusing, higher-order quintic

https://www2.mathematik.uni-halle.de/dohnal/SOLIT_WAVES/NLS_blowup.pdf
https://www2.mathematik.uni-halle.de/dohnal/SOLIT_WAVES/NLS_blowup.pdf
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self-defocusing, which arrests the blowup, and thus provides the stabilization of 2D and
3D optical solitons. The creation of fundamental 2D solitons stabilized by the quintic
self-defocusing was reported in the experiment by Falc̃ao Filho et al. [31], and transitionally
stable vortex solitons in the same medium were observed by Reyna et al. [32]. On the other
hand, creation of stable 3D solitons remains a challenging problem.

Another extremely interesting option is to consider a binary BEC with the collapse driven
by the attractive cubic interaction between its two intrinsically self-repulsive components. In this
system, the collapse is arrested by a higher-order quartic self-repulsive term, which is induced
in each component by the correction to the cubic mean-field interaction, induced by quantum
fluctuations (the effect was first addressed in the classical work by [33]. As a result, the binary
BEC creates completely stable 3D and quasi-2D self-trapped “quantum droplets” (QDs), which
seem as multidimensional solitons (even if they are not usually called “solitons”, as the name
of QDs is preferred in the literature). The prediction of QDs by Petrov [34] and Petrov and
Astrakharchik [35] was quickly realized experimentally [36–40]. The existence of stable QDs
with embedded vorticity was predicted as well [41,42], but such donut-shaped vortex tori have
not yet been created in the experiment.

As concerns 2D and 3D settings with the purely cubic nonlinearity, it was predicted
that completely stable 2D solitons can be created in two-component systems with the
spin-orbit coupling (SOC) between the components [43,44]. Moreover, SOC may also create
metastable solitons (ones that are stable against small perturbations, while the supercritical
collapse remains possible) in the full 3D version of the same two-component system [45].
Due to the specific form of the SOC, both 2D and 3D two-component solitons maintained by
this linear interaction between the components take the shape of semi-vortices, i.e., complexes
including a zero-vorticity soliton in one component and a vortical one in the other, or mixed
modes, in which zero-vorticity and vorticity-carrying terms are mixed in both components.
In addition to that, stable 3D solitons may be supported by a combination of SOC, taken
in the reduced 2D form, with the Zeeman splitting between the two components of the
BEC [46]. Stable complexes of coupled 2D solitons can be supported by spatially periodic
modulation of the local SOC strength [47].

All the above-mentioned mechanisms provide stabilization of 2D and 3D solitons in
models with local nonlinear self- and cross-interactions in the single- and multi-component
systems, respectively. On the other hand, a straightforward possibility is to use nonlocal
nonlinearities for the stabilization of multidimensional localized states. First of all, it is
evident that a fixed spatial scale (correlation length) of the nonlinear interaction arrests the
development of the collapse, preventing the creation of the singularity with a vanishingly
small intrinsic scale. Because the onset of the collapse is the basic mechanism leading to
the instability of solitons in 2D and 3D spaces, the nonlocality may be a powerful method
providing for the stabilization of such solitons. The present article offers a review of some
selected results produced by the work performed in this direction. These are, chiefly,
theoretical predictions, but some experimental findings are presented too.

Solitons are also well-known states in 1D models with nonlocal nonlinearity (Kro-
likowski and Bang, 2000). Although 1D solitons are not considered in this article in detail,
it is relevant to mention the Benjamin–Ono equation [48,49], which was derived as a
modification of the KdV equation for internal waves in stratified fluids, featuring non-
local dispersion (i.e., the nonlocality appears in the linear part of the equation). This is
an integrable equation which, similar to its KdV counterpart, admits exact multi-soliton
solutions [50,51].

The review is not designed to be a comprehensive one, as otherwise it would grow
into a full-size book. Particular topics selected for the inclusion in the review correspond
to items that are singled out in the table of contents. Some of them represent themes
and results that are well known from previous works, therefore they are briefly outlined
in the review. Settings which were elaborated recently (especially those addressed in
Section IV, produced by a 2D model for a binary BEC whose components are resonantly
coupled by the interaction with a microwave electromagnetic field) are presented here in a



Symmetry 2022, 14, 1565 5 of 26

more detailed form. Some topics that are not included in the review are mentioned in the
concluding section.

1.1. Established Models: Thermal and Liquid-Crystal (Orientational) Nonlinearities in Optics

The possibility to stabilize multidimensional solitons in models with nonlocal non-
linear terms is well known. One of the first predictions of this stabilization mechanism
for 2D solitons was published by Turitsyn [52]. Later, this topic was elaborated in detail
theoretically, see a review by Krolikowski et al. [53]. In optics, the nonlocal propagation
is realized in media with thermal nonlinearity, which originates form the local variation
of the refractive index due to heating the medium by the propagating light. The corre-
sponding model is based on the linear equation for the paraxial propagation of optical
amplitude U(x, y, z) along the z axis, with transverse coordinates (x, y), which is coupled
to the equation for the local perturbation of the refractive index, n(x, y, z):

iUz +
1
2
(
Uxx + Uyy

)
+ nU = 0, (1)

σ−2(nxx + nyy
)
− n = −|U|2. (2)

In Equation (2), term −|U|2 represents the local source of heating, and σ is the char-
acteristic correlation length of the nonlocal interaction (in the limit of σ → ∞, the non-
local nonlinear system is sometimes replaced by a linear Schrödinger equation, with the
harmonic-oscillator potential, whose strength is proportional to the norm of the wave
field—the so-called model of “accessible solitons” [54].

The basic model for nonlinear light propagation in nematic liquid crystals amounts to
a system of equations that is similar to Equations (1) and (2), also leading to the creation of
stable 2D solitons [55–58]. In that case, the nonlinearity is orientational, related to rotation
of long molecules in the optical field.

The system of Equations (1) and (2) can be reduced to a single nonlocal NLS equation,

iUz +
1
2
(
Uxx + Uyy

)
+ U(x, y)

∫ ∫
G
(√

(x− x′)2 + (y− y′)2
)∣∣U(x′, y′

)∣∣2dx′dy′ = 0, (3)

where G is the Green’s function of the linear operator

L̂ = −σ2
(

∂2
x + ∂2

y

)
+ 1. (4)

In many works, the Green’s function is approximately replaced by a Gaussian kernel:

G(r) = (πσ)−1 exp
(
−r2/σ2

)
. (5)

The full system of Equations (1) and (2) and the single Equation (3) with the simplified
kernel (5) produce quite similar results [59].

