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Abstract: The Poisson–Nernst–Planck (PNP) system is a nonlinear coupled system that describes the
motion of ionic particles. As the exact solution of the system is not available, numerical investigations
are essentially important, and there are quite a lot of numerical methods proposed in the existing
literature. However, the theoretical analysis is usually neglected due to the complicated nature
of the PNP system. In this paper, a theoretical investigation for a symmetrical finite difference
method proposed in the previous literature was conducted. An L2 error estimate of O(τ + h2) was
derived for the numerical scheme in 1D, where τ denotes the time step size and h denotes the
spatial mesh size, respectively. Numerical results confirm the theoretical analysis. More importantly,
a positivity-preserving condition for the scheme is provided with rigorously theoretical justification.

Keywords: Poisson–Nernst–Planck system; finite difference method; error analysis; positivity-preserving
condition

1. Introduction

W. Nernst and M. Planck first formulated the classical unsteady Poisson–Nernst–
Planck (PNP) system to describe the potential difference in a galvanic cell. The PNP system
can describe the evolution of positively- and negatively charged particles (or ions); it has a
lot of applications in electrochemistry [1], biology [2], and semiconductors [3–5].

The classical unsteady dimensionless PNP system has the following form:
pt = ∇ · (∇p + p∇φ), in ΩT := (0, T]×Ω,

nt = ∇ · (∇n− n∇φ), in ΩT ,

−∆φ = p− n, in ΩT ,

(1)

where p, n are positively and negatively charged particles (or ions), φ is the electric potential,
Ω is a bounded domain, and [0, T] is the time interval. In the above non-dimensional
equations, the characteristic length scale is chosen as the Debye length and the characteristic
time scale is chosen as the diffusive time scale.

When numerically solving PDEs, it is of great importance to keep the original phys-
ical properties. Regarding numerical simulations for the PNP system—there are many
literature studies that have solved these types of equations and preserved certain physical
properties. For example, Prohl and Schmuck [6] present two different nonlinear finite
element methods for the PNP system with homogeneous Neumann boundary conditions,
which satisfy electric potential energy dissipative and entropy decay properties, respec-
tively. Flavell [7] and Liu and Wang [8] provide different conservative finite difference
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methods that satisfy the mass conservation, ion concentration positivity, and total energy
dissipation numerically, where the total energy is connected with both electric potential
and ion concentration. In [7], a uniform bound is assumed for the numerical first deriva-
tives of electric potential (cf. Equation (37) in [7]) without any theoretical justification for
gaining the positivity-preserving condition of the numerical scheme. In order to obtain a
linear while keeping the energy- and mass-preserving numerical scheme for solving the
PNP system, a linearized semi-implicit finite different scheme was proposed in [9], where
the scheme was numerically shown to be the first-order convergent in the time variable
and the second-order convergent in the space variable. By assuming that the numerical
solutions for ion concentrations are always non-negative, the authors in [9] showed that
the proposed method satisfies the electric energy decay property. However, there is no
theoretical justification for the positivity-preserving and error analysis. Due to the high
nonlinearity of the PNP system, it is quite difficult to carry out the theoretical error analysis
and obtain the positivity-preserving condition; this is the motivation of the current work.

The novelty of this paper was to conduct a rigorous error analysis and provide a
theoretical analysis for the positivity-preserving condition for the symmetrical finite dif-
ference scheme proposed in [9], where the analysis was carried out for the 1D case. The
rest of the paper is organized as follows: Section 1 is the overview of the paper; Section 2
reviews the linearized scheme proposed in [9] for the 1D case; Section 3 provides the
positivity-preserving condition and shows its theoretical justification for the scheme in 1D;
Section 4 presents a rigorous error analysis in the L2 norm; Section 5 presents the numerical
computations. Finally, the conclusions and future work are presented in Section 6.

