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Abstract: We apply the theory of Lie point symmetries for the study of a family of partial differential
equations which are integrable by the hyperbolic reductions method and are reduced to members
of the Painlevé transcendents. The main results of this study are that from the application of the
similarity transformations provided by the Lie point symmetries, all the members of the family of the
partial differential equations are reduced to second-order differential equations, which are maximal
symmetric and can be linearized.
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1. Introduction

In [1], Ferapontov et al. classified the partial differential equations of the form

(A(u))xx + (B(u))yy + (C(u))yy + 2
(
(P(u))xy + (Q(u))xt + (P(u))yt

)
= 0, (1)

which are integrable under the method of hydrodynamic reductions [2] and can be reduced
into an Painlevé equation [3]. There are five partial differential equations of the form (1)
which are integrable by the hydrodynamic reductions method [1]

HA ≡ uxx + uyy − (ln(eu − 1))yy − (ln(eu − 1))tt = 0, (2)

HB ≡ uxx + uyy − (eu)tt = 0, (3)

HC ≡ (eu − u)xx + 2uxy + (eu)tt = 0, (4)

HD ≡ uxt − (uux)x − uyy = 0, (5)

HE =
(

u2
)

xx
+ uyy + 2uxt = 0. (6)

Equations (3) and (5) are the Boyer–Finley [4,5] and dispersionless Kadomtsev–
Petviashvili [6] equations, respectively. For these two equations, it is known that they
are reduced into Painlevé transcendents by applying the central quadric ansatz. The
hydrodynamic reductions method was found to provide more general solutions. Indeed,
by studying the dispersionless Kadomtsev–Petviashvili with the hydrodynamic reduc-
tions and the central quadric ansatz, it was found that the solutions coming from the later
method form a subclass of two-phase solutions provided by the hydrodynamic reductions
approach [1].

As far as the reduction of Equations (2)–(6) into a Painlevé equation is concerned, it
was found that equation HA reduces to the Painlevé PVI equation, and that the Boyer–
Finley equationHB reduces into the PV equation reducible to PI I I . Moreover,HC reduces
to PV , the dispersionless Kadomtsev–Petviashvili is related with the PI I with a reduction
to PI , while the fifth equationHE is reduced to PIV [1]. For extensions of the results of [1]
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and a connection of the hydrodynamic reductions method with the conformal structure of
Einstein–Weyl geometry, we refer the reader to [7].

In this work, we apply the Lie symmetry analysis [8–11] in order to investigate the algebraic
properties and the similarity transformations for the five partial differential Equations (2)–(6).
The method of Lie symmetries of differential equations was established by Sophus Lie at the
end of the 19th century, and provides a systematic approach for the study and determination of
solutions and conservation laws for nonlinear differential equations.

The novelty of symmetry analysis is that invariant functions can be determined
for a given differential equation. From the invariant functions we can define similarity
transformations, which are necessary to simplify the differential equation. The similarity
transformations are used to reduce the given differential equation into an equivalent
equation with less dynamical variables. In the case of partial differential equations, the
independent variables are reduced, while in the case of ordinary differential equations, the
order of the equation, that is, the dependent variables, are reduced. There is a plethora
of applications in the literature on the symmetry analysis of various dynamical systems.
The method of symmetry analysis is applied in various systems of fluid dynamics in
the studies [12–24]. The Burgers-heat system is investigated by applying the symmetry
analysis in the studies [25,26]. A recent application of the Lie symmetry approach on
time-fractional systems is presented in [27]. However, Lie symmetries are very useful for
the study of ordinary differential equations. Some studies on the symmetry analysis on the
geodesic equations in curved spaces are presented in [28–31]. Finally, in [32] a discussion
is given on the novelty on the application of the Lie symmetry analysis in gravitational
physics and cosmology.