A 3D NLS equation for the spatiotemporal propagation of light in an ionized medium,
with the cubic term, which is nonlocal in the temporal coordinate, thus representing the
intra-pulse Raman shift, was introduced by Khalyapin and Bugay [60]. The equation
also includes the third-order group-velocity dispersion, but does not include absorption
of light. In the framework of this model, stable propagation of axially symmetric “light
bullets” (as spatiotemporal solitons were named by Silberberg [61] was predicted, using the
approximation based on the method of moments. In this context, the full 3D NLS equation
was replaced by a system of evolution equations for seven integral moments.

In addition to straightforward stabilization of fundamental solitons, it was found that
the nonlocal model provides for the existence of stable solitons with embedded vorticity,
alias VRs (vortex rings), as well as higher-order VRs with a multiple-ring transverse
structure [62–64]. The same model predicts 2D soliton complexes in the form of rotating
dipoles [65]. A stability domain of vortex solitons was also found in a model of the light
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propagation in liquid crystals, where the nonlinearity is nonlocal too [66]. Therefore, the
nonlocality is a promising method for the stabilization of complex 2D states. On the other
hand, in the 3D version of the nonlocal system, produced by adding term Utt to Equation (1),
where t is the temporal coordinate, only fundamental 3D solitons are stable, while VRs
are not ([67]). In addition to vortex solitons, robust necklace-shaped patterns in a nonlocal
medium, produced by instability development of the solitary vortices, were explored by
Walasik [68].

In the experiment, the formation of stable 2D fundamental solitons by light beams
propagating through a vapor of hot sodium atoms, which is an effectively nonlocal optical
medium, was demonstrated by Suter and Blasberg [69]. In liquid crystals, 2D solitons,
which are often called “nematicons”, were created by Peccianti [70]. Then, as illustrated
by Figure 3, stable optical VRs and elliptically deformed fundamental 2D solitons were
created by Rotschild [71] in the lead glass, whose nonlocal nonlinearity is adequately
modeled by Equations (1) and (2). Stable vortex solitons of higher orders—in particular,
with vorticity S = 4 (Zhang et al. [72]) and S = 10 (Zhang, Zhou, and Dai [73])—were ex-
perimentally demonstrated in glasses with the thermal nonlocal nonlinearity. Stable vector
(two-component) optical vortex solitons in a liquid-crystal medium were demonstrated
byIzdebskaya, Assanto, and Krolikowski [74].

Figure 3. Experimentally demonstrated creation of stable optical vortex solitons (with winding
number S = 1) supported by the nonlocal nonlinearity in the bulk waveguide made of lead glass.
The top row demonstrates the intensity distribution in the input vortex beam (a), its linear diffraction
when the power is insufficient to make the propagation nonlinear (b), and the formation of the
stable vortex soliton when the power is sufficient for that (c). Panel (d) in the top row displays the
experimentally observed phase distribution in the vortex. Panels (a–c) in the bottom row show the
findings for the intensity distribution as produced, for the same setup, by simulations of Equations (1)
and (2). In addition to that, panel (d) in the bottom row displays the distribution of the local intensity,
I, and local perturbation of the refractive index, n (here denoted ∆n), in the cross-section of the vortex
soliton, as produced by the numerical solution [71].

Another experiment with the propagation of (2 + 1) optical beams in an isotropic
glass waveguide with the thermal nonlocal nonlinearity, and respective simulations of
Equation (3), were performed by Zhang et al. [75]. They considered beams with an elliptical
transverse shape. If the elliptically deformed beam did not carry angular momentum, it
performed shape oscillations, similar to those demonstrated in simulations of the evolution
of an elliptic ring kinks in the two-dimensional SG equation ([76]). On the other hand,
a similar input to which angular momentum was imparted could self-trap into a stably
rotating elliptic soliton, which resembles the so-called “propeller modes” [77].

1.2. A New Model with Linear Nonlocality: Fractional Diffraction in 2D

The introduction of fractional calculus in NLS equations has drawn much interest since
it was proposed by Laskin [78]—originally, in the linear form—as the quantum-mechanical
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model, derived from the Feynman-integral formulation for particles moving by Lévy flights
(see also the book by Laskin [79]). Then, realization of the effective fractional diffraction in
optical cavities was proposed by Longhi [80] and by Zhang et al. [45]. Implementation of
fractional linear Schrödinger equations in condensed-matter settings has been reported by
Stickler [81] and by Pinsker et al. [82].

The nonlinearity was added to the fractional Schrödinger equations, starting from the
work by Secchi and Squassima [83]. In terms of the realization of the fractional diffraction
in optics, the cubic self-focusing represents the Kerr nonlinearity of the material of the
waveguide. The cubic nonlinearity also makes sense if added to the original fractional
Schrödinger equation in quantum mechanics. The so extended fractional model may be
considered as an effective Gross–Pitaevskii (GP) equation for the gas of quantum particles
moving by Lévy flights. The fractional NLS equations give rise to many theoretical results
for solitons in the framework of the fractional NLS equations, see a brief review of the topic
by Malomed [84]. In particular, the 2D fractional NLS equation for amplitude ψ(x, y, z)
of the optical wave propagating along the z direction, under the action of an effective
transverse potential, U(x, y), and the usual cubic self-focusing, is written as

i
∂ψ

∂z
=

1
2

(
− ∂2

∂x2 −
∂2

∂y2

)α/2

ψ− |ψ|2ψ + U(x, y)ψ. (6)

The fractionality of the diffraction operator in Equation (6) is determined by the Lévy
index (LI), α. In usually considered models, it takes values in interval

1 ≤ α ≤ 2, (7)

α = 2 corresponding to the usual NLS equation. Equation (6) reduces to the 1D form by
dropping coordinate y, which leads to the following equation

i
∂ψ

∂z
=

1
2

(
− ∂2

∂x2

)α/2

ψ− |ψ|2ψ + U(x)ψ. (8)

The affinity of Equations (6) and (8) to nonlocal models, although with linear nonlocal-
ity, is demonstrated by the definition of the fractional derivative in Equation (8), and the
fractional-diffraction operator in Equation (6):(

− ∂2

∂x2

)α/2

ψ(x) =
1

2π

∫ +∞

−∞
dp|p|α

∫ +∞

−∞
dξeip(x−ξ)ψ(ξ), (9)

(
− ∂2

∂x2 −
∂2

∂y2

)α/2

ψ(x, y) =
1

(2π)2

∫ ∫
dpdq

(
p2 + q2

)α/2 ∫ ∫
dξdηei[p(x−ξ)+iq(y−η)]ψ(ξ, η). (10)

These integral expressions are produced, essentially, as juxtapositions of the direct
and inverse Fourier transform for field ψ. In fact, there are many different definitions of
fractional derivatives; the one adopted in Equation (9), which is relevant to the above-
mentioned physical realizations in quantum mechanics and optics, is often called the Riesz
derivative [85,86]. It is relevant to mention that alternative definitions of the fractional
derivatives, such as Caputo and Riemann–Liouville ones, may also produce solitons in the
framework of the fractional NLS equation [87,88], although the use of those definitions in
the context of optics models is less straightforward.