2. A Review of the Numerical Method in 1D

In this paper, we consider the following 1D PNP system

pt = (px + pφx)x, in ΩT = (0, T]× [a, b] , (2)

nt = (nx − nφx)x, in ΩT = (0, T]× [a, b] , (3)

− φxx = p− n, in ΩT = (0, T]× [a, b] (4)

with the following initial and homogeneous Neumann boundary conditions

p(x, 0) = p0(x), n(x, 0) = n0(x), for x ∈ (a, b), (5)

px = nx = φx = 0, on x = a, b. (6)

Let J be a positive integer. The domain Ω = [a, b] is uniformly partitioned with
h = (b− a)/J and variables are stored at the midpoints of each interval as follows

Ωh = {xj|xj = a + (j− 1
2
)h, 1 ≤ j ≤ J}. (7)

Let M be another positive integer. Then, τ = T
M is the time step size. We define a

homogeneous mean subspace Z0
h = {{Uj}J

j=1 | < U, 1 >= 1
J ∑J

j=1 Uj = 0}. To deal with
the homogeneous Neumann boundary conditions (6), we define the values at the centers of
the fictitious intervals outside the boundary, as follows

p0 = p1, pJ+1 = pJ , n0 = n1, nJ+1 = nJ , φ0 = φ1, φJ+1 = φJ , (8)

where values at the fictitious intervals are represented by the subscripts 0, J + 1.
For a given grid function { f j}J

j=1, {gj}J
j=1, we define the following discrete operators:

δ+x f j =
f j+1 − f j

h
, δ−x f j =

f j − f j−1

h
,

δ2
x f j = δ−x δ+x f j =

f j+1 − 2 f j + f j−1

h2 , δ0
x f j =

f j+1/2 − f j−1/2

∆x
,
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where

f j+1/2 =
f j + f j+1

2
.

The discrete L2 inner product and the discrete L2 norm are defined as

< f , g >=
J

∑
j=1

f jgjh ‖ f ‖2 =< f , f > .

We define

< δ+x f , δ+x g >=
J−1

∑
j=1

δ+x f j δ+x gj h , < δ−x f , δ−x g >=
J

∑
j=2

δ−x f j δ−x gj h.

The maximum norm for the grid function { f j}J
j=1 is defined as

‖ f ‖∞ = max
j
| f j|.

Now we are in the position to introduce the scheme proposed in [9] for the PNP
system (2)–(4). For j = 1, · · · , J, 0 ≤ m ≤ M− 1, a linearized finite difference scheme is
defined by

Pm+1
j − Pm

j

τ
= δ2

x(Pm+1/2
j ) +

1
h
(Pm

j+1/2 δ+x Φm+1/2
j − Pm

j−1/2 δ−x Φm+1/2
j ) , (9)

Nm+1
j − Nm

j

τ
= δ2

x(Nm+1/2
j )− 1

h
(Nm

j+1/2 δ+x Φm+1/2
j − Nm

j−1/2 δ−x Φm+1/2
j ) , (10)

− δ2
x(Φ

m+1
j ) = Pm

j − Nm+1
j , (11)

where the upper index []m+1/2 denotes the average of []m and []m+1, i.e., Pm+1/2
j =

(Pm
j + Pm+1

j )/2.
We note that all numerical solutions are in capital letters and the initial values for

{P0
j }

J
j=1 and {N0

j }
J
j=1 can be directly obtained from (5). The detailed implementation and

mass conservation and energy decay properties are provided in [9]. However, there is no
error analysis in [9]. More importantly, the positivity-preserving property of the scheme
is only shown numerically. As the homogeneous Neumann boundary condition is used,
φ is unique up to a constant. We assume that the exact solution φ has a zero mean value.
Similarly, we require < Φ, 1 >= 0 to ensure a unique numerical solution.

The following Lemmas are essential for the analysis of the numerical solution. Through-
out the rest part of this paper, unless otherwise indicated, C is the notation referring to a
general positive constant and ε denotes a general small constant, which are independent of
τ and h and have different values in different contexts.

