
Citation: Szabó, S.; Zaválnij, B.

Graph Coloring via Clique Search

with Symmetry Breaking. Symmetry

2022, 14, 1574. https://doi.org/

10.3390/sym14081574

Academic Editors: Weifan Wang, Min

Chen and Yongtang Shi

Received: 9 July 2022

Accepted: 28 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Graph Coloring via Clique Search with Symmetry Breaking
Sándor Szabó 1 and Bogdán Zaválnij 2,*

1 Institute of Mathematics and Informatics, University of Pécs, 7622 Pécs, Hungary; sszabo7@hotmail.com
2 Rényi Institute of Mathematics, 1053 Budapest, Hungary
* Correspondence: bogdan@renyi.hu

Abstract: It is known that the problem of proper coloring of the nodes of a given graph can be reduced
to finding cliques in a suitably constructed auxiliary graph. In this work, we explore the possibility of
reducing the search space by exploiting the symmetries present in the auxiliary graph. The proposed
method can also be used for efficient exact coloring of hyper graphs. We also precondition the
auxiliary graph in order to further reduce the search space. We carry out numerical experiments to
assess the practicality of these proposals. We solve some hard cases and prove a new lower limit of
seven for the mycielski7 graph with the aid of the proposed technique.

Keywords: graph coloring; k-clique search; mathematical programming; symmetry breaking

1. Introduction

An implemented algorithm for the maximum clique problem is aptly called a max-
imum clique solver. Maximum clique solvers have come a long way from the early
attempts [1–3] to the fairly capable versions available today. These solvers can be used in
industrial settings to solve practical discrete optimization problems.

This work is part of a larger project deploying maximum clique solvers for handling
various problems. The authors have already tested this approach in connection with
mathematical conjectures [4], hyper graph coloring [5], subgraph isomorphism [6] and
scheduling problems [7]. The reader most likely agrees that using a clique solver is similar
to using an integer program, a constraint program or a SAT solver. Consequently, it has a
space in the toolbox of discrete optimization practitioners.

In this paper, we focus on the optimization problem of proper coloring of the nodes of
a given graph with the minimum number of colors by reducing the coloring problem to a
clique problem. Naturally, we are not the first to try this approach. There are well-known
techniques to convert the coloring problem to a maximum independent set problem. For
an example, see [8,9]. We make modifications and improvements to these reductions. For
instance, we use the k-coloring decision problem instead of the minimization problem. We
incorporate symmetry-breaking procedures in the decision version of the problem.

Solving a discrete optimization problem using clique solvers falls into two phases.
In the first phase, one sets up an auxiliary graph such that the pertinent features of the
problems are coded into this auxiliary graph. In the second phase, one submits the auxiliary
graph to the clique solver. The guidelines of constructing an auxiliary graph are as an
essential part of this modeling approach as constructing more and more efficient solvers.
This phenomenon is well known in the linear programming community.

We see that incorporating one of the symmetry-breaking mechanisms doubles the
number of vertices of the auxiliary graph compared to earlier auxiliary graphs without
symmetry breaking [9]. Numerical experimentation shows that, in spite of the increase
in the nodes of the new auxiliary graph, the search space represented by the search tree
associated with the clique search is significantly reduced. The proposed method allowed us
to prove a new lower limit 7 for the mycielski7 graph, which, to our knowledge, no other

Symmetry 2022, 14, 1574. https://doi.org/10.3390/sym14081574 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081574
https://doi.org/10.3390/sym14081574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14081574
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081574?type=check_update&version=2

Symmetry 2022, 14, 1574 2 of 16

method has been able to do so far. In addition, the proposed method turned out to be the
fastest for some cases.

We also introduce kernelization techniques to delete nodes and edges from the auxil-
iary graph before we submit it to a clique solver. These preconditioning or kernelization
methods give a further boost to the clique search.

The structure of the present paper is as follows. First, we quickly describe the basic
concepts. Second, we present the auxiliary graph constructions with and without symmetry-
breaking methods. Further, we discuss the role of locating and coloring a clique in the
originally given graph. Third, we point out that the ideas of this paper can be applied
to proper coloring of the vertices of hyper graphs. Fourth, we briefly introduce some
kernelization methods. Finally, we present a small toy size example and carry out extended
numerical experiments from which we draw conclusions.

2. Definitions

In this paper, we work with graphs with a finite number of nodes and edges that do
not have any double edges or loops. In short, we work with finite simple graphs. Let
G = (V, E) be a finite simple graph. Here, V is the set of vertices, and E is the set of edges
of graph G.

A subset ∆ of the nodes of a finite simple graph G is called a k-clique if each two
distinct nodes of ∆ are adjacent in G. In the special case when ∆ has only one element, we
still consider it a clique. For each finite simple graph G, there is an integer k such that G
has a k-clique but G does not have any (k + 1)-clique. This well-defined integer k is called
the clique number of G and is denoted ω(G). The optimization problem of computing
the clique number of a given graph is a known NP hard problem. The decision problem
of deciding if a given graph admits a k-clique for a given integer k, the so-called k-clique
problem, is an NP complete problem (see [10,11]).

Subset I of the nodes of finite simple graph G is called an independent set if each two
distinct nodes in I are not adjacent in G. If I has only one element, then it is still called
an independent set. Note that if I is an independent set in G, then I is a clique in the
complement graph of G and vice versa.

We say that coloring of the vertices of G is legal coloring, proper coloring or well
coloring if each vertex has exactly one color and adjacent vertices receive distinct colors.
The three adjectives for coloring are used freely and interchangeably in the present paper.

For each finite simple graph G, there is an integer k such that the nodes of G can
be legally colored using k colors and cannot be legally colored with (k− 1) colors. This
well-defined integer k is called the chromatic number of G and is denoted χ(G). It is
well-known that the optimization problem of determining the chromatic number of a given
graph is NP hard. The k-coloring problem, that is, deciding if the nodes of a given graph
admit legal coloring with k colors is a known NP complete problem (see [10,11]). If one
uses the numbers 1, . . . , k as colors, then coloring of the nodes of G can be described by map
f : V → {1, . . . , k}. The equation f (v) = i codes the information that node v receives color
i. The i-th color class Ci consists of all nodes of G that receive color i. Coloring can also be
described by listing the color classes C1, . . . , Ck. Note that color class Ci is an independent
set in graph G. Partitioning the set of nodes V of graph G into k independent sets amounts
to legally coloring the nodes of G. A nice survey and a taxonomy of the exact node-coloring
methods are presented in [12].

3. The Ordered Pairs Auxiliary Graph

The problem of deciding if the n nodes of a given graph G can be legally colored using
k colors can be reduced to the problem of deciding if a suitably constructed auxiliary graph
Γ with nk nodes contains an n-clique [9]. For the sake of easier reference, we sketch here
the construction of the auxiliary graph Γ.