An essential problem posed by the fractional NLS Equations (6) and (8), which include
the cubic self-focusing term, is the possibility of the onset of collapse in it. Well-known
criteria for the occurrence of the supercritical and critical collapse for the usual NLS
equations [12–14] can be easily generalized for the fractional NLS Equations (6) and (8) with
the cubic self-focusing. The derivation is based on the analysis of scaling of the fractional-
diffraction and self-focusing terms, Ediffr > 0 and Efocus < 0 in the energy (Hamiltonian) of
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the equation, assuming spontaneous self-compression of the wave-function configuration
towards the limit of the zero spatial scale, L→ 0, under the condition of the conservation of
the integral norm,N =

∫
|ψ(r)|2dr. The latter condition implies that the squared amplitude

of the wave function scales as A2 ∼ N/LD, where D = 1 and 2 for Equations (6) and (8),
respectively. With regard to this result, the conclusions for the scaling are Ediffr ∼ N/Lα

and Efocus ∼ −N 2/LD. The collapse cannot develop if Ediffr grows at L → 0 faster than
|Efocus|. Thus, the conclusion is that the critical and supercritical collapse takes place,
severally, at LI values

αcrit = D, αsupercrit < D. (11)

In other words, in the case of the 1D fractional Equation (8), the critical collapse
takes place at α = 1, and does not occur at α > 1. In the 2D fractional model based on
Equation (6), the collapse takes place in the entire interval (7): critical at α = 2 (which is
tantamount to the usual 2D NLS equation with the cubic self-focusing), and supercritical at
α < 2.

The occurrence of the collapse makes it difficult to obtain stable solitons as solutions
of Equation (6). Nevertheless, stable 2D solitons, including ones with embedded vorticity,
were predicted, adding the self-defocusing quintic term to the model ([89,90]), or replacing
the local cubic self-focusing by its nonlocal counterpart, the same as in Equations (3) and
(5). A trapping harmonic-oscillator potential in Equation (6), U(x, y) =

(
Ω2/2

)(
x2 + y2),

may also provide stabilization of 2D solitons at α < 2 ([84])). The latter result is similar to
the well-known one for the usual two-dimensional NLS/GP equation, which corresponds
to α = 2 in Equation (6). Further, a similar fractional model with a double-well potential
gives rise to 2D solitons with spontaneously broken symmetry [91].

2. Anisotropic Quasi-2D Solitons Built by Dipole-Dipole Interactions (DDIs) in BEC
of Magnetic Atoms

An important example of nonlocal nonlinearity is provided by the DDI of magnetic
atoms in BEC composed of such atoms [92]. The corresponding GP equation, for the
mean-field wave function ψ, includes both the local nonlinearity, with strength g, which
represents contact collisions between atoms, and the nonlocal DDI, with strength gDDI > 0.
In the scaled form, the GP equation is

i
∂ψ

∂t
= −1

2
∇2ψ + g|ψ|2ψ + gDDIψ(r)

∫ (
1− 3(z− z′)2

|r− r′|2

)∣∣ψ(r′)∣∣ dr′

|r− r′|3
+ U(r)ψ, (12)

where z is the direction in which atomic magnetic moments are polarized by an external
magnetic field,

∫
dr′ stands for the 3D integration, and U(r) is an external potential acting on

the condensate. In terms of physical units, g = 4πasN/r0 and gDDI = µ0µ2mN/
(

4πh̄2r0

)
,

where as is the scattering length of the atomic collisions, N is the number of atoms in the
condensate, r0 is a characteristic spatial scale, µ0 is the vacuum permeability, m is the atomic
mass, and µ is the atomic magnetic moment.

Stable 3D solitons in the free space (U = 0) cannot be supported by the DDI. A
possibility is to create quasi-2D (pancake-shaped) solitons, applying the confining potential
acting in a particular direction. The simplest configuration of that type is an axially
symmetric one, with the potential applied along the same axis, z, along which the polarizing
field is directed. However, self-trapping of the wave function in this configuration is
impossible because the interaction between parallel magnetic dipoles is repulsive. On the
other hand, it was predicted by Giovanazzi, Görlitz, and Pfau [93] that the sign of the DDI
may be effectively reversed, replacing gDDI → −gDDI in Equation (12), by means of an
additional ac magnetic field which drives fast rotation of the dipoles (a similar prediction
for polar molecules carrying electric dipole moments was made by Micheli et al. [94]).
In the framework of this setup, stable solitons were predicted by Pedri and Santos [95],
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and stable vortex solitons with winding number S = 1 were predicted by Tikhonenkov,
Malomed, and Vardi [96].

A more challenging objective is to search for stable quasi-2D solitons, supported by
the DDI proper, with the magnetic moments polarized perpendicular to the confinement
direction, or at an angle θ to it, as shown schematically in Figure 4 (the notation for the
Cartesian coordinates in this figure is different from that in Equation (12)).

Figure 4. A scheme for the creation of quasi-2D (“pancake-shaped”) solitons supported by the DDI
of magnetic atoms confined in the vertical direction by the trapping harmonic-oscillator potential.
The angle between the fixed orientation of atomic magnetic dipoles, p̂, and the confinement direction
is θ [97].