Another important application of the Lie symmetry approach is the classification
scheme of differential equations according to the admitted group of symmetries, and to the
construction of equivalent transformation which transform a given differential equation
into another differential equation of the same order, when the admitted Lie symmetries
form the same Lie algebra [33–35]. Recently, in [36] the authors investigated which of the
six ordinary differential equations of the Painlevé transcendents admit nontrivial Lie point
symmetries. It was found that equations PI I I , PV and PVI have nontrivial symmetries for
special values of the free parameters. On the other hand, in [37] the method of Jacobi last
multiplier is applied in order to determine generalized symmetries for a particular case
of the PXIV equation. By using generalized-hidden symmetries, the linearization of the
Painleve–Ince equation was proved in [38]. The plan of the paper in as follows.

In Section 2 we present the basic properties and definitions for the Lie symmetry
analysis of differential equations. In Sections 3–7 we determine the Lie point symmetries
for the five equations of our analysis. We determine the commutators and the Adjoint
representation such that to derive, when it is feasible, the one-dimensional optimal system.
Equation HA admits a finite dimensional Lie algebra of dimension four, in particular
the A4,5 in the Patera–Winternitz classification scheme [39]. However, the rest of the
equations admit infinity Lie point symmetries. We were able to define four-dimensional Lie
subalgebras. The main observation of this work is that the application of the Lie invariants
define similarity transformation where the partial differential equations reduce to maximal
symmetric second-order equations. That is an important result because we are able to
investigate the integrability properties of Equations (2)–(6) by using the symmetry analysis.
In Section 8 we summarize our results and we draw our conclusions. The main result of this
analysis is given in a proposition where we show that Equations (2)–(6) can be linearized
with the application of Lie invariants.
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2. Preliminaries

Assume the infinitesimal one-parameter point transformation

t′ = t + εξt(t, x, y, u),

x′ = x + εξx(t, x, y, u),

y′ = y + εξy(t, x, y, u),

u′ = u + εη(t, x, y, u),

where ε is the infinitesimal parameter, ε2 → 0, and infinitesimal generator

X = ξt(t, x, y, u)∂t + ξx(t, x, y, u)∂x + ξy(t, x, y, u)∂y + η(t, x, y, u)∂u.

We define the second extension X[2] of X in the jet space {t, x, y, u, ut, ux, uy, utt, uxx, uyy,
utx, uxy} as follows

X[2] = ξµ∂µ + ηA∂A + ηA[1]∂A,µ + ηA[2]∂A,µν
.

in which ηA[1], ηA[2] are defined as

η[n] = Dµη[n−1] − uµ1µ2,...,µn−1 Dµ(ξ
µ),

where µ = (t, x, y).
By definition a partial differential equationH = H(t, x, y, u, ut, ux, uy, utt, uxx, uyy, utx,

uxy) is invariant under the action of the one-parameter point transformation with infinitesi-
mal generator the vector field X if and only if there exist a function λ such that [8–11]

LX[2](H) = λH,

in which LX[2] is the Lie derivative with respect to the vector field X[2].
Lie symmetries are mainly applied for the construction of similarity transformations.

The latter are necessary in order to simplify a given differential equation by means of
reduction. The exact and analytic solutions which are determined by the application of the
Lie symmetries are known as similarity solutions.

In order to perform a complete derivation of all the possible similarity solutions we
should find the admitted one-dimensional optimal system. Consider the n-dimensional Lie
algebra Gn with elements X1, X2, . . . , Xn admitted by the differential equationH.

The vector fields [8–11]

Z =
n

∑
i=1

aiXi , W =
n

∑
i=1

biXi , ai, bi are constants.

are equivalent if and only W = Ad(exp(εiXi))Z or W = cZ where c is a constant.
Operator Ad(exp(εXi))Xj = Xj − ε

[
Xi, Xj

]
+ 1

2 ε2[Xi,
[
Xi, Xj

]]
+ ... is known as the

the adjoint representation. They derive all the independent similarity transformations for a
given differential equation, so the adjoint representation of the admitted Lie algebra should
be determined. This leads to the construction of the one-dimnesional optimal system.