The nodes of Γ are the ordered pairs [v, c], where v is a vertex of G, and c is one of the
k colors we use to color the nodes of G. The intended intuitive meaning of pair [v, c] is that

Symmetry 2022, 14, 1574 3 of 16

node v receives color c. The nodes of the auxiliary graph Γ are also colored. Namely, to
node [v, c], we assign v as a color. Two distinct nodes [v1, c1], [v2, c2] are not adjacent in Γ if
they receive the same color, that is, when v1 = v2. As a consequence, the nodes of Γ are
legally colored using n colors. Two distinct nodes [v1, c1], [v2, c2] are not adjacent in Γ if the
unordered pair {v1, v2} is an edge of G and c1 = c2.

It was proved in [9] that if the nodes of G can be legally colored using k colors, then
the auxiliary graph Γ contains an n-clique. Further, if the auxiliary graph Γ has an n-clique,
then the nodes of G can be legally colored using k colors.

We describe a simple observation that can serve as a symmetry breaking tool. We refer
to the trick as coloring the nodes of a clique in G. Suppose we are facing the problem of
whether the n nodes of a given graph G can be legally colored using the colors 1, . . . , k. We
try to solve this k-coloring problem by locating an n-clique in the auxiliary graph Γ with
nk nodes. Let ∆ be an s-clique in the graph G. Note that the nodes x1, . . . , xs of the clique
∆ must receive pairwise distinct colors. We may assume that the nodes x1, . . . , xs receive
the colors 1, . . . , s, respectively, since this is only a matter of rearranging the colors 1, . . . , k
among each other in the legal k-coloring of the nodes of G.

The fact that the nodes x1, . . . , xs of the clique ∆ receive the colors 1, . . . , s, respectively,
means that the ordered pairs [x1, 1], . . . , [xs, s], as nodes of the auxiliary graph Γ, must be
nodes of any n-clique in Γ that corresponds to legal k-coloring of the nodes of the given
graph G. In other words, at this stage of the symmetry-breaking construction, we are
fixing the colors of nodes x1, . . . , xs to be the colors 1, . . . , s. Naturally, we may restrict
the auxiliary graph Γ to the set of common neighbors of the nodes [x1, 1], . . . , [xs, s]. After
deleting the nodes from the restricted auxiliary graph, we may look for an (n− s)-clique in
the reduced auxiliary graph in order to locate an n-clique in the original auxiliary graph Γ.

We refer to this symmetry-breaking procedure as coloring the nodes of clique ∆ in G.
Needless to say, the more nodes clique ∆ has, the more efficient our reduction procedure is.
Consequently, we try to locate a relatively large clique ∆ in G. It is also clear that we may
use any greedy procedure to locate clique ∆ in G.

4. The Ordered Triplets Auxiliary Graph

In this section, we introduce a new auxiliary graph. The purpose is to augment
the previously introduced auxiliary graph with a symmetry-breaking technique, named
representative node formulation [13].

Let G = (V, E) be a finite simple graph, and let k be a positive integer. Here, we
assume that the nodes of G are labeled with the integers 1, . . . , n; that is, we assume that
V = {1, . . . , n}. Using G and k, we construct a new auxiliary graph Γ = (W, F). The nodes
of Γ are ordered triples in the form

w = [x, y, z], x ∈ V, y ∈ {1, . . . , k}, z ∈ {1, 2}.

The number z is called the type of the triple. We talk about Type-1 and Type-2 nodes
depending on whether z = 1 or z = 2. The intended intuitive meaning of a Type-1 node
w = [x, y, z] of Γ is that node x of G receives color y. The intended intuitive meaning of
a Type-2 node w = [x, y, z] of Γ is that node x of G receives color y, and, in addition, x is
the first element of the y-th color class. In other words, if node x′ of G receives color y,
then x ≤ x′ must hold. We point out that it makes sense to talk about first, second and last
elements of a color class as the nodes of graph G admit the natural ordering of the numbers
1, . . . , n.

We color the nodes of Γ in the following manner. If w = [x, y, z] is a Type-1 node of
Γ, then we assign x as a color to w. If w = [x, y, z] is a Type-2 node of Γ, then we assign
(n + y) as a color to w. The auxiliary graph Γ has (2nk) nodes, and the nodes are colored
with (n + k) colors.

We describe the adjacency in Γ. Let

w1 = [x1, y1, z1], w2 = [x2, y2, z2]

Symmetry 2022, 14, 1574 4 of 16

be distinct nodes of Γ. As a starting point, we connect each two distinct nodes of Γ with an
edge; that is, at the beginning of the construction, Γ is a complete graph.

If nodes w1, w2 receive the same color in Γ, then we make them nonadjacent in Γ by
deleting the edge connecting them. For the remaining part of the construction, we assume
that w1, w2 do not receive the same color. We distinguish cases depending on the types of
w1, w2.

Assume first that w1, w2 are both Type-1 nodes of Γ; that is, z1 = z2 = 1. If x1, x2 are
adjacent vertices in G, and y1 = y2, then w1, w2 are not adjacent in Γ, and we delete the
corresponding edge from Γ.

Assume next that w1, w2 are both Type-2 nodes of Γ; that is, z1 = z2 = 2. If x1 ≥ x2 and
y1 ≤ y2, then w1, w2 are not adjacent in Γ, and we delete the corresponding edge from Γ. If
x1 ≤ x2 and y1 ≥ y2, then w1, w2 are not adjacent in Γ, and we delete the corresponding
edge from Γ.

Finally, assume that w1, w2 are Type-1, Type-2 nodes of Γ, respectively; that is, z1 = 1,
z2 = 2. If x1 < x2 and y1 ≥ y2, then w1, w2 are not adjacent in Γ, and we delete the
corresponding edge from Γ. Further, if x1 = x2 and y1 6= y2, then w1, w2 are not adjacent in
Γ, and we delete the corresponding edge from Γ.

Lemma 1. If the nodes of G can be legally colored using k colors, then the auxiliary graph Γ
contains an (n + k)-clique.

Proof. Suppose that the nodes of G are legally colored using the colors 1, . . . , k, and
C1, . . . , Ck are the colors classes of the nodes. We set µ(i) = min(Ci) for each i, 1 ≤ i ≤ k.
We may assume that µ(1) < · · · < µ(k) holds since this is only a matter of exchanging
the colors 1, . . . , k among each other. In other words, we may assume that the function
µ : {1, . . . , k} → {1, . . . , n} is a strictly increasing function.

Let f : V → {1, . . . , k} be the map that describe the coloring of the nodes of G. (Here,
V = {1, . . . , n} is the set of nodes of G). Note that f (µ(i)) = i holds for each i, 1 ≤ i ≤ k.
We claim that the triples

[r, f (r), 1], 1 ≤ r ≤ n, [µ(s), s, 2], 1 ≤ s ≤ k

are the nodes of an (n + k)-clique in Γ. In plain English, we claim any two of these (n + k)
nodes are pairwise adjacent.