An approach to the solution of this problem was elaborated by Tikhonenkov, Malomed,
and Vardi [98], assuming that the confinement was imposed in the direction of y by the
harmonic-oscillator potential

U(r) =
(

Ω2/2
)

y2 (13)

in Equation (12) (i.e., indeed, the confinement direction is perpendicular to the polarizing
magnetic field). The consideration started with the VA, based on an anisotropic Gaussian
ansatz for the 3D wave function,

ψaniso = π−3/4(αβγ)1/4 exp
[

iµt− 1
2

(
αx2 + βy2 + γz2

)]
, (14)

supplemented by the normalization condition,∫
|ψ(r)|dr = 1. (15)

Ansatz (14) was inserted in the energy (Hamiltonian) corresponding to Equation (12),
with the confining potential (13) (i.e., the atomic magnetic dipoles are polarized along axis
z, and the atoms are located close to the (z, x) plane:

E = Elocal + Enonlocal, (16)

Elocal =
1
2

∫ (
|∇ψ(r)|2 + Ω2

2
y2|ψ(r)|2 + g|ψ(r)|4

)
dr, (17)

Enonlocal =
1
2

gDDI

∫ ∫ [
1− 3(z− z′)2

|r− r′|2

]
|ψ(r′)|2|ψ(r)|2 drdr′

|r− r′|3
. (18)
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The substitution of ansatz (14) and calculation of the integrals yields

EVA =
1
4
(α + β + γ) +

1
4β

+

√
αβγ

2π

[ g
4π

+
gDDI

3
h(κx, κy)

]
, (19)

where
κx ≡

√
γ/α, κy ≡

√
γ/β, (20)

h(κx, κy) ≡
∫ 1

0

3κxκyx2dx√
1 + (κ2

x − 1)x2
√

1 + (κ2
y − 1)x2

− 1. (21)

Then, values of the variational parameters α, β, γ in ansatz (14) are predicted by the
energy-minimization condition,

∂EVA/∂(α, β, γ) = 0. (22)

Detailed analysis of Equation (22) has demonstrated that, under condition

g/gDDI < 4π/3 ≈ 4.19, (23)

it yields a minimum of energy (19), which may predict the existence of stable solitons as
solutions to Equation (12). The meaning of constraint (23) is that, naturally, stable solitons
cannot exist if the DDI is not strong enough.

Direct numerical solution of Equation (12) has produced stable solitons with shapes
close to those predicted by the VA, see an example in Figure 5. The strongly anisotropic
shape of the soliton is a natural manifestation of the anisotropic form of the DDI in
Equation (12).

Figure 5. The The left panel, (a): the density distribution in a stable quasi-2D (pancake-shaped)
soliton solution of Equation (12) in the mid plane, y = 0, for parameters g = 10 and g/gDDI = 0.911
(which satisfies condition (23)). The right panel, (e): the same, as predicted by the VA solution based
on ansatz (14) [98]. Intermediate panels (b,c,d) are not included.

Because the polarization of the atomic magnetic moments in the (x, z) plane is de-
termined by the orientation of the external magnetic field, it is also interesting to explore
a dynamical state in which the field slowly rotates in this plane (perpendicular to the
confinement direction, y). The dynamics can be simulated using the GP Equation (12), in
which the DDI term is written in the rotating coordinates,

x′ = x cos(ωt) + y sin(ωt), y′ = y cos(ωt)− x sin(ωt). (24)

The simulations have demonstrated that the stable pancake-shaped soliton is able to
adiabatically follow the rotation of the polarizing field, provided that the angular velocity ω
in Equation (24) is small enough, as shown in Figure 6. Faster rotation leads to deformation
of the soliton.
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Figure 6. Stable counter-clockwise rotation of the pancake-shaped soliton (the same whose static
shape is shown in Figure 5), following the rotation of the coordinates as per Equation (24) with
angular velocity ω = π/200. Shown are snapshots of the density distribution in the mid plane,
produced by simulations of Equation (12) at moments of times indicated in the panels [98].

An experimentally realistic scenario for the creation of the stable pancake-shaped
solitons was elaborated byKöberle et al. [99]. The scenario includes temporal variation
of the scattering length and strength of the trapping potential, with the purpose to help
building the soliton from an experimentally available input. Also included were additional
physically significant factors, such as three-body losses and random fluctuations of the
scattering length.

A similar, but more general, quasi-2D setting, under the action of the confining poten-
tial (13) with the tilt angle θ < π/2 in Figure 4, was considered by Chen et al. [97]. Using
a combination of VA and numerical solution of the accordingly modified Equation (12),
it was found that stable pancake-shaped solitons with the anisotropic shape persist in an
interval of the tilt angles

θmax < θ ≤ π/2. (25)

The limit value θmax in Equation (25) depends on parameters, always staying close to
the so-called magic angle,

θmagic = arccos
(

1/
√

3
)
≈ 54.74o. (26)

The meaning of this angle is that the potential of the DDI for two parallel point-like
dipoles, with angle θ between the line of length R connecting them and the common
direction of the magnetic moments, is proportional to

Potential(DDI) ∼ R−3
(

1− 3 cos2 θ
)

. (27)

Thus, potential (27) vanishes at θ = θmagic.
Equation (12) with potential (13) keeps the Galilean invariance in the (x, z) plane,

which suggests to set the anisotropic solitons in motion in this plane, and simulate colli-
sions between them [100]. The simulations demonstrate that the collisions may be deeply
inelastic, leading to merger of the colliding solitons into a single quasi-soliton state [101].

Recently, a 3D spatiotemporal model similar to Equation (12) was derived by [102]
Zhao et al. (2022) for a two-component model of a gas of Rydberg atoms with long-range in-
teractions in an optical medium with electromagnetically-induced transparency. The model



Symmetry 2022, 14, 1565 12 of 26

produces stable 3D fundamental solitons, as well as stable solitons with embedded vorticity.
A protocol for storage and retrieval of the 3D solitons in this system was elaborated too.

3. Giant Vortex Rings (VRs) in Microwave-Coupled Binary BEC

Photonic tools, such as optical-lattice and trapping potentials, are broadly used in the
experimental and theoretical work with single- and multi-component BECs. In particular,
microwave (MW) fields are used to resonantly couple different atomic states that form
two-component condensates [103,104]. In many cases, the feedback of the BEC on the MW
fields is ignored. Nevertheless, the feedback produced by relatively dense condensates may
induce field-mediated long-range interaction in BEC, which is often called the local-field effect
(LFE) and gives rise to significant phenomena. In particular, the LFE acting on the electric
component of the field explains asymmetric matter-wave diffraction [105,106] and predicts
polaritonic solitons in soft optical lattices [107]. Further, the resonant coupling of the
magnetic components of the MW field to the condensate of two-level atoms opens the way
to the creation of hybrid microwave-matter-wave solitons [108]. In fact, the MW-mediated
long-range interaction may cover the whole condensate, in contrast with fast-decaying
nonlocal interactions in optics and dipolar BEC (cf. Equations (3), (5) and (12)).