3. Lie Symmetry Analysis for EquationHA

The first equation of our analysis, equationHA, admits the Lie point symmetries

XA
1 = ∂t , XA

2 = ∂x , XA
3 = ∂y , XA

4 = t∂t + x∂x + y∂y

with commutators and Adjoint representation as presented in Tables 1 and 2. The ad-
mitted Lie algebra is A4,5. The one-dimensional system for the finite Lie algebra con-
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sists of the one-dimensional Lie algebras:
{

XA
1
}

,
{

XA
2
}

,
{

XA
3
}

,
{

XA
4
}

,
{

XA
1 + αXA

2
}

,{
XA

1 + αXA
3
}

,
{

XA
2 + αXA

3
}

and
{

XA
1 + αXA

2 + βXA
3
}

.

Table 1. Commutators for the Lie point symmetries of Equation (2).[
XI , XJ

]
X A

1 X A
2 X A

3 X A
4

XA
1 0 0 0 XA

1
XA

2 0 0 0 XA
2

XA
3 0 0 0 XA

3
XA

4 −XA
1 −XA

2 −XA
3 0

Table 2. Adjoint representation for the Lie point symmetries of Equation (2).

Ad
(

e(εXi)
)

Xj X A
1 X A

2 X A
3 X A

4

XA
1 XA

1 XA
2 XA

3 XA
4 − εXA

1
XA

2 XA
1 XA

2 XA
3 XA

4 − εXA
2

XA
3 XA

1 XA
2 XA

3 XA
4 − εXA

3
XA

4 eεXA
1 eεXA

2 eεXA
3 XA

4

Application of
{

XA
1 + αXA

2
}

,
{

XA
1 + βXA

3
}

provides the reduced equation(
β2
(

eU − 1
)2
− α2

(
eU − 1

)(
1 + β2eU

))
U σσ + α2

(
β2 + 1

)
eU(Uσ)

2 = 0, (7)

with u = U(σ) and σ = y− βt + β
α x.

Equation (7) is a second-order ordinary differential equation of the form
Uσσ + L(U)(Uσ)

2 = 0, which means that iy is maximally symmetric. It admits eight
Lie point symmetries which form the sl(3, R) algebra. Thus, according to the main theorem
of S. Lie theorem, Equation (7) can be linearized [8–11]. Indeed the transformation which
linearized the differential equation is of the form V =

∫
e
∫

L(U)dUdU. We remark that any
reduction of Equation (2) with any Lie symmetries provided by the optimal system of the
Abelian Lie subalgebra

{
XA

1 , XA
2 , XA

3
}

provides a similar result.
On the other hand, reduction with

{
XA

4
}

provides the partial differential equation

0 =
(

eU − 1
)(

Uζζ

(
ζ2eU + 1

)
+ Uωω

(
eU
(

ω2 − 1
)
+ 1
)
+ 2ωζeUUζω

)
+eU

((
Uζ ζ + Uωω

)2 − 2
(

eU − 1
)(

Uζ ζ + Uωω
)
+ U2

ζζ

)
, (8)

with u = U(ζ, ω) , ζ = y
t and ω = x

t , is the similarity transformation. Equation (8) does not
possess any Lie point symmetry; thus, we cannot reduce further the differential equation.

Moreover, reduction with the symmetry vectors
{

XA
2 + αXA

3
}

and later with the
reduced symmetry of

{
XA

4
}

, provides the ordinary differential equation

(
α2
(

eU − 1
)
− 1− eUρ2

)
Uρρ +

eU

(eU − 1)

(
ρ2 + 1

)(
Uρ

)2 − 2ρeUUρ = 0, (9)

where u = U(ρ) and ρ = y−αx
t .