In order to prove the claim, we verify the following. The distinct nodes

w1 = [i, f (i), 1], w2 = [j, f (j), 1] (1)

of the auxiliary graph Γ are adjacent for each i, j, 1 ≤ i < j ≤ n. In plain English, the first
(n) nodes are pairwise adjacent. The distinct nodes

w1 = [µ(i), i, 2], w2 = [µ(j), j, 2] (2)

of the auxiliary graph Γ are adjacent for each i, j, 1 ≤ i < j ≤ k. In plain English, the last
(k) nodes are pairwise adjacent. The distinct nodes

w1 = [i, f (i), 1], w2 = [µ(j), j, 2] (3)

of the auxiliary graph Γ are adjacent for each i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ k. In plain English, any
of the first n nodes are adjacent to any of the last k nodes.

We first consider (1). When the unordered pair {i, j} is not an edge of G, then by the
definition of Γ, the nodes w1, w2 are adjacent in Γ. When the unordered pair {i, j} is an
edge of G, then the inequality i < j implies f (i) 6= f (j) as f defines a legal coloring of the
nodes of G. The definition of Γ gives that nodes w1, w2 are adjacent in Γ.

Next, we consider (2). In this situation, i < j implies µ(i) < µ(j). By the definition of
Γ, it follows that nodes w1, w2 are adjacent in Γ.

Symmetry 2022, 14, 1574 5 of 16

Finally, we consider (3). If i < µ(j), then node i of G cannot be an element of the color
class Cj, and so it follows that f (j) > f (i). Using f (j) = j, we get that i < µ(j) and f (i) < j
hold. The definition of Γ gives that nodes w1, w2 are adjacent in Γ.

If i = µ(j), then f (i) = f (µ(j)) = j. Therefore i = µ(j) and f (i) = j hold. The
definition of Γ gives that nodes w1, w2 are adjacent in Γ.

Lemma 2. If the auxiliary graph Γ contains an (n + k)-clique, then the nodes of G can be legally
colored using k colors.

Proof. Let ∆ be an (n+ k)-clique in Γ. The nodes of Γ are legally colored with (n+ k) colors.
It follows that the (n + k) nodes of ∆ receive all the possible (n + k) colors. Therefore, the
nodes of ∆ are in the following forms.

[xr, yr, 1], 1 ≤ r ≤ n, [xs, ys, 2], 1 ≤ s ≤ k

The first n nodes of ∆ receive the colors 1, . . . , n, and the last k nodes of ∆ receive the colors
n + 1, . . . , n + k, respectively. The color of node [xr, yr, 1] in Γ is xr. Thus elements x1, . . . , xn
form a rearrangement of elements 1, . . . , n. In other words, V = {1, . . . , n} = {x1, . . . , xn}.
Let f : V → {1, . . . , k} be the map defined by f (xr) = yr. We claim that the coloring of the
nodes of G described by the map f is a legal coloring of the nodes of G. In order to verify
the claim, assume on the contrary that the unordered pair {xi, xj} is an edge of G, and
yi = f (xi) = f (xj) = yj. By the definition of Γ, the nodes w1 = [xi, yi, 1], w2 = [xj, yj, 1] are
not adjacent in Γ. On the other hand, the nodes w1, w2 are distinct nodes of the clique ∆,
and they must be adjacent in Γ.

The symmetry-breaking trick of coloring the nodes of a clique ∆ in the given graph G
can be applied in connection with triplet auxiliary graphs as well.

Find an s-clique ∆ and color the nodes x1, . . . , xs with the colors 1, . . . , s, respectively.
Note that we may rename nodes 1, . . . , n of graph G such that nodes x1, . . . , xs of ∆ are
identical to nodes 1, . . . , s of G. As a next step, we may reduce the auxiliary graph. First,
we restrict the auxiliary graph to the common neighbors of nodes 1, . . . , s. Next, we delete
nodes 1, . . . , s from the reduced auxiliary graph.

5. Chromatic Number via Maximum Clique

In connection with a given graph G, we use four auxiliary graphs Γ1, Γ2, Γ3, Γ4

systematically. Here Γ1, Γ3 are the pair and triplet auxiliary graphs, respectively, while Γ2,
Γ4 are reduced graphs we get after coloring the nodes of a clique in the given graph G. For
each of the above auxiliary graphs, add some extra nodes and construct a new auxiliary
graph (Γi)′. Feeding graph (Γi)′ into a maximum clique problem solver, we determine the
size of a maximum clique. Using the clique number of (Γi)′, we determine the chromatic
number χ(G) of the given graph G.

As a first step, we establish a lower bound Bl and an upper bound Bu for the chromatic
number χ(G) of G. For the sake of definiteness and for the sake of simplicity using a greedy
procedure, we locate a clique in graph G. The size of this clique provides the lower bound
Bl for χ(G). A greedy-coloring procedure applied to the nodes of G gives the upper bound
Bu for χ(G). Of course, the reader is free to use more-sophisticated methods for finding the
bounds Bl , Bu.

As a second step, we set k = Bu − 1 and construct the (Γ1)′, (Γ2)′, (Γ3)′, (Γ4)′ graphs.
Here is the construction. We add t = k− Bl extra nodes a1, a2, . . . , at to the graph Γi. The
intended intuitive meaning of node aj is that color Bl + j is not used in the coloring of the
nodes of graph G.

As a third step, we add new edges to the graph (Γi)′:

• Connect ap and aq with an edge for each p, q;
• Connect ap to the ordered pair [x, y] with an edge for each x and y < Bl + p (for Γ1, Γ3);

Symmetry 2022, 14, 1574 6 of 16

• Connect ap to the ordered triplet [x, y, z] with an edge for each x and y < Bl + p,
z ∈ {1, 2} (for Γ2, Γ4).

After computing the clique number ωa of the newly constructed auxiliary graph, we
can calculate the chromatic number of the given graph G.

For a Type-1 auxiliary graph, if ωa < n, then χ(G) = Bu. Else, χ(G) = Bu− 1− (ωa− n).
For a Type-2 auxiliary graph, if ωa < n− s, then χ(G) = Bu. Else χ(G) = Bu − 1−

(ωa − n + s) (Remember, s is the size of the clique ∆ we located and colored in G).
For a Type-3 auxiliary graph, if ωa < n + k then χ(G) = Bu. Else χ(G) = Bu − 1−

(ωa − n− k).
For a Type-4 auxiliary graph, if ωa < n + k − 2s, then χ(G) = Bu.

Else χ(G) = Bu − 1− (ωa − n− k + 2s).

6. Coloring Hyper Graphs

The purpose of this section is to extend the symmetry-breaking methods from ordinary
graphs to hyper graphs. In our setting, a hyper graph H is an ordered pair (V, E), where V
is the set of vertices of H, and E is a family of subsets of V. We refer to the elements of E as
hyper edges of H. We do not assume that the members of E all have the same number of
elements. Coloring the vertices of H is called legal, proper or well coloring if each vertex
receives exactly one color and vertices belonging to a hyper edge do not all receive the
same color. In other words, monochromatic edges are not allowed.