Lemma 1. Discrete Gronwall inequality [10]: Let τ, B, and ak, bk, ck, γk, for integers k ≥ 0, be
non-negative numbers, such that

aj + τ
j

∑
k=0

bk ≤ τ
j

∑
k=0

γkak + τ
j

∑
k=0

ck + B , for j ≥ 0 ,

suppose that τγk < 1, for all k, and set σk = (1− τγk)
−1. Then,

aj + τ
j

∑
k=0

bk ≤ exp(τ
j

∑
k=0

γkσk)(τ
j

∑
k=0

ck + B) , for j ≥ 0 .
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According to the triangular and Cauchy inequalities, we have the following Lemma.

Lemma 2. Let {Um}M
m=0 be a sequence of the discrete functions defined on Ωh. Then, for any

norm ‖ · ‖, we have

τ‖Um‖ ≤ 2τ
m

∑
l=1
‖Ul + Ul−1

2
‖+ τ‖U0‖

≤ 2
√

T

(
m−1

∑
l=0

τ‖Ul+1/2‖2 + τ‖U0‖2

) 1
2

(12)

Lemma 3. For any grid function {Uj}
j
j=1 defined on mesh Ωh, where Ωh is described as (7) and

< U, 1 >= 0, we have
‖ U ‖∞≤ C ‖ δ+x U ‖, (13)

and
‖ U ‖≤ C ‖ δ+x U ‖ . (14)

Proof. For any j = 1, · · · , J, we have

Uj = h
j−1

∑
m=k

δ+x Um + Uk, for k < j

Uj = Uj, for k = j

Uj = −h
k−1

∑
m=j

δ+x Um + Uk, for j < k ≤ J

Thus, summing up the index k = 1, . . . , J and noting < U, 1 >= 0, we have

∣∣Uj
∣∣ = 1

J

∣∣∣∣∣ j−1

∑
k=1

(
h

j−1

∑
m=k

δ+x Um

)
+

J

∑
k=j+1

(
−h

k−1

∑
m=j

δ+x Um

)∣∣∣∣∣
≤

J−1

∑
m=1

∣∣hδ+x Um
∣∣

≤
(

J−1

∑
m=1

h
∣∣δ+x Um

∣∣2) 1
2
(

J−1

∑
m=1

h

) 1
2

≤
√

b− a
∥∥δ+x U

∥∥
In addition,

‖U‖2 =
J

∑
j=1
|Uj|2 h ≤

J

∑
j=1
‖U‖2

∞h = (b− a)‖U‖2
∞ ≤ C‖δ+x U‖2.

The proof is complete.

Lemma 4. Discrete Sobolev inequality [11,12]: if any grid function {Uj}J
j=1 with UJ = 0, then

‖U‖ ≤ C‖δ−x U‖ , ‖U‖∞ ≤ C‖δ−x U‖.

If the grid function {Uj}J
j=1 satisfies U0 = 0, then

‖U‖ ≤ C‖δ+x U‖ , ‖U‖∞ ≤ C‖δ+x U‖.
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Proof. The proof is omitted.

3. An Unconditional Optimal Error Analysis

Denote that C2,4(t, x) are the set of functions with the second-order continuous differ-
entiable in time and the fourth-order continuous differentiable in space.

Theorem 1. Suppose the exact solutions (p, n, φ) of (2)–(4) under the boundary conditions (6) all
belong to C2,4(t, x). For the numerical solutions (P, N, Φ) of (9)–(11) with homogeneous boundary
conditions (8), there are two small positive constants τ0 and h0, such that when τ < τ0 and h < h0,
the following L2 norm error estimates hold

max
0≤m≤M

(‖pm − Pm‖+ ‖nm − Nm‖) ≤ C0(τ + h2), (15)

max
0≤m≤M

‖φm −Φm‖∞ ≤ C0(τ + h2),

where C0 is a positive constant, independent of h and τ.