In the 2D configuration, a hybrid system including a pseudo-spinor BEC matter-wave
function, whose two components are coupled by the MW field, as shown schematically
in Figure 7, was introduced by Qin, Dong, and Malomed [109]. As shown below, stable
solitons in the form of VRs, with arbitrarily large values of winding number S, readily
self-trap in this 2D setting. The conclusion remains valid if the system includes the local
repulsive or attractive interaction. In particular, the domain in which the VRs remain
stable against the critical collapse, driven by the local attraction between the components,
expands with the increase of S, persisting for arbitrarily high values of S. This conclusion
is remarkable, as, in other systems which admit stable VRs with S > 1, their stability
domain shrinks with the increase of S. In this sense, the VRs predicted in the 2D hybrid
matter-wave-microwave system may be considered as stable giant vortices, because large
values of S naturally imply a large radius of the ring.

Figure 7. The scheme of the 2D hybrid system that builds giant VRs. The pseudo-spinor (two-
component) wave function represents two atomic states coupled by the MW (microwave) field,
as shown in the figure. The MW field is polarized in the direction perpendicular to the system’s
plane [109].
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3.1. The Model

Following Figure 7, a nearly-2D binary BEC, composed of two different atomic states,
is described by the pseudo-spinor wave function, |Φ〉 =

(
φ↓, φ↑

)T , with each component
emulating “spin-up” and “spin-down” states of the usual spinor. In the scaled notation
(setting the Planck’s constant, atomic mass, vacuum magnetic permeability, and the absolute
value of the magnetic moment to be 1), the corresponding atomic Hamiltonian is

H = p̂2/2 + ησ3 −m · B, (28)

where p̂ and m are the 2D momentum and magnetic moment, 2η is detuning of the MW
from the transition between the atomic states |↑〉 and |↓〉, σ3 is the Pauli matrix, and

B = H + M (29)

is the magnetic induction, with magnetic field H and magnetization M = 〈Φ|m|Φ〉. As-
suming that the atomic magnetic moments are polarized along the field, the field and
magnetization may be taken in the scalar form. Then, in the rotating-wave approximation
the components of the wave function obey the following system of coupled GP equations:

i
∂φ↓
∂t

=

(
−1

2
∇2 + η−β

∣∣φ↑∣∣2)φ↓ − γH∗φ↑, (30)

i
∂φ↑
∂t

=

(
−1

2
∇2 − η−β

∣∣φ↓∣∣2)φ↑ − γHφ↓. (31)

Here ∗ stands for the complex conjugate, γ is the strength of the MW-atom coupling,
and the strength of the cross-interaction of the two components is determined by the scalar
product of the matrix elements of the magnetic moment: β = m↑↓ ·m↓↑.

The magnetic field is determined by the inhomogeneous Helmholtz equation. In the
present notation, it is

∇2H + k2H = −φ∗↓φ↑, (32)

where k is the MW wavenumber. As the respective wavelength of the MW field, λ = 2π/k,
is always much greater than an experimentally relevant size of the BEC, the second term in
Equation (32) may be omitted in comparison with the first term, reducing Equation (32) to
the Poisson equation:

∇2H = −φ∗↓φ↑. (33)

Because the medium’s magnetization, which is the source of the magnetic field, is
concentrated in the nearly-2D “pancake”, the Poisson equation may be treated as a two-
dimensional one. Then, using the Green’s function of the 2D Poisson equation, the magnetic
field is produced by Equation (33) as

H(r) = − 1
2π

∫
ln
(∣∣r− r′

∣∣)φ∗↓(r′)φ↑(r′)dr′, (34)

where r is the set of the coordinates in the 2D plane. The substitution of expression (34)
in GP Equations (30) and (31) casts them in the form of coupled NLS equations with the
nonlocal interaction, cf. Equations (3) and (12), acting along with the local cross-interaction
with strength β:

i
∂φ↓
∂τ

=

(
−1

2
∇2 + η − β

∣∣φ↑∣∣2)φ↓ +
γφ↑
2π

∫
ln
(∣∣r− r′

∣∣)φ↓(r′)φ∗↑(r′)dr′, (35)

i
∂φ↑
∂τ

=

(
−1

2
∇2 − η − β

∣∣φ↓∣∣2)φ↑ +
γφ↓
2π

∫
ln
(∣∣r− r′

∣∣)φ∗↓(r′)φ↑(r′)dr′, (36)
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Equations (35) and (36) are supplemented by the normalization condition,∫ (∣∣φ↑∣∣2 + ∣∣φ↓∣∣2)dr = 1. (37)

If collisions between atoms belonging to the two components are considered (with
the corresponding strength of the contact interaction made tunable, in the experiment,
by means of the Feshbach resonance), the additional cross-interaction terms can be absorbed
into rescaled coefficient β in Equations (35) and (36). Collisions may also give rise to self-
interaction terms, −β̃

∣∣φ↓∣∣2 and −β̃
∣∣φ↑∣∣2, in the parentheses of Equations (35) and (36),

respectively. Note also that the same Equations (35) and (36) (without the self-interaction
terms) apply to a different physical setting, viz., a degenerate Fermi gas with spin 1/2,
in which φ↓ and φ↑ represent two spin components, coupled by the MW magnetic field [108,110].

The following analysis chiefly addresses the symmetric (zero-detuning) system, which
corresponds to η = 0 in Equations (35) and (36). Then, these equations coalesce into a
single one for φ↓ = φ↑ ≡ φ,

i
∂φ

∂t
=

[
−1

2
∇2 − β|φ|2 + γ

2π

∫
ln
(∣∣r− r′

∣∣)∣∣φ(r′)∣∣2dr′
]

φ, (38)

and normalization (37) reduces to ∫
|φ(r)|2dr = 1/2. (39)

In this case, the above-mentioned self-interaction coefficient, β̃, may be absorbed
into β.

The remaining scaling invariance of Equation (38) makes it possible to finally fix γ = π.
In physical units, assuming the transverse-confinement size l⊥ ∼ 1 µm and MW wavelength
∼1 mm, the typical solutions for VR solitons presented below correspond to “heavy” BECs with
the number of atoms N ∼ 108, which are available in the experiment[111,112] , a typical VR
radius being ∼10 µm.