In [5], the authors described how well coloring of the vertices of a given hyper graph
can be reduced to a clique search in a suitably constructed ordinary graph. The reader can
notice that if the vertices of a hyper graph are well-colored using k colors, then the colors
can be permuted among each other and the resulting vertex coloring of the hyper graph
remains a well coloring. In this way, one particular well coloring of the vertices leads to a
large number of new well colorings of the hyper graph. Namely, we end up with (k!) new
colorings. Here, k is the number of colors used in the coloring.

In an earlier part of this paper, we saw that in the special case of coloring the vertices
of an ordinary graph, we may reduce the size of the search space of the associated clique
search by introducing some symmetry-breaking tools. In what follows, we point out that
ideas similar to those used for ordinary graphs can be used for symmetry-breaking in the
case of hyper graphs.

In [5], an ordinary auxiliary graph Γ was assigned to a given hypergraph H = (V, E).
In the course of the construction of Γ, the hyper edges of H are divided into pairwise
disjoint subsets, so-called tiles. Depending on the number of tiles, one computes a number
r. The essential property of this assignment is that a well coloring of the vertices of H using
k colors corresponds to a clique of size r in the auxiliary graph Γ. Conversely, a clique of
size r in Γ corresponds to a well coloring of the vertices of H using k colors.

Using graph Γ, we construct a new auxiliary graph Γ′. Here again, we use the represen-
tative node technique by adding new nodes to the auxiliary graph Γ to get Γ′ Suppose U is
the set of vertices of Γ, and the elements of V are listed in a fixed order during construction.
We consider the ordered pairs (v, c), where v ∈ V, and 1 ≤ c ≤ k. The intended intuitive
meaning of pair (v, c) is that the vertex v of the hyper graph H receives color c, and, in
addition, node v is the first element in its color class. Because of the ordering of the vertices
of H, it makes sense to talk about the first element of a color class.

Let X = {(v, c) : v ∈ V, 1 ≤ c ≤ k}. The set W = X ∪U is the set of nodes of the new
auxiliary graph Γ′. Note that sets X and U are disjointed.

Two distinct elements w1 and w2 of W are adjacent in Γ′ whenever they are adjacent
in Γ.

Two distinct elements (v1, c1) and (v2, c2) of X cannot be adjacent in Γ′ if v1 ≤ v2 and
c1 ≥ c2.

Finally, let us turn to the case of when vertex u ∈ U and vertex (v, c) ∈ X are adjacent
in Γ′. In the definition of the auxiliary graph Γ, vertex u carries an intuitive meaning
regarding colors that certain well-defined nodes of hyper graph H receive. We connect the

Symmetry 2022, 14, 1574 7 of 16

nodes u and (v, c) with an edge in Γ′ if the color assignments specified in the definition of
Γ do not violate the fact that node v receives color c.

The essential property of the new auxiliary graph Γ′ is the following: A well coloring
of the nodes of hyper graph H using k colors corresponds to a clique of size (r + k) in Γ′.
Conversely, a clique of size (r + k) in Γ′ corresponds to a well coloring of the nodes of H
using k colors.

With the same technique, we can add symmetry-breaking to other types of hyper
graph colorings, such as rainbow coloring or C–D coloring.

7. Kernelization

Let us denote the size of the clique we are looking for in the Γ auxiliary graph by z for
the rest of this paper.

In the ordered-pairs auxiliary graph Γ1 associated with G, we are looking for an n-
clique, that is, z = n. For Γ2, where we color the nodes of clique ∆, z = n− |∆|. For Γ3, the
triplets auxiliary graph, z = n + k, and for Γ4, z = n + k− 2|∆|.

It is reasonable to try to kernelize the auxiliary graph Γ.
Let v be a vertex of Γ, and let H be the subgraph of Γ induced by the set N(v). We

showed that the nodes of Γ are legally colored using z colors (Though, this is not a perfect
graph). As a consequence, the nodes of H are colored. We call the number of colors of the
nodes of H the color-degree of node v. Let e = {u, v} be an edge of Γ, and let H be the
subgraph of Γ induced by the set [N(u) ∩ N(v)]. The number of colors of the nodes of H is
called the color-degree of edge e = {u, v}.

Lemma 3. A node whose color degree is less than (z− 1) can be deleted from Γ when we are looking
for a z-clique in Γ. An edge whose color degree is less than (z− 2) can be deleted from Γ when we
are looking for a z-clique in Γ.

Let u and v be nonadjacent nodes in Γ, and N(u) ⊆ N(v); then, we say node v
dominates node u. Let e = {u, v}, f = {v, w} be edges of Γ. If u, w are not adjacent in
Γ, and [N(u) ∩ N(v)] ⊆ [N(v) ∩ N(w)], then we say that edge f dominates edge e. The
following result has been proved in [14].

Lemma 4. If node v dominates node u, then u maybe be deleted from Γ when we are looking for a
z-clique in Γ. If edge f dominates edge e, then e maybe deleted from Γ when we are looking for a
z-clique in Γ.

Obviously a full-degree node can be deleted from the graph when we are looking for
the clique number of the graph. We should keep in mind this deletion reduces the clique
number by one. For the sake of easier reference, we state this result as a lemma.

Lemma 5. A full-degree node can be deleted from Γ when we are looking for a z-clique in Γ.

We listed here only the simplest kernelization methods that can be applied for ker-
nelization of a k-partite graph. For more extended methods, including β-transformation,
specialized struction and the concept of black–red edges, see [7].

A possible kernel of the graph Γ is constructed from Γ by deleting nodes and edges by
repeatedly applying Lemmas 3–5 and by other methods from [7]. Our experiments show
that these reductions reduce the graphs quite well, and repeatedly applying them helps
a lot.

As for the maximum clique reformulation in Section 5, the situation is a bit more
complicated. One would like to first reduce the auxiliary graph by the previous rules and to
add the extra nodes. However, there are important differences. Lemma 4—in contrast to the
other two lemmas—can delete z-cliques from Γ, ensuring that at least one z-clique remains.
However, for the maximum clique reformulation, this behavior breaks the mathematical
result. Thus, we can first reduce the graph by Lemmas 3 and 5, and afterward add the extra

Symmetry 2022, 14, 1574 8 of 16

nodes. However, we can apply Lemma 4 only after adding these nodes, and we cannot use
the other two lemmas later, making this approach less suitable for kernelization.

Overall, our experiments proved that, although this reformulation is interesting,
solving decision problems is more efficient after all.

8. A Small-Size Toy Example

In this section, we work out a small-size toy example in detail to illustrate our defini-
tions and constructions.