Proof. Denote that em
p = pm − Pm, em

n = nm − Nm, em
φ = φm −Φm. Substituting the exact

solution into the scheme (9)–(11), results in

pm+1
j − pm

j

τ
= δ2

x(pm+1/2
j ) +

1
h
(pm

j+1/2 δ+x φm+1/2
j − pm

j−1/2 δ−x φm+1/2
j ) + (Rm

p )j, (16)

nm+1
j − nm

j

τ
= δ2

x(n
m+1/2
j )− 1

h
(nm

j+1/2 δ+x φm+1/2
j − nm

j−1/2 δ−x φm+1/2
j ) + (Rm

n )j, (17)

− δ2
x(φ

m+1
j ) = pm+1

j − nm+1
j + (Rm+1

φ )j, (18)

where the truncation terms satisfy

(Rm
p )j = O(τ + h2), (Rm

n )j = O(τ + h2), (Rm
φ )j = O(h2). (19)

Note that it is necessary to assume that the exact solutions (p, n, φ) all belong to C2,4(t, x)
so that the truncation terms Rm

p , Rm
n , Rm

φ satisfy the above order of magnitude estimates.
Subtracting (9)–(11) from (16)–(18), the error equations satisfy

(em+1
p )j − (em

p )j

τ
= δ2

x(e
m+1/2
p )j + (Hm

p )j + (Rm
p )j, (20)

(em+1
n )j − (em

n )j

τ
= δ2

x(e
m+1/2
n )j + (Hm

n )j + (Rm
n )j, (21)

− δ2
x(e

m+1
φ )j = (em+1

p )j − (em+1
n )j + (Rm+1

φ )j, (22)

where the two nonlinear error terms

(Hm
p )j =

1
h
(pm

j+1/2 δ+x φm+1/2
j − pm

j−1/2 δ−x φm+1/2
j )

− 1
h
(Pm

j+1/2 δ+x Φm+1/2
j − Pm

j−1/2 δ−x Φm+1/2
j )

= δ0
x(pm

j δ0
xφm+1/2

j )− δ0
x(Pm

j δ0
xΦm+1/2

j ),

(Hm
n )j = −

1
h
(nm

j+1/2 δ+x φm+1/2
j − nm

j−1/2 δ−x φm+1/2
j )

+
1
h
(Nm

j+1/2 δ+x Φm+1/2
j − Nm

j−1/2 δ−x Φm+1/2
j )

= −δ0
x(n

m
j δ0

xφm+1/2
j ) + δ0

x(Nm
j δ0

xΦm+1/2
j ).
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To estimate the nonlinear terms, we first derive some bound for (em+1
φ )j. Applying

Lemma 4 to error Equation (22), we can deduce that

‖δ+x em+1/2
φ ‖∞ ≤ C‖δ−x (δ+x em+1/2

φ )‖

≤ C‖δ2
xem+1/2

φ ‖

≤ C‖em+1/2
p − em+1/2

n + Rm+1/2
φ ‖

≤ C(‖em+1/2
p ‖+ ‖em+1/2

n ‖+ ‖Rm+1/2
φ ‖).

(23)

Multiplying both sides of (20) by em+1/2
p and taking the inner product, we have

‖em+1
p ‖2 − ‖em

p ‖2

2τ
= −‖δ+x (em+1/2

p )‖2 + (Hm
p , em+1/2

p ) + (Rm
p , em+1/2

p ), (24)

and
|(Hm

p , em+1/2
p )|

= |(δ0
x(pm

j δ0
xφm+1/2

j )− δ0
x(Pm

j δ0
xΦm+1/2

j ), em+1/2
p )|

=
∣∣∣(δ0

x(e
m
p δ0

xφm+1/2) + δ0
x(pmδ0

xem+1/2
φ )− δ0

x(e
m
p δ0

xem+1/2
φ ), em+1/2

p )
∣∣∣

=
∣∣∣−(em

pRδ+x φm+1/2 + pm
R δ+x em+1/2

φ − em
pRδ+x em+1/2

φ , δ+x em+1/2
p )