3.2. Results

In polar coordinates (r, θ), stationary solutions to Equation (38) with chemical potential
µ and integer vorticity S are looked for as

φ = e−iµτ−iSθΦS(r), (40)

where ΦS(r) is a real radial wave function, which satisfies the following equation, obtained
by the substitution of ansatz (40) in Equation (38):[

µ +
1
2

d2

dr2 −
S2

r2 + βΦ2
S

]
ΦS = γΦS(r)

∫ ∞

0
ln
(

1
2
(r + r′ +

1
2

∣∣r− r′
∣∣)Φ2

S(r
′)r′dr′. (41)

The form of the nonlocal term in Equation (41) was derived by explicitly performing
the angular integration in the last term of Equation (38). The corresponding magnetic field
H(r) is then produced by performing the integration with respect to the angular coordinate
in Equation (34):

H(r) = −
[∫ r

0

(
ln r′

)
+ (ln r)

∫ ∞

r

]
Φ2

S(r
′)r′dr′. (34’)

Characteristic examples of solutions for ΦS(r), produced by the imaginary-time sim-
ulations of Equation (38), along with the corresponding profiles of H(r), are displayed
in Figure 8, for different values of S and β ≥ 0. Numerical results demonstrate that the
fundamental solitons, which correspond to S = 0, and VRs with S ≥ 1 are destroyed
by the collapse at β > βmax(S), see Table 1. This critical value of the coefficient of the
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inter-component attraction can be found by considering the energy corresponding to
Equation (38),

E = 2π
∫ ∞

0
rdr

[(
dΦ′S
dr

)2

+
S2

r2 Φ2
S − βΦ4

S

]
+

γ

2π

∫ ∫
dr1dr2 ln(|r1 − r2|)Φ2

S(r1)Φ2
S(r2). (42)

The numerical findings demonstrate that, for S ≥ 2 and when β is large enough,
the vortex soliton is shaped as a narrow ring, see Figure 8. It may be approximated by the
usual quasi-1D soliton shape in the radial direction (cf. the approximation which was used,
in the 2D NLS equation with the CQ nonlinearity, by Caplan et al. [113]:

ΦS(r) =
√

β

8πR
sech

(
β

8π

r− R
R

)
, (43)

where R is the VR’s radius, and normalization (39) is taken into regard. Then, the substitu-
tion of approximation (43) in Equation (42) yields

E(R) =

[
S2 − β2

3(8π)2

]
1

2R2 +
γ

8π
ln R. (44)

Radius R of the soliton’s ring is selected as a value corresponding to the energy
minimum, dE/dR = 0, i.e.,

R2
min =

8π

γ

[
S2 − 1

3

(
β

8π

)2
]

. (45)

In comparison with numerical results, Equation (45) provides a reasonable approx-
imation for the radius of narrow VRs. Then, the above-mentioned critical value βmax is
analytically (“an”) predicted as one at which R2

min vanishes, i.e., the ring collapses to the
center,

β
(an)
max = 8

√
3πS. (46)

As seen in Table 1, this approximate result is very close to its numerically found
counterparts at S ≥ 2, and is quite close for S = 1 as well.

A remarkable fact is that the analytical prediction (46) does not depend on strength γ
of the nonlocal interaction, hence it also predicts the onset of the collapse in the usual 2D
cubic NLS equation, corresponding to γ→ 0:

i
∂φ

∂t
= −1

2
∇2φ− β|φ|2φ. (47)

Recall that the collapse-onset threshold for the solutions of Equation (47) with S = 0
is determined by the TS norm, NTS ≈ 5.85 [12–14] , which, in the present notation (taking
into account normalization (39)), implies

βmax(S = 0) ≈ 11.7. (48)

The analytical expression (46) is not relevant for S = 0, but the data displayed in
Table 1 demonstrate that Equation (46) offers an approximate analytical solution for the
long-standing problem of the prediction of the collapse threshold for the VR solutions
of Equation (47). In the numerical form, critical values which are tantamount to βmax(S)
were found, for 1 ≤ S ≤ 5, by Kruglov, Logvin, and Volkov [18]. However, an analytical
approximation for them was not available prior to the results reported by Qin, Dong,
and Malomed [109].
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Figure 8. Numerically found radial wave function ΦS(r) (defined as per Equation (40)) and the
corresponding magnetic field, HS(r), calculated as per Equation (34). Top panels: the fundamental
solitons (S = 0); middle panels: stable VRs with S = 1; bottom panels: stable higher-order VRs
(S = 5). All the solutions pertain to indicated values of strength β of the inter-component attraction,
and γ = 2π [109].

The independence of βmax(S) with all values of S on γ is an exact property of
Equation (38). To explain it, note that, at the final stage of the collapse, when the shrinking
VR becomes extremely narrow, the equation for the wave function is asymptotically equiv-
alent to the simplified Equation (47), as the nonlocal term in Equation (38) is negligible in
this limit. Therefore, the condition for the onset of the collapse is identical in both equations,
(38) and (47). However, the difference between them is that the 2D cubic NLS Equation (47)
gives rise to soliton solutions (which are TSs, both fundamental or vortical ones), solely
at β = βmax, and they are completely unstable. On the other hand, the LFE-induced
long-range interaction in Equation (38) helps to create fundamental solitons and VRs with
all values of S at β < βmax(S), and the crucially important difference is that a part of these
solution families are stable, see below.

Table 1. βmax and β
(an)
max: numerically obtained and analytically predicted values of the strength of the

local nonlinearity, β, up to which the 2D fundamental solitons (with S = 0) and VRs (vortex rings,
with S = 1 and 2) exist. βst: the numerically identified stability boundary of the VRs. Numerical data
are produced by Equations (35), (36), and (41) [109].

S βmax β
(an)
max βst S βmax β

(an)
max βst

0 11.7 n/a ≡ βmax 3 132.5 130.6 41

1 48.3 43.5 11 4 175.5 174.1 57

2 89.7 87.0 28 5 218.5 217.7 70
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The stability of the solitons was systematically investigated by real-time simulations
of Equation (38) with small random perturbations added to the stationary solutions (fur-
thermore, the full system of coupled Equations (35) and (36) with independent random
perturbations added to components φ↑ and φ↑, was also simulated, to test the stability
against breaking the symmetry between them). The fundamental solitons (S = 0) are stable
in their entire existence region, β < βmax ≈ 11.7.