Example 1. Let us consider the graph G = (V, E) given by its adjacency matrix in Table 1. The
graph has four vertices 1, 2, 3, 4 and four edges {1, 2}, {1, 4}, {2, 3}, {2, 4}; that is,

V = {1, 2, 3, 4}, E = {{1, 2}, {1, 4}, {2, 3}, {2, 4}}.

Figure 1 depicts a possible geometric representation of the graph. We are asking if the nodes of G can
be colored legally using three colors.

Table 1. The adjacency matrix of the graph G in Example 1.

1 2 3 4
1 × • •
2 • × • •
3 • ×
4 • • ×

r

r

r

r

�
�
�
�
�
�
�

4 3

1 2

Figure 1. A possible geometric representation of graph G in Example 1.

In this particular case, n = 4, k = 3, and the triplet auxiliary graph Γ has
(2nk) = 24 vertices. The vertices of Γ are listed in Table 2, including the types and
colors assigned to them in Γ. The adjacency matrix of Γ is in Table 3. The auxiliary graph
has 144 edges. The nodes of graph Γ are well-colored using 7 colors, and we are looking for
a 7-clique in Γ.

By inspecting the adjacency matrix, the reader may notice that the color-degree of
node [4, 1, 2] is equal to 1, so Lemma 3 gives that this node can be deleted from Γ. Next, one
may notice that the color degrees of nodes [1, 2, 1], [1, 3, 1] are small, and so these nodes
can also be deleted. Continuing in this way, we end up with a reduced version of Γ, the
adjacency matrix of which is enclosed in Table 4.

Symmetry 2022, 14, 1574 9 of 16

Table 2. The nodes of the ordered triplet auxiliary graph Γ in Example 1.

Name Triple Type Color Name Triple Type Color

1 [1, 1, 1] 1 1 13 [1,1,2] 2 5

2 [1, 2, 1] 1 1 14 [2, 1, 2] 2 5

3 [1, 3, 1] 1 1 15 [3, 1, 2] 2 5

4 [2, 1, 1] 1 2 16 [4, 1, 2] 2 5

5 [2, 2, 1] 1 2 17 [1, 2, 2] 2 6

6 [2, 3, 1] 1 2 18 [2, 2, 2] 2 6

7 [3, 1, 1] 1 3 19 [3, 2, 2] 2 6

8 [3, 2, 1] 1 3 20 [4, 2, 2] 2 6

9 [3, 3, 1] 1 3 21 [1, 3, 2] 2 7

10 [4, 1, 1] 1 4 22 [2, 3, 2] 2 7

11 [4, 2, 1] 1 4 23 [3, 3, 2] 2 7

12 [4, 3, 1] 1 4 24 [4, 3, 2] 2 7

Table 3. The adjacency matrix of the triplet auxiliary graph in Example 1.

1 1 1 2 2 2 3 3 3 4 4 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 1 2 3 1 2 3 1 2 3 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

111 × • • • • • • • • • • • • • •
121 × • • • • • • • • • • •
131 × • • • • • • • •
211 • • × • • • • • • • • • • • •
221 • • × • • • • • • • • • •
231 • • × • • • • • • • •
311 • • • • • × • • • • • • • • • • • •
321 • • • • • × • • • • • • • • • • •
331 • • • • • × • • • • • • • • • •
411 • • • • • • • × • • • • • • • • • •
421 • • • • • • • × • • • • • • • • • •
431 • • • • • • • × • • • • • • • • • •
112 • • • • • • • • • • × • • • • • •
212 • • • • • • • × • • • •
312 • • • • × • •
412 • ×
122 • • • • • • • • • • × • • •
222 • • • • • • • • • × • •
322 • • • • • • • • × •
422 • • • • • • • ×
132 • • • • • • • • • • ×
232 • • • • • • • • • • • ×
332 • • • • • • • • • • • • ×
432 • • • • • • • • • • • • • ×

Symmetry 2022, 14, 1574 10 of 16

Table 4. The adjacency matrix of the kernelized triplet auxiliary graph in Example 1.

1 2 3 3 4 1 2 3 4
1 2 1 3 3 1 2 3 3
1 1 1 1 1 2 2 2 2

111 × • • • • • • • •
221 • × • • • • • • •
311 • • × • • • •
331 • • × • • • •
431 • • • • × • • • •
112 • • • • • × • • •
222 • • • • • • × • •
332 • • • • • • ×
432 • • • • • • ×

The reduced graph has five full-degree nodes; thus, one can draw a geometric repre-
sentation of the graph easily. A possible geometric representation of the reduced auxiliary
graph is depicted in Figure 2. We can locate two 7-cliques in the reduced graph. The nodes
of these cliques are the following:

[1, 1, 1], [1, 1, 2], [2, 2, 1], [2, 2, 2], [4, 3, 1], [3, 3, 1], [3, 3, 2],

[1, 1, 1], [1, 1, 2], [2, 2, 1], [2, 2, 2], [4, 3, 1], [3, 1, 1], [4, 3, 2].

Using the definition of the nodes, we can read two distinct well colorings of the nodes of
the originally given graph G. These colorings of the nodes of G are listed in Table 5.

r

r

r

r
r

r

r

r

r

�
�
�
�
�
�
�@

@
@
@
@
@
@

[3, 1, 1] [4, 3, 2]

[3, 3, 1] [3, 3, 2]

[1, 1, 1] [2, 2, 1]

[4, 3, 1] [1, 1, 2]

[2, 2, 2]

Figure 2. A graphical representation of the kernelized auxiliary graph in Example 1. Each of the five
vertices on the right is adjacent to each of the four vertices on the left. To avoid an overly cluttered
picture, these twenty edges are not included.

Table 5. The colors of graph G in Example 1.

node 1 2 3 4 node 1 2 3 4
color 1 2 1 3 color 1 2 3 3

9. Numerical Experiments

The present paper describes some new ideas for exact graph coloring. Although
the results are not mature, and the present work is rather preliminary, we would like to
demonstrate the effectiveness of this approach by comparing our results to results of other
well-known graph coloring applications. We restrict ourselves to graph coloring, as the
literature on exact hyper graph coloring is scarce. We also decided to exclude reformulation
when maximum clique of the auxiliary graph gives us the minimum coloring of the graph as
detailed in Section 5. The reason behind this is that we have less-effective preconditioning
tools for maximum clique search compared to preconditioning on the k-clique search in
k-partite graphs.

Symmetry 2022, 14, 1574 11 of 16

For the calculations, we are using 58 graphs from the standard clique-coloringbenchmark
instances http://mat.gsia.cmu.edu/COLOR04 (accessed on 15 June 2022). All calculations
were done single-threaded on a Linux OS computer with two AMD EPYC 7643 processors
and 1 TB of RAM; the boost was switched off, and thus it ran exactly at 2.2 GHz. We used
gcc v12.1 with the switch settings -O3 -arch=znver3. The dfmax times on this computer
were 0.00, 0.02, 0,12, 0.70 and 2.59 s for r100, r200.5, r300.5, r400.5 and r500.5, respectively.