∣∣∣
≤ ‖δ+x φm+1/2‖∞‖em

pR‖‖δ+x em+1/2
p ‖+ ‖pm

R‖∞‖δ+x em+1/2
φ ‖‖δ+x em+1/2

p ‖

+ ‖δ+x em+1/2
φ ‖∞‖em

pR‖‖δ+x em+1/2
p ‖

≤ (C + C‖em
p ‖2)(‖em

p ‖2 + ‖em+1/2
p ‖2 + ‖em+1/2

n ‖2 + ‖Rm+1/2
φ ‖2)

+
1
2
‖δ+x em+1/2

p ‖2

(25)

where we use the regularity assumption for the exact solutions (23) and Young’s inequality,

(em
pR)j =

(em
p )j + (em

p )j+1

2
, (pm

R )j =
pm

j + pm
j+1

2
.

The truncation term can be bounded by

|(Rm
p , em+1/2

p )| ≤ ‖Rm
p ‖‖em+1/2

p ‖ ≤ ‖em+1/2
p ‖2 + C(τ + h2)2. (26)

Substituting estimates (25) and (26) into (24) yields

‖em+1
p ‖2 − ‖em

p ‖2

2τ
+

1
2
‖δ+x em+1/2

p ‖2 (27)

≤ (C + C‖em
p ‖2)(‖em

p ‖2 + ‖em+1/2
p ‖2 + ‖em+1/2

n ‖2) + C(τ + h2)2 . (28)

By a similar analysis for the error Equation (21) for en, we can deduce that

‖em+1
n ‖2 − ‖em

n ‖2

2τ
+

1
2
‖δ+x em+1/2

n ‖2

≤ (C + C‖em
n ‖2)(‖em

n ‖2 + ‖em+1/2
p ‖2 + ‖em+1/2

n ‖2) + C(τ + h2)2 .
(29)

Finally, combining (28) and (29), we arrive at

‖em+1
p ‖2 + ‖em+1

n ‖2 − ‖em
p ‖2 − ‖em

n ‖2

2τ
+

1
2
(‖δ+x em+1/2

p ‖2 + ‖δ+x em+1/2
n ‖2)

≤ (C + C(‖em
p ‖2 + ‖em

n ‖2))(‖em+1
p ‖2 + ‖em+1

n ‖2 + ‖em
p ‖2 + ‖em

n ‖2)

+ C(τ + h2)2.

(30)
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Now, we are ready to prove (15). We shall prove slightly stronger error estimates for
m = 0, . . . , J

‖em
p ‖2 + ‖em

n ‖2 + τ
m−1

∑
l=0

(‖δ+x el+1/2
p ‖2 + ‖δ+x el+1/2

n ‖2) ≤ C0(τ + h2)2, (31)

by mathematical induction. Obviously, ‖e0
p‖ = 0, ‖e0

n‖ = 0. Now suppose that (31) holds
for 0 ≤ m ≤ k, we shall find a constant C0, independent of m, h, τ, such that (31) is valid for
0 ≤ m ≤ k + 1. By this induction assumption, we have

‖em
p ‖2 + ‖em

n ‖2 ≤ C0(τ + h2)2 ≤ 1 , for m ≤ k (32)

where we require that C0(τ + h2)2 ≤ 1.
By noting (32) and summing up (30) for index m, we have

‖em
p ‖2 + ‖em

n ‖2 + τ
m−1

∑
l=0

(‖δ+x el+1/2
p ‖2 + ‖δ+x el+1/2

n ‖2)

≤ Cτ
m

∑
l=1

(‖el
p‖2 + ‖el

n‖2) + C(τ + h2)2, for m ≤ k + 1.

