Classes of Multivalent Spirallike Functions Associated with Symmetric Regions
Abstract
:1. Introduction and Definitions
Purpose, Motivation and Novelty
- which maps unit disc onto the half plane
- which maps the unit disc onto interior of the cardioid region with cusp on the left hand side
- , then maps the unit disc on to the interior of the circular domain (See Figure 1a).
- , then maps unit disc onto a cardioid region which is magnified and the cusp of the cardioid gets rotated on to the right hand side (see Figure 1b).
2. Preliminaries
3. Main Results
3.1. Integral Representation of
- For , trivially we have
- For ,
- (i)
- for ,
- (ii)
- for ,
3.2. Coefficient Inequalities and Solution to The Fekete–Szegő Problem
4. Properties of Q-Spirallike Functions
Integral Representation, Coefficient Estimates and Fekete-Szegö Inequalities of
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uyanik, N.; Shiraishi, H.; Owa, S.; Polatoglu, Y. Reciprocal classes of p-valently spirallike and p-valently Robertson functions. J. Inequal. Appl. 2011, 2011, 61. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K. On a class of p-valent starlike functions of order α. Internat. J. Math. Math. Sci. 1987, 10, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Janowski, W. Some extremal problems for certain families of analytic functions I. Ann. Polon. Math. 1973, 10, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent prestarlike functionswith respect to symmetric points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Ganigi, M.D.; Sarangi, S.M. Univalent functions with positive coefficients. Tamkang J. Math. 1994, 25, 225–230. [Google Scholar] [CrossRef]
- Owa, S.; Srivastava, H.M. Some generalized convolution properties associated with certain subclasses of analytic functions. JIPAM J. Inequal. Pure Appl. Math. 2002, 3, 42. [Google Scholar]
- Nunokawa, M. A sufficient condition for univalence and starlikeness. Proc. Japan Acad. Ser. A Math. Sci. 1989, 65, 163–164. [Google Scholar] [CrossRef]
- Owa, S.; Nishiwaki, J. Coefficient estimates for certain classes of analytic functions. JIPAM J. Inequal. Pure Appl. Math. 2002, 3, 72. [Google Scholar]
- Polatoğlu, Y.; Bolcal, M.; Şen, A.; Yavuz, E. An investigation on a subclass of p-valently starlike functions in the unit disc. Turkish J. Math. 2007, 31, 221–228. [Google Scholar]
- Arif, M.; Umar, S.; Mahmood, S.; Sokół, J. New reciprocal class of analytic functions associated with linear operator. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 881–886. [Google Scholar] [CrossRef]
- Altınkaya, Ş. On the inclusion properties for ϑ-spirallike functions involving both Mittag-Leffler and Wright function. Turkish J. Math. 2022, 46, 1119–1131. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike functions of complex order with respect to symmetric points defined using higher order derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Ravichandran, V.; Cho, N.E. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli. J. Inequal. Appl. 2013, 2013, 176. [Google Scholar] [CrossRef] [Green Version]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. London Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Studia Mathematica/Mathematische Lehrbücher, Band XXV; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Lecture Notes Analysis, I, Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Shi, L.; Wang, Z.G.; Zeng, M.H. Some subclasses of multivalent spirallike meromorphic functions. J. Inequal. Appl. 2013, 2013, 336. [Google Scholar] [CrossRef] [Green Version]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mountain J. Math. 2019, 49, 2325–2346. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of spiral-like close-to-convex functions associated with conic domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A class of k-symmetric harmonic functions involving a certain q-derivative operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotîrlǎ, L.-I.; Karthikeyan, K.R. Classes of Multivalent Spirallike Functions Associated with Symmetric Regions. Symmetry 2022, 14, 1598. https://doi.org/10.3390/sym14081598
Cotîrlǎ L-I, Karthikeyan KR. Classes of Multivalent Spirallike Functions Associated with Symmetric Regions. Symmetry. 2022; 14(8):1598. https://doi.org/10.3390/sym14081598
Chicago/Turabian StyleCotîrlǎ, Luminiţa-Ioana, and Kadhavoor R. Karthikeyan. 2022. "Classes of Multivalent Spirallike Functions Associated with Symmetric Regions" Symmetry 14, no. 8: 1598. https://doi.org/10.3390/sym14081598
APA StyleCotîrlǎ, L. -I., & Karthikeyan, K. R. (2022). Classes of Multivalent Spirallike Functions Associated with Symmetric Regions. Symmetry, 14(8), 1598. https://doi.org/10.3390/sym14081598