9.1. Setting Up the Testbed

Before making comparative measurements, one needs to make a decision about the
different approaches listed above. Apart from setting aside maximum-clique reformulation,
as preliminary tests showed its inferiority due to less-efficient kernelization, there are
still four different reformulations. Further, preconditioning takes its toll, while it reduces
the graph, the reduction may help too little, and the time for preconditioning may be
too long. First, then, we need to compare the four reformulations each with or without
preconditioning. For this purpose, we choose three moderately hard example cases. Note
that because we tune to hard cases, we may be a bit less efficient for other, easy cases. The
results are summarized in Table 6. In the table, we first list the name of the graph for the test,
the size (number of nodes) of the graph and the chromatic number of the graph. For testing,
we set k = χ(G)− 1 to prove that the graph cannot be colored with one fewer colors than
the chromatic number. We find a greedy maximal clique by using maximum-neighbors
heuristics, and we list the size of the clique. We construct Γ1, Γ2, Γ3, Γ4. We list the size
of Γ and the z number, that is, the size of the clique should one prove not to be present in
the graph according to Section 7. Then, we solve the problem by using our clique search
program for k-clique from [15], and we list the running time in seconds.

Table 6. Preliminary tests for three graphs: tl, time limit of 24 h exceeded. We denote with boldface
the best time.

Γ1 Γ2 Γ3 Γ4

myciel5, size: 47, χ = 6
greedy clique size: 2

size of Γ 235 192 470 327
z number 47 45 52 48

time of exact z-clique, no precond (s) 171.13 13.12 3.14 12.97
time of preconditioning (s) 0.25 0.21 0.45 0.58
Γ size after preconditioning 235 211 258 219

z number after preconditioning 47 41 39 22
time of exact z-clique with precond (s) 167.93 1.18 3.23 0.11

full time to solve the problem (s) 168.18 1.39 3.68 0.69

2-FullIns_4, size: 212, χ = 6
greedy clique size: 4

size of Γ 1060 832 2120 1040
z number 212 208 217 209

exact z-clique, no precond (s) tl tl tl tl
time of preconditioning (s) 86.37 5.98 203.07 3.66
Γ size after preconditioning 1060 0 1187 0

z number aft precond. 211 167
time of exact z-clique with precond (s) tl tl

full time to solve the problem (s) tl 5.98 tl 3.66

http://mat.gsia.cmu.edu/COLOR04

Symmetry 2022, 14, 1574 12 of 16

Table 6. Cont.

Γ1 Γ2 Γ3 Γ4

1-Insertions_4, size: 67, χ = 5
greedy clique size: 2

size of Γ 268 232 536 362
z number 67 65 71 67

exact z-clique, no precond (s) tl 8338.49 1683.63 8638.34
time of preconditioning (s) 0.71 0.47 1.58 1.32
Γ size after preconditioning 296 257 314 337

z number aft precondn 60 48 50 35
time of exact z-clique with precond (s) tl 487.66 3416.41 303.82

full time to solve the problem (s) tl 488.13 3417.99 305.14

Next, we perform extended preconditioning according to [7], and we list the running
time. The size of the reduced graph and the new z-number is listed; because of precondi-
tioning, the number of color classes and the clique size one must find in the preconditioned
graph changes. Note that preconditioning allows slight increases to the graph, so in some
cases, the reduced graph may be bigger. In some cases, preconditioning reduces the graph
to size 0 and thus solves the problem by itself. Next, we run the k-clique search on the
reduced graph, listing the running times. Finally, we list the overall running time to solve
the problem. The term “tl” denotes running time over the time limit, which was 24 h in
this case.

Although intermediate results from these examples are quite mixed, the final results
are clear. Reformulation to Γ4 with preconditioning is the right method, which obviously
was the expected outcome. So for the experiments, we use this method.

9.2. Extended Tests

We compare our approach to four different state-of-the-art programs. The first, by
Zhou et al. [16], is a backtracking algorithm aided by a SAT solver. The second and third
are by Cornaz et al. [17]. The second uses a smart reformulation to LP and solves the
problem with column generation. The third uses representative form reformulation—
the same symmetry-breaking technique we use in the present paper. The fourth, by
Malaguti et al. [18], uses a pure LP approach and solves the problem using a Branch-and-
Price algorithm and column generation. Note that the first method is not fully comparable
to the other three in terms of speed, as the first can solve instances that the others cannot
and vice versa. Being fully combinatorial, it is not surprising that our method is closer to
the first program by Zhou et al. The program from Zhou et al. can be downloaded, so we
reproduced the calculations on our computer with a recompiled program. The programs
from Cornaz et al. and from Malaguti et al. are not available, so we ended up using the
results from the original papers. Because of the differences amongst the computers, in order
to compare the results, we set the time limit of our runs to 3 h 45 m—that is, 13,500 s, which
roughly equals the scaled time limit from [17]. Further, while using data from [17], we
scaled those results by dividing the running times by 1.74. The data from [18] was scaled
by dividing by 2.7.

The steps of the calculations follow:

1. We located a possibly big clique ∆ by a simple algorithm (choosing the biggest degree
nodes iteratively)—this is our lower bound (lb);

2. We colored the graph by a heuristic algorithm (DSatur by Brelaz [19] and iterated
recoloring by Culberson [20]) —this gives us an upper bound (ub);

3. We constructed the auxiliary graph Γ4 using k ∈ {ub − 1, . . . , lb}; that is, for all
possible k between the bounds in a top-down approach. However, we stopped if we
reached a conclusive result;

4. We applied the above-described kernelization steps on the resulting graphs;

Symmetry 2022, 14, 1574 13 of 16

5. We performed a z-clique search on the kernelized auxiliary graphs using our k-clique
program [15].

Locating a clique, coloring the graph and constructing the auxiliary graph for most
benchmark problems was fast—under 0.1 seconds in the presented cases. The full running
time was dominated by the time for preconditioning and the time for the z-clique search in
the auxiliary graph. Kernelization of some graphs could delete every edge and node from
that graph eventually, which resulted in an empty graph. In this case, we did not need to run
the clique search, as we already knew that there was no z-clique in the graph. The results
are summarized in Table 7. The columns correspond to the above-listed state-of-the-art
programs, while the last column is the program of the present paper.