The simulations of the evolution of the VR families reveal an internal stability bound-
ary, βst(S) < βmax(S) (see Table I), the vortices being stable at

β < βst(S). (49)

In the interval of βst(S) < β < βmax(0), the VRs are broken by azimuthal perturba-
tions into rotating necklace-shaped sets of fragments, which resembles the initial stage
of the instability development of vortex solitons in usual models. However, unlike those
models, in the present case the necklace does not expand, remaining confined under the
action of the effective nonlocal interaction. Typical examples of the stable and unstable
evolution of VRs are displayed in Figure 9.

To address the stability of the VRs against azimuthal perturbations analytically, one
can approximate the wave function of a perturbed (azimuthally modulated) VR by

φ(r, θ, t) = A(θ, t)ΦS(r). (50)

This ansatz is substituted in Equation (38), and an effective evolution equation for the
modulation amplitude A is derived by averaging in the radial direction:

i
∂A
∂τ

= − 1
2R2

∂2 A
∂θ2 +

[
γ ln R
4πR

− 2β2

3(8πR)2

]
|A|2 A. (51)

In the framework of Equation (51), straightforward analysis of the modulational
stability of the solution with |A| = 1 against perturbations∼ exp(ipθ) with integer winding
numbers p shows that the stability is sustained under the threshold condition,

p2 ≥ (8/3)(β/8π)2. (52)

Further, the numerical results demonstrate that, similar to what is known in other mod-
els [32,114–116] , the critical instability corresponds to p2 = S2 (for instance, the appearance
of five fragments in the part of Figure 9 corresponding to S = 5, β = 85 demonstrates that,
for S = 5, the dominant splitting mode indeed has p = 5). Thus, the analytical prediction is
that the VRs remain stable if p2 = S2 satisfies condition (52), i.e., at

β < β
(an)
st (S) = 2

√
6πS ≈ 15.4S (53)

(note that Equation (53) does not include γ, being universal, in this sense). On the other
hand, the numerically found stability limits collected in Table 1 obey an empirical formula,

β
(num)
st (S) ≈ 15S− 4. (54)

The inference is that the analytical approximation (53) is quite accurate for S ≥ 2.
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Figure 9. The top and bottom panels display several examples of the stable and unstable perturbed
evolution of the VRs with indicated values of S and β. The initial shape of the VR (τ = 0) is compared
to the output produced by the simulations of Equation (38) with γ = 2π at τ = 100 (here, τ replaces t).
The necklace-shaped pattern, produced by the instability in the right bottom panel, remains confined
(keeping the original overall radius) in the course of the subsequent evolution [109].

The implication of Equations (46), (53), and (54) is that the giant VRs, with large values
of S, are much more robust than their counterparts with smaller S. As mentioned above,
this counter-intuitive feature is opposite to what was previously found in those models,
which are able to produce stable VRs with S > 1 [32,115–120]. It is relevant to stress that,
at β < βst(S = 0), the fundamental soliton (S = 0) is the system’s ground state, while,
at β > βst(S = 0), the ground state does not exist, due to the possibility of the collapse.
The vortices with βst(S) > β cannot represent the ground state, but, nevertheless, they
exist as metastable ones, cf. the above-mentioned result for metastable 3D solitons in the
SOC system which exist while the system does not have a ground state, due to the presence
of the supercritical collapse [45].

In the case of the strong repulsive local interaction, which corresponds to a large
positive coefficient −β in Equation (38), solitons with S = 0 can be constructed by means of
the Thomas–Fermi (TF) approximation. In this case, instead of using the Green’s function,
it is more convenient to apply the TF approximation directly to Equations (30) and (31),
in which the kinetic-energy terms ∼ ∇2 are dropped, while ∇2H is kept in the Poisson
Equation (33). The corresponding result is(

Φ2
0

)
TF
(r) =

{
φ2

0 J0(ξr) at r < r1/ξ,
0 at r > r1/ξ ,

(55)

where ξ ≡
√

γ/|β|, r1 ≈ 2.4 is the first zero of Bessel function J0(r), and φ0 is a normal-
ization constant. Figure 10 shows that the TF approximation agrees very well with the
numerical solution.
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Figure 10. Comparison of the TF (Thomas–Fermi) approximation, as given by Equation (55), for the
fundamental soliton (the dashed line) and its counterpart produced as a numerical solution of
Equation (41) the solid line, for β = −200 and γ = 2π [109].

3.3. Self-Accelerating 2D Vortex Rings (VRs)

In the studies of diverse nonlinear-wave systems, much interest was drawn to states which
can exhibit self-accelerating and/or self-bending motion. A well-known example is provided
by Airy waves, which were predicted by Berry and Balazs [121] as an exact solution of the
1D linear Schrödinger equation. Using the similarity of the linear Schrödinger equation to the
paraxial wave-propagation equation in classical physics, this concept was transferred to many
areas of classical and semi-classical phenomenology, including optics [122], plasmonics [123],
BEC [124], acoustics [125], gas discharge [126], electron beams [127], and studies of surface
waves in hydrodynamics[128].

Ideal Airy waves, with slowly decaying one-sided oscillatory tails, carry an infinite
norm, which makes them unphysical objects. The problem was resolved by using trun-
cated Airy waves with a finite norm [122,129]. However, the truncation leads to gradual
degradation of the self-accelerating wave packets. Another caveat is that, while Airy waves
are eigenmodes of linear media, nonlinearity causes their deformation and destruction,
as studied in detail in various settings [130–135].

On the other hand, the nonlinearity of the medium, which tends to destroy Airy waves,
can be used, instead, to create well-localized eigenmodes, which are able to move with
self-acceleration, remaining robust objects. In addition to their stability in the presence of
the nonlinearity, an asset of such modes is that they do not develop extended tails, hence
their naturally defined norm is convergent. In particular, it was predicted by Batz and
Peschel [136] and experimentally demonstrated by Wimmer et al. [137] that two pulses
subject to the action of the group-velocity dispersion with opposite signs may form a
self-accelerating bound state in a photonic-crystal fiber. This is possible because the pulses
may be considered as quasi-particles with opposite signs of the effective mass, hence the
opposite forces of the interaction between the pulses drive both of them with identical signs
of the acceleration. For solitons, a similar possibility was elaborated by Sakaguchi and
Malomed [138], in a system of nonlinearly coupled GP equations with an optical-lattice
potential, where solitons with positive and negative effective masses (it is well known that
the effective mass may be negative for gap solitons) form stable self-accelerating pairs.