(33)

With the help of the Gronwall inequality in Lemma 1, we can derive that when τ < τ0
for a certain small number τ0

‖em
p ‖2 + ‖em

n ‖2 + τ
m−1

∑
l=0

(‖δ+x el+1/2
p ‖2 + ‖δ+x el+1/2

n ‖2) ≤ C exp(
2CT

1− 2Cτ
)(τ + h2)2. (34)

Thus, (31) is valid for m ≤ k + 1 if we choose C0 ≥ C exp(4CT). Then C0 is fixed and the
induction is complete. Equation (15) is proved.

In addition, the following estimate follows directly from (23) and Lemma 3

‖em
φ ‖∞ ≤ C(τ + h2), for m = 0, · · · , M. (35)

The proof of Theorem 1 is complete.

Corollary 1. Under the same hypothesis in Theorem 1, the following estimates for the numerical
solution (P, N, Φ) hold

max
0≤m≤M

(‖Pm‖∞ + ‖Nm‖∞) ≤ C1, (36)

max
0≤m≤M

(‖δ+x Φm‖∞ + ‖δ−x Φm‖∞) ≤ C2,

where C0 is a positive constant, independent of j, m, h, τ.

Proof. We shall first prove (36). To this end, it suffices to show ‖ep‖∞ + ‖en‖∞ ≤ ε. We
shall consider two different cases. For the case τ ≤ h2, (15) gives that

max
0≤m≤M

(‖pm − Pm‖+ ‖nm − Nm‖) ≤ C0h2,

Applying inverse inequality for finite difference methods gives further

max
0≤m≤M

(‖pm − Pm‖∞ + ‖nm − Nm‖∞)

≤ max
0≤m≤M

Ch−1/2(‖pm − Pm‖+ ‖nm − Nm‖)

≤ CC0h3/2 ≤ ε

(37)
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For the case τ > h2, from (31) we have

τ
J−1

∑
m=0

(‖δ+x em+1/2
p ‖2 + ‖δ+x em+1/2

n ‖2) ≤ C0τ2,

With Lemma 2, we can derive that

max
0≤m≤J

(‖δ+x em
p ‖2 + ‖δ+x em

n ‖2) ≤ CC0τ.

Applying the Sobolev inequality, we can derive that

max
0≤m≤M

(‖em
p ‖∞ + ‖em

n ‖∞) ≤ max
0≤m≤M

C(‖δ+x em
p ‖2 + ‖δ+x em

n ‖2) ≤ CC0τ ≤ ε , (38)

where τ satisfies that τ < τ0 for a small τ0.

For both the cases τ ≤ h2 and τ > h2, we have ‖ep‖∞ + ‖en‖∞ ≤ ε. The uniform
bound (36) follows directly.

Now, using (11) and Lemma 4, we have

‖δ+x Φm‖∞ ≤ C‖δ2
xΦm‖ ≤ C(‖Pm‖+ ‖Nm‖) ≤ C(‖Pm‖∞ + ‖Nm‖∞) ≤ C2

‖δ−x Φm‖∞ ≤ C‖δ2
xΦm‖ ≤ C(‖Pm‖+ ‖Nm‖) ≤ C(‖Pm‖∞ + ‖Nm‖∞) ≤ C2

4. Positivity-Preserving Condition

In addition to the mass conservation and energy decay properties shown in [9],
positivity-preserving is another fundamental law for the system (2)–(4). The following theo-
rem provides a sufficient condition for the positivity-preserving of the proposed numerical
scheme (9)–(11).