Table 7. Running times in seconds for benchmark graphs—finding χ and proving its optimality: tl,
time limit of 3 h 45 m reached; ND, no data. We denote with boldface if a solution is the best or if
there is a draw between the first two places.

|V | χ
Zhou Cornaz Cornaz Malaguti Szabo,

cdclGCP MWSS REPf MMT-BP Zavalnij

1-Insertions_4 67 5 28 tl 8650 tl 305
1-Insertions_5 202 ? tl tl tl tl tl
2-Insertion_4 149 4 tl tl tl tl tl
2-Insertion_5 597 ? tl ND ND tl tl
3-Insertion_3 56 4 0 ND ND tl 0
3-Insertion_4 281 ? tl ND ND tl tl
3-Insertion_5 1406 ? tl ND ND tl tl
4-Insertions_3 79 4 2 tl 7795 tl 1
4-Insertion_4 475 ? tl ND ND tl tl
1-FullIns_4 93 5 0 10 3 tl 0
1-FullIns_5 282 6 tl tl tl tl 12,399
2-FullIns_3 52 5 0 0 0 1 0
2-FullIns_4 212 6 tl 9208 67 tl 4
2-FullIns_5 852 7 tl ND ND tl tl
3-FullIns_3 80 6 tl 1 0 1 0
3-FullIns_4 405 7 tl ND ND tl 17
4-FullIns_3 114 7 tl ND ND 1 0
4-Fullins_4 690 8 tl ND ND tl tl
4-Fullins_5 4146 ? tl ND ND tl tl
5-FullIns_3 154 8 tl 9 1 2 1
5-FullIns_4 1085 ? tl ND ND tl tl

anna 138 11 0 2 0 1 0
david 87 11 0 0 0 0 0
huck 74 11 tl 0 0 0 0
jean 80 10 0 0 0 0 0

myciel3 11 4 0 0 0 3 0
myciel4 23 5 0 0 0 71 0
myciel5 47 6 0 87 35 tl 1
myciel6 95 7 1188 tl tl tl 1367
myciel7 191 8 tl tl tl tl tl

DSJC125.1 125 5 0 9951 38 53 40
DSJC125.5 125 17 tl tl tl 6685 tl
DSJC125.9 125 44 tl 0 0 1443 tl
DSJC250.1 250 ? tl tl tl tl tl
DSJC250.5 250 ? tl tl tl tl tl
DSJC250.9 250 72 tl 1118 1388 tl tl
DSJR500.1c 500 85 tl 1 1 107 tl
games120 120 9 tl 3 0 0 23

Symmetry 2022, 14, 1574 14 of 16

Table 7. Cont.

|V | χ
Zhou Cornaz Cornaz Malaguti Szabo,

cdclGCP MWSS REPf MMT-BP Zavalnij

queen8_8 64 9 2 87 20 1 14
queen9_9 81 9 200 tl tl 14 12,783

queen10_10 100 11 tl tl tl 254 tl
queen11_11 121 12 tl tl tl 691 tl
queen12_12 144 tl tl tl tl tl

miles250 250 8 0 1 0 2 0
miles500 500 20 0 1 0 1 0
miles750 750 31 0 0 1 0 0
miles1000 1000 42 tl 0 2 0 1
miles 1500 1500 73 3 0 1 0 0

school1 385 14 0 ND ND 0 0
school1_nsh 352 14 0 ND ND 6 0

le450_5a 450 5 0 ND ND 0 0
le450_5b 450 5 0 ND ND 0 0
le450_5c 450 5 0 ND ND 0 0
le450_5d 450 5 0 ND ND 0 0
le450_15a 450 15 tl ND ND 0 tl
le450_15b 450 15 tl ND ND 0 tl
le450_15c 450 15 tl ND ND 1 tl
le450_15d 450 15 tl ND ND 1 tl

The results are quite interesting. The miles graphs, with the exception of miles1000,
could be solved by our method simply because we could locate a clique in them of the
same size as the numbers of colors we could color the graph with. In these cases, we need
not run our clique search at all. Some other graphs, for example miles1000, could be solved
by only preconditioning. Some time results of the Zhou et al. program were not consistent
with their paper (the queen9_9 is much better, while 1-FullIns_5, 2-FullIns_4, 3-FullIns_3,
5-FullIns_3, huck and games120 are much worse), so this problem needs more investigation.
For other instances, our approach is quite close to the Zhou et al. program.

If we calculate the first places from Table 7, that is, the data denoted with boldface,
including draws between the first two application, then the results are as follows. First
place is Malaguti MMT-BP, with 11 first places. Second is our approach, with 10 first
places. Third is Zhou cdclGCP, with 7 first places. Programs from Cornaz gained 4 and 3
first places. If we calculate the number of instances solved within the time limit, then the
program Zhou cdclGCP and our approach both solved 34 out of 58 instances, and Zhou
cdclGCP solved 25 out of 58 instances. Programs from Cornaz et al. solved 23 and 25 out of
37 instances.

Not listed in the table, we also solved the mycielski7 graph for k = 6 in 19,161 s; which
proves that there is no proper 6 coloring of the graph mycielski7. This result improves the
previously calculated lower limit for this instance to 7, while the usual good lower bound
is 5, and the previous best is 6. The program from Zhou et al. could not solve the same
question in 48 h.

Note though, the downside of our approach. There are some instances, not listed in
the table, that our approach simply could not handle. These are the more dense instances
with a higher chromatic number. In these cases, our reformulation constructs a huge graph,
as the basic size of our graph is (nk). These auxiliary graphs can be of size ten thousand or
more, and thus are beyond our approach. Basically, if the Γ graph is over 3000 nodes, and
after preconditioning, the resulting graph is over 1000 nodes, then our approach usually
cannot solve the instance. One may conclude that in those cases the auxiliary graphs from
Cornaz et al., whose sizes are small in these cases and big in cases favoring our approach,
are better for solving such problems. This orthogonal property may lead to a portfolio
approach, in which, after inspecting the graph, one can choose between the two methods.

Symmetry 2022, 14, 1574 15 of 16

10. Conclusions

Our main goal in the present paper was to elaborate on the question if clique search
can be used as a generic solver for different problems. We showed not just a reformulation
of the graph-coloring problem to the k-clique problem, but we also introduced symmetry-
breaking techniques in this formulation. In our previous paper, we already showed that
preconditioning can be very efficient for such k-partite graphs. With the aid of strong
preconditioning and a good clique-solver, our approach proved to be quite efficient in some
cases. Note that this special question—the existence of a k-clique in a k-partite graph—has
become more important in the last years (see [21–25]).

The present paper is a rather preliminary work, and there are many improvements
possible to the present approach. It is clear that preconditioning of the auxiliary graph is
crucial for effective solutions (see Table 6), so searching for more-effective preconditioning
may lead to much better applications. Further, preconditioning of the original graph
may prove its importance as well [26]. In their paper showing results on representative
formulation, the authors of [17] expressed the importance of node ordering. It is left
unanswered if such an effect would speed up the present approach or not, and if it would,
what is the best possible reordering of the nodes. Finally, the k-clique search was performed
by a program aimed to work on general graphs, while the present graphs have a special
property: they are k-partite. Using a specialized k-clique solver that exploits the k-partite
property may also be useful.

