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How are metamaterials related to symmetry? Originating from the Greek word µετά
(meta), for “beyond” and the Latin word “materia”, which refers to “material”, the term
“metamaterials” has been coined to define materials that are micro-structured in a manner
such that their equivalent physical behaviors are predominantly governed by the micro-
architectural geometries instead of the properties of the base materials. Essentially, the
metamaterials’ representative units are repeated throughout the entire structure. Inevitably,
the properties of symmetry play a salient role in determining the effective characteristics of
the metamaterials. This Special Issue comprises papers on mechanical metamaterials with
special attention paid to their symmetry properties.

The first paper, by Lim [1], explores the possibility of attaining perfect auxetic behavior
of v = −1 by taking inspiration from an Islamic geometrical pattern. Specifically, this
metamaterial consists of Y-element sub-units that are arranged and joined to form a cir-
cumference of eight rhombi, such that the four rhombi oriented to the axes are shared with
neighboring units while the remaining four rhombi aligned to the diagonals are unshared.
In the fully-closed configuration, each unit of the metamaterial forms a circumference of
eight squares that constitutes an eight-pointed star; in the fully-opened configuration, each
unit forms a regular octagon. In addition to exhibiting perfect auxeticity, the calculated
results suggest that in-plane uniaxial stretching increases the overall Young’s modulus
exponentially until a complete extension is achieved.

In the second paper, Grima-Cornish et al. [2] evaluate the results of DFT-based sim-
ulations aimed at understanding the deformations that such crystals encounter when
prescribed with shear loading to gain a deeper insight into the process in which this ma-
terial responds to mechanical loads. The deformation mechanisms for shearing in the
(001) plane are elucidated in terms of the ‘rotating squares’ model, which was used to
expound the auxeticity in the same plane where it was shown that shear loading results
predominantly in deformations that make the ‘squares’ become ‘parallelogram-like’ instead
of rotating. The deficiency of the rigidity in the projected ‘squares’ was examined by
observing the changes in their bond lengths and bond angles.

Bilski et al. [3] analyzed 2D crystalline structures with honeycomb geometry using
the Monte Carlo method within the isobaric-isothermal group. The crystals that were
selected for consideration were formed by hard discs (HD) of two different diameters
that are in very close proximity. As opposed to equidiameter HD, which crystallize into
a homogeneous solid that is elastically isotropic due to its sixfold symmetrical axis, the
systems studied by Bilski et al. [3] contain artificial patterns and are (an)isotropic. It was
found that the symmetry of the patterns acquired by a suitable arrangement of two types
of discs strongly influences their elastic properties. The Poisson’s ratio (PR) of each of the
examined structures was analyzed with respect to two aspects: (a) their dependence on the
external isotropic pressure and (b) concerning the function of the direction angle, in which
the deformation of the system takes place, since some of the structures are anisotropic. To
achieve the latter, the general analytic formula for the orientational dependence of PR in
2D systems was adopted. The PR analysis at very high pressures indicates that for the
vast majority of the considered structures it is approximately isotropic and tends to the
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upper limit for isotropic 2D systems, which is v = +1. This is different from systems of
equidiameter discs, for which their PR tends to v = 0.13.

Borcea and Streinu [4] investigate a relationship between the infinitesimal deforma-
tions of a periodic bar-and-joint framework with the periodic arrangements of quadrics.
This intrinsic connection avails practical geometric characteristics. A direct result is a
method for detecting auxetic deformations, identified by a pattern consisting of homothetic
ellipsoids. Some examples include frameworks with higher crystallographic symmetry. In
one of the examples, the authors illustrate the special case when the auxeticity criterion
developed in the previous section yields circles for the homothetic ellipses. They applied a
planar periodic framework introduced earlier [1], which has several distinctive features:
(i) the framework has one degree of freedom, (ii) the framework’s deformation is auxetic,
and (iii) the framework maintains a planar crystallographic symmetry—throughout its
deformation path—with point group D4, the dihedral group of order eight that describes
the symmetries of a square.

A generalized strain energy-based homogenization method for 2D and 3D cellular
materials with and without periodicity constraints was suggested by Gad and Gao [5]
using Hill’s Lemma and the matrix method for spatial frames. In this novel method, the
equilibrium equations are imposed at all boundary and interior nodes and each interior
node is permitted to freely translate and rotate, in contrast to current approaches in which
the equilibrium conditions are enforced at the boundary nodes only. The newly formulated
homogenization approach can be prescribed to cellular materials with or without symmetry.
To illustrate this new approach, four examples were analyzed: two for a 2D cellular material
and two for a 3D pentamode metamaterial, with and without periodic constraints in each
group. In the case of the 2D cellular material, an asymmetric microstructure with or without
periodicity constraints was investigated and closed-form expressions of the effective stiff-
ness components were obtained. In the case of the 3D pentamode metamaterial, a primitive
diamond-shaped unit cell with or without periodicity constraints was considered; for each
of these 3D cases, two different representative cells in two orientations were assessed.
The homogenization study shows that the pentamode metamaterial demonstrates a cubic
symmetry based on one representative cell, with the effective Poisson’s ratio being nearly
0.5. In addition, it was shown that the pentamode metamaterial with the cubic symmetry
can be tuned to be a rubber-like material (v ∼= 0.5) or an auxetic material (v < 0).

Hinged tilings avail possibilities for the design of auxetic and equiauxetic frameworks
in 2D, and generic auxetic behavior can normally be identified using a symmetry extension
of the scalar counting rule for the mobility of periodic body–bar systems. The final paper,
by Tarnai et al. [6], considers hinged frameworks based on Archimedean tilings. It is
known that the regular hexagonal tiling,

{
63}, gives rise to an equiauxetic framework for

both single-link and double-link connections between the tiles. In the case of the single-
link connections in this work, three Archimedean tilings considered as hinged body–bar
frameworks were found to be equiauxetic:

{
3.122}, {4.6.12}, and

{
4.82}. In the case

of double-link connections, three Archimedean tilings considered as hinged body-bar
frameworks were found to be equiauxetic:

{
34.6

}
,
{

32.4.3.4
}

, and {3.6.3.6}.
The collection of papers in this Special Issue is by no means complete but does offer a

snapshot of various works on mechanical metamaterials and their connections to symmetry.
It is hoped that through this Special Issue, further interest in metamaterials can be ignited
from the perspectives of symmetry.
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