Theorem 2. For given initial non-negative conditions: p0 ≥ 0, n0 ≥ 0, if τ and h satisfy the
following conditions:

h ≤ min{ 1
C2

, h0}, τ ≤ min{ h2

4 + 2C1h2 , τ0} (39)

where C1, C2, τ0, and h0 refer to constants, then the numerical solutions {Pm
j , Nm

j , Φm
j } satisfy the

positivity-preserving property

Pm
j ≥ 0, Nm

j ≥ 0 , for j = 1, · · · , J, m = 0, · · · , M. (40)

Proof. For time level m, (9) and (10) can be rewritten using the matrix–vector form given by,(
I− τ

2
K
)

Pm+1 =
(
I+

τ

2
K+ τH(Φs+ 1

2 )
)

Pm , Prhs, (41)(
I− τ

2
K
)

Nm+1 =
(
I+

τ

2
K− τH(Φs+ 1

2 )
)

Nm , Nrhs, (42)



Symmetry 2022, 14, 1589 9 of 11

where I means the J × J identity matrix, K is the discrete matrix of the Laplace operator
subjected to homogeneous Neumann boundary conditions in 1D

K =
1
h2



−1 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −1


J×J

(43)

and

H(Φm+ 1
2 ) =



δ2
xΦm+1/2

1
1
h δ+x Φm+1/2

1

1
h δ−x Φm+1/2

2 δ2
xΦm+1/2

2
1
h δ+x Φm+1/2

2

. . . . . . . . .

1
h δ−x Φm+1/2

J−1 δ2
xΦm+1/2

J−1
1
h δ+x Φm+1/2

J−1

1
h δ−x Φm+1/2

J δ2
xΦm+1/2

J


(44)

stands for the nonlinear convection matrix, respectively.
From the above matrix form, it is easy to see that K and H have the same sparse pattern.

More importantly, the coefficient matrix I− τ
2K is an M-matrix [13]. Therefore, to prove the

non-negative property (40), it suffices to show Prhs, Nrhs ≥ 0. We shall verify that under the
condition on τ and h in such that the matrices

I+
τ

2
K+ τH(Φm+ 1

2 ), I+
τ

2
K− τH(Φm+ 1

2 )

are non-negative. As the boundary nodes are not essential in our analysis, we shall focus
on the interior nodes. First, for the j-th diagonal entry of I+ τ

2K+ τH(Φm+ 1
2 ), we have

1− 2τ

h2 + τδ2
xΦm+1/2

j = 1− 2τ

h2 + τ
(

Nm+1/2
j − Pm+1/2

j

)
≥ 1− 2τ

h2 − τ
(∥∥∥Nm+1/2

j

∥∥∥
∞
+
∥∥∥Pm+1/2

j

∥∥∥
∞

)
≥ 1− 2τ

h2 − τC1

≥ 1
2
≥ 0

(45)

if we require that τ ≤ h2

4+2C1h2 . Second, on the jth row, for its (j− 1)-th entry, we have

τ

h2 + τ
1
h

δ−x Φm+1/2
j ≥ τ

h
(h−1 − ‖δ−x Φm+1/2

j ‖∞) ≥ τ

h
(h−1 − C2) ≥ 0. (46)

where we require h ≤ 1/C2 Third, on the jth row, for its (j + 1)-th entry, we have

τ

h2 + τ
1
h

δ+x Φm+1/2
j ≥ τ

h
(h−1 − ‖δ+x Φm+1/2

j ‖∞) ≥ τ

h
(h−1 − C2) ≥ 0. (47)

where we require h ≤ 1/C2 Now combining all of the requirements for τ and h, we
verify that I+ τ

2K+ τH(Φm+ 1
2 ) is a non-negative matrix. By a similar analysis, the matrix

I+ τ
2K− τH(Φm+ 1

2 ) can also be shown to be non-negative. The proof of Theorem 2 is
complete.
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5. Numerical Results

To numerically verify the convergence order that is analyzed in this paper, we consider
the following argument equations with the exact solutions as the test problem:

pt = (px + pφx)x + f1, in ΩT = (0, T]× [a, b] , (48)

nt = (nx − nφx)x + f2, in ΩT = (0, T]× [a, b] , (49)

− φxx = p− n + c, in ΩT = (0, T]× [a, b] (50)

where
p = (3x2 − 2x3)e−t, n = x2(1− x)2e−t, φ = x2(1− x)2e−t

are the exact solutions of (48)–(50), satisfying the zero Neumann boundary conditions (6).
Moreover, f1, f2, c are known functions that are given according to these exact solutions.