Author Contributions: Conceptualization, S.S. and B.Z.; methodology, S.S. and B.Z.; software, S.S.
and B.Z.; validation, S.S. and B.Z.; formal analysis, S.S. and B.Z.; investigation, S.S. and B.Z.; resources,
S.S. and B.Z.; data curation, S.S. and B.Z.; writing—original draft preparation, S.S. and B.Z.; writing—
review and editing, S.S. and B.Z.; visualization, S.S. and B.Z.; supervision, S.S. and B.Z.; project
administration, S.S. and B.Z.; funding acquisition, S.S. and B.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This project was supported by the National Research, Development and Innovation Office—
NKFIH Fund No. SNN-135643.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bron, C.; Kerbosh, J. Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 1973, 16, 575–577. [CrossRef]
2. Carraghan, R.; Pardalos, P.M. An exact algorithm for the maximum clique problem. Oper. Res. Lett. 1990, 9, 375–382. [CrossRef]
3. Östergård, P.R.J. A fast algorithm for the maximum clique problem. Discret. Appl. Math. 2002, 120, 197–207. [CrossRef]
4. Corrádi, K.; Szabó, S. A combinatorial approach for Keller’s conjecture. Period. Math. Hungar. 1990, 21, 91–100. [CrossRef]
5. Szabó, S.; Zaválnij, B. Reducing hyper graph coloring to clique search. Discret. Appl. Math. 2019, 264, 196–207. [CrossRef]
6. Depolli, M.; Szabó, S.; Zaválnij, B. An Improved Maximum Common Induced Subgraph Solver. MATCH Commun. Math. Comput.

Chem. 2020, 84, 7–28.
7. Szabó, S.; Zaválnij, B. Clique search in graphs of special class and job shop scheduling. Mathematics 2022, 10, 697. [CrossRef]
8. Cornaz, D.; Jost, V. A one-to-one correspondence between colorings and stable sets. Oper. Res. Lett. 2008, 36, 673–676. [CrossRef]
9. Szabó, S.; Zaválnij, B. Reducing graph coloring to clique search. Asia Pac. J. Math. 2016, 3, 64–85.
10. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: New York, NY,

USA, 2003.
11. Papadimitriou, C.H. Computational Complexity; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1994.
12. de Lima, A.M.; Carmo, R. Exact Algorithms for the Graph Coloring Problem. Rev. Inf. Teórica Apl. 2018, 25, 57–73. [CrossRef]
13. Campelo, M.; Correa, R.; Frota, Y. Cliques, holes and the vertex coloring polytope. Inf. Process. Lett. 2004, 89, 159–164. [CrossRef]
14. Szabó, S. Parallel algorithms for finding cliques in a graph. J. Phys. Conf. Ser. 2011, 268, 012030. [CrossRef]
15. Szabó, S.; Zaválnij, B. A different approach to maximum clique search. In Proceedings of the 2018 20th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 20–23 September 2018; pp. 310–316.

http://doi.org/10.1145/362342.362367
http://dx.doi.org/10.1016/0167-6377(90)90057-C
http://dx.doi.org/10.1016/S0166-218X(01)00290-6
http://dx.doi.org/10.1007/BF01946848
http://dx.doi.org/10.1016/j.dam.2018.09.010
http://dx.doi.org/10.3390/math10050697
http://dx.doi.org/10.1016/j.orl.2008.08.002
http://dx.doi.org/10.22456/2175-2745.80721
http://dx.doi.org/10.1016/j.ipl.2003.11.005
http://dx.doi.org/10.1088/1742-6596/268/1/012030

Symmetry 2022, 14, 1574 16 of 16

16. Zhou, Z.; Li, C.; Huang, C.; Xu, R. An exact algorithm with learning for the graph coloring problem. Comput. Oper. Res. 2014, 51,
82–301. [CrossRef]

17. Cornaz, D.; Furini, F.; Malaguti, E. Solving vertex coloring problems as maximum weight stable set problems. Discret. Appl. Math.
2017, 217, 151–162. [CrossRef]

18. Malaguti, E.; Monaci, M.; Toth, P. An exact approach for the vertex coloring problem. Discret. Optim. 2011, 8, 174–190. [CrossRef]
19. Brélaz, D. New methods to color the vertices of a graph. Commun. ACM 1979, 22, 251–256. [CrossRef]
20. Culberson, J.C. Iterated Greedy Graph Coloring and the Difficulty Landscape; Technical Report; University of Alberta: Edmonton, AB,

Canada, 1992.
21. Grünert, T.; Irnich, S.; Zimmermann, H.-J.; Schneider, M.; Wulfhorst, B. Finding all k-cliques in k-partite graphs, an application in

textile engineering. Comput. Oper. Res. 2002, 29, 13–31. [CrossRef]
22. Kliem, J. A new k-partite graph k-clique iterator and the optimal colored Tverberg problem for ten colored points. arXiv 2022,

arXiv:2112.04268.
23. Mirghorbani, M.; Krokhmal, P. On finding k-cliques in k-partite graphs. Optim. Lett. 2013, 7, 1155–1165. [CrossRef]
24. Phillips, C.A.; Wang, K.; Baker, E.J.; Bubier, J.A.; Chesler, E.J.; Langston, M.A. On Finding and Enumerating Maximal and

Maximum k-Partite Cliques in k-Partite Graphs. Algorithms 2019, 12, 23. [CrossRef]
25. Segundo, P.S.; Furini, F.; León, R. A new branch-and-filter exact algorithm for binary constraint satisfaction problems. Eur. J. Oper.

Res. 2022, 299, 448–467. [CrossRef]
26. Strash, D.; Thompson, L. Effective Data Reduction for the Vertex Clique Cover Problem. In 2022 Proceedings of the Symposium on

Algorithm Engineering and Experiments (ALENEX). 2022. pp. 41–53. Available online: https://epubs.siam.org/doi/10.1137/1.9781
611977042.4 (accessed on 9 July 2022).

http://dx.doi.org/10.1016/j.cor.2014.05.017
http://dx.doi.org/10.1016/j.dam.2016.09.018
http://dx.doi.org/10.1016/j.disopt.2010.07.005
http://dx.doi.org/10.1145/359094.359101
http://dx.doi.org/10.1016/S0305-0548(00)00053-8
http://dx.doi.org/10.1007/s11590-012-0536-y
http://dx.doi.org/10.3390/a12010023
http://dx.doi.org/10.1016/j.ejor.2021.09.014
https://epubs.siam.org/doi/10.1137/1.9781611977042.4
https://epubs.siam.org/doi/10.1137/1.9781611977042.4

	Introduction
	Definitions
	The Ordered Pairs Auxiliary Graph
	The Ordered Triplets Auxiliary Graph
	Chromatic Number via Maximum Clique
	Coloring Hyper Graphs
	Kernelization
	A Small-Size Toy Example
	Numerical Experiments
	Setting Up the Testbed
	Extended Tests

	Conclusions
	References