Continuing the work in this direction, it was shown by Qin et al. [139] that the
GP-Poisson system, based on Equations (30), (31), and (33), admits exact realization of
accelerating motion of 2D solitons. In this case, Equations (30) and (31) may also include
the above-mentioned self-interaction terms ∼ β̃, but the Poisson equation should not
include the term ∼ k2, which is present in the Helmholtz Equation (32). Thus, the relevant
system is

i
∂φ↓
∂t

=

(
−1

2
∇2 + η−β

∣∣φ↑∣∣2 − β̃
∣∣φ↓∣∣2)φ↓ − γH∗φ↑, (56)

i
∂φ↑
∂t

=

(
−1

2
∇2 − η−β

∣∣φ↓∣∣2 − β̃
∣∣φ↑∣∣2)φ↑ − γHφ↓, (57)

∇2H = −φ∗↓φ↑. (58)
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The system is characterized by its energy (Hamiltonian),

E =
∫

dr
[

1
2

(∣∣∇φ↓
∣∣2 + ∣∣∇φ↑

∣∣)+ η
(∣∣φ↓∣∣2 − ∣∣φ↑∣∣2)

−β
∣∣φ↓∣∣2∣∣φ↑∣∣2 − β̃

2

(∣∣φ↓∣∣4 + ∣∣φ↑∣∣4)− γ
(

φ∗↓H∗φ↑ + φ↓Hφ∗↑

)
+ |∇H|2

]
. (59)

The result reported by Qin et al. [139] is that Equations (56)–(58) are exactly invariant
with respect to transformation from the quiescent reference frame into a non-inertial one,
which moves, in the 2D plane (x, y), with vectorial acceleration a =

(
ax, ay

)
, combined

with an additional constant velocity V =
(
Vx, Vy

)
. The coordinates, wave functions,

and magnetic field in the traveling frame are defined as{
x′

y′

}
=

{
x−Vxt− 1

2 axt2

y−Vyt− 1
2 ayt2

}
, (60)

φ′
(

x′, y′, t
)
= φ(x, y, t) exp

[
−i
(
axx + ayy

)
t− i

(
Vxx + Vyy

)
+ iχ(t)

]
, (61)

χ(t) =
1
6

[
(Vx + axt)3

ax
+

(
Vy + ayt

)3

ay

]
, (62)

H′
(
x′, y′, t

)
= H(x, y, t)− ax

γ
x−

ay

γ
y. (63)

In fact, Equations (60)–(63) are a generalization of the usual Galilean boost for the
accelerating reference frame.

According to Equations (60) and (61), coordinates (xc, yc) of the center of the stable 2D
soliton (which may be the fundamental one of VR) moves as

xc = Vxt + (1/2)axt2, yc = Vyt + (1/2)ayt2. (64)

Equation (64) represents a curvilinear trajectory in the 2D plane: at small t, it is close
to a straight line with slope x/y = Vx/Vy, while at t→ ∞ it is asymptotically close to a line
with a different slope, x/y = ax/ay. In particular, in the case of ax = Vy = 0, the trajectory
is a parabola:

yc =
ay

2V2
x

x2
c . (65)

Note that the solution of the 2D Poisson Equation (58) for the quiescent soliton has the
standard asymptotic form far from the region where the source of the field is located:

H(r) ≈ − γ

2π

(∫
φ∗↓φ↑dr

)
ln r, (66)

cf. Equation (34’). The difference of the magnetic-field component (63) of the self-accelerating
2D soliton from its quiescent counterpart (66) is the presence of the terms linear in x and y,
which implies that the accelerating motion is maintained by the properly built background
magnetic field.

The analytical results are corroborated by Figure 11, which displays numerical find-
ings for moving VRs, produced by simulations of Equations (56)–(58). These solutions
demonstrate exactly the same self-accelerating motion of the robust VRs as predicted by
Equation (65), in cases when the underlying system does not or does contain the local
nonlinear terms.
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(a) (b)

Figure 11. (a) The plot of
∣∣φ↓∣∣2 =

∣∣φ↑∣∣2 for a stable self-accelerating VR with ax = 10, ay = 0, Vx.y = 0
(see Equations (60) and (61)), produced by numerical solution of Equations (56)–(58) with β = β̃ = 0
(no local nonlinearity) and γ = π. The right panel shows the time dependence of coordinate x of the
VR’s center. (b) The same as in (a), but for β = 10 in Equations (56) and (57) [139].

4. Conclusions

To keep the length of this review within reasonable limits, only a few topics have
been selected for a relatively detailed presentation. These topics are sufficiently novel ones,
while well-known results for 2D solitons stabilized with the help of spatial nonlocality
were reviewed in earlier publications (in particular, by Krolikowski et al. [53]; Khoo [56];
Assanto et al. [57]; Peccianto and Assanto [58]).

As concerns other aspects of this broad area, it is relevant to mention, in particular,
the theoretical and experimental results that demonstrate the creation of stable three-
dimensional QDs in single-component BECs with DDIs between atoms carrying permanent
magnetic moments [140–142]. A possibility of the creation of QDs with embedded vorticity
in this setting was analyzed by Cidrim et al. [143], with a conclusion that such states
are completely unstable (on the contrary to the above-mentioned prediction of stable 3D
and 2D vortical QDs in the two-component BEC with contact inter-atomic interactions by
Kartashov et al. [41] and Li et al. [42]).

A related finding is the prediction by Gligorić et al. [144] of stable 2D solitons main-
tained by DDIs in a discrete system, which may be realized by the dipolar BEC loaded into
a deep optical-lattice potential. It was also predicted by Li et al. [145] that the DDIs, acting
along with SOC in a two-component BEC, can maintain stable 2D gap solitons, in the case
when the kinetic energy is negligible in comparison to the SOC energy in this system.

As for development of the work on the topic of multidimensional (chiefly, two-
dimensional) solitons in nonlocal media, an interesting direction may be the study of
interactions between such solitons, and the possible formation of their bound states. It is
natural to expect that the nonlocality gives rise to effective long-range interactions between
far separated solitons, making the situation essentially different from multidimensional
settings based on local nonlinearities, where only short-range soliton–soliton interactions
were predicted [146]. In particular, the long-range interactions may affect symmetries of
the emerging bound states of multidimensional solitons. Another relevant direction is to
develop the analysis for dissipative 2D solitons in media combining nonlocal nonlinearity,
gain, and loss. Systems of this type may naturally occur in nonlinear optics.
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