The numerical schemes for the above system are given by

Pm+1
j − Pm

j

τ
= δ2

x(Pm+1/2
j ) +

1
h
(Pm

j+1/2 δ+x Φm+1/2
j − Pm

j−1/2 δ−x Φm+1/2
j ) + ( f1)

m+1/2
j,k , (51)

Nm+1
j − Nm

j

τ
= δ2

x(Nm+1/2
j )− 1

h
(Nm

j+1/2 δ+x Φm+1/2
j − Nm

j−1/2 δ−x Φm+1/2
j ) + ( f2)

m+1/2
j,k , (52)

− δ2
x(Φ

m+1
j ) = Pm+1

j − Nm+1
j + cm+1

j,k . (53)

We carry out the numerical convergence study for both space and time variables for
the above scheme (51)–(53). For the spatial convergence analysis, we set ∆t = 0.00001, and
use four different spatial meshes h = 1

10×2n , h, n = 0, · · · , 3, the final time is set to be
T = 1.0. Table 1 lists the spatial convergence results; it can be seen that all variables p, n, φ
converge with second-order in the L2 norm. For temporal convergence analysis, we set
h = 0.001, and use four different time step sizes τ = 1

40×2n , h, n = 0, · · · , 3, the final
time is also set to be T = 1.0. Table 2 lists the temporal convergence results, it can be seen
that all variables p, n, φ converge with first-order in the L2 norm. These results confirm the
theoretical analysis in Section 3.

Table 1. Spatial mesh refinement analysis (ep = ph − pexact, en = nh − nexact, eφ = φh − φexact,
∆t = 0.00001).

h ‖ep‖ Order ‖en‖ Order ‖eφ‖ Order

1/10 2.24 × 10−3 - 6.35 × 10−3 - 1.99 × 10−4 -
1/20 5.69 × 10−4 1.99 1.58 × 10−3 2.00 5.80 × 10−5 1.78
1/40 1.45 × 10−4 1.97 3.96 × 10−4 2.00 1.59 × 10−5 1.87
1/80 3.88 × 10−5 1.90 9.90 × 10−5 2.00 4.48 × 10−6 1.82

Table 2. Temporal mesh refinement analysis (τ = 0.001).

τ ‖ep‖ Order ‖en‖ Order ‖eφ‖ Order

1/40 8.46 × 10−3 - 5.56 × 10−4 - 1.14 × 10−3 -
1/80 4.25 × 10−3 0.99 2.79 × 10−4 0.99 7.07 × 10−4 0.69
1/160 2.13 × 10−3 1.00 1.40 × 10−4 0.99 4.05 × 10−4 0.80
1/320 1.06 × 10−3 1.00 7.04 × 10−5 0.99 2.22 × 10−4 0.87

6. Conclusions and Future Work

In this paper, we carried out a theoretical analysis for a previously proposed numerical
scheme for the PNP system; the analysis was conducted for the 1D problem. Firstly, the error
analysis was carried out to show that the scheme is first-order convergent in the time
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variable and second-order convergent in the space variable under the L2 norm. Secondly,
the numerical first derivatives of electric potential are shown to be pointwise uniformly
bounded. A positivity-preserving condition for the difference scheme is provided with a
rigorous theoretical justification. Finally, we should point out that the current analysis was
conducted only for 1D since the essential analysis to obtain a pointwise uniform bound for
the numerical first derivatives of electric potential relies on the discrete Sobolev inequality
(see Equation (23)).

For higher dimensions, Equation (23) is not valid since the discrete Sobolev inequality
involves a higher order of derivatives. Thus, a rigorous convergence analysis for 2D and
3D will be presented in future work.
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