Without loss of generality we assume α2 = 1. Then, Equation (9) is written in the
equivalent form

Uρρ

Uρ
+

eU(ρ2 + 1
)

(eU − 1)(eU(1− ρ2)− 2)
(
Uρ

)
− 2eU

(eU(1− ρ2)− 2)
= 0,
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that is
Uρρ

Uρ
+

eU

eU − 1
Uρ +

UρeUρ2 + 2eUρ−UρeU

eU(ρ2 − 1) + 2
= 0.

Hence, we can write easily the later equation as follows

d
dρ

(
ln
(
Uρ

)
− ln

(
eU − 1

)
+ ln

(
eU
(

ρ2 − 1
)
+ 2
))

= 0.

Therefore, the conservation law is

Uρ

(
eU(ρ2 − 1

)
+ 2
)

eU − 1
= I0. (10)

We observe that Equation (10) can be written in a linear form after the change of
the independent variable dκ = eU−1

(eU(ρ2−1)+2)
dρ, and U = U(κ). Thus, Equation (10) be-

comes Uκ = I0 which is nothing other than the conservation law for the maximal symmetric
second-order ordinary differential equation Uκκ = 0.

Last but not least, we remark that we find similar result if we apply first the reduction
of any one-dimensional Lie algebra of the three-dimensional Abelian subalgebra and then
we consider the

{
XA

4
}

.

4. Lie Symmetry Analysis for EquationHB

In order to proceed with the analysis for equation HB we select a new set of inde-
pendent variables (z, z̄) = 1

2 (u + v, i(u− v)), such that Equation (3) has to be written
as follows

uzz̄ − (eu)tt = 0. (11)

Application of the Lie symmetry conditions indicates that Equation (11) admits the
Lie symmetry vectors

XB
1 = ∂t , XB

2 = t∂t + u∂u,

XB
3 = Φ(z)∂z −Φ(z)z∂u , XB

4 = Ψ(z̄)∂z −Ψ(z̄)z̄∂u.

The vector fields XB
3 , XB

4 indicates the infinite number of solutions for the Laplace
operator uzz̄. The commutators and the Adjoint representation for the admitted symmetry
vectors are presented in Tables 3 and 4, respectively, as well as the Lie point symmetries,
from the finite Lie algebra A2,1 plus the infinite algebra consisted by the vector fields XB

3
and XB

4 . In Tables 3 and 4 we assumed that functions Φ and Ψ are specific and not arbitrary,
because in general it holds

[
XB

3 (Φ1), XB
3 (Φ2)

]
= XB

3 (Φ3).

Table 3. Commutator table for the Lie point symmetries of Equation (3).[
XI , XJ

]
XB

1 XB
2 XB

3 XB
4

XB
1 0 XB

1 0 0
XB

2 −XB
1 0 0 0

XB
3 0 0 0 0

XB
4 0 0 0 0

Table 4. Adjoint representation for the Lie point symmetries of Equation (3).

Ad
(

e(εXi)
)

Xj XB
1 XB

2 XB
3 XB

4

XB
1 XB

1 XB
2 − εXB

1 XB
3 XB

4
XB

2 eεXB
1 XB

2 XB
3 XB

4
XB

3 XB
1 XB

2 XB
3 XB

4
XB

4 XB
1 XB

2 XB
3 XB

4
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Hence, from Tables 3 and 4 it follows that one-dimensional optimal system is consisted
by the following one-dimensional Lie algebras,

{
XB

1
}

,
{

XB
2
}

,
{

XB
3
}

,
{

XB
4
}

,
{

XB
3 + αXB

4
}

,{
XB

1 + αXB
3
}

,
{

XB
1 + αXB

4
}

,
{

XB
2 + αXB

3
}

,
{

XB
2 + αXB

4
}

,
{

XB
1 + αXB

3 + βXB
4
}

and{
XB

2 + αXB
3 + βXB

4
}

. We proceed with the reduction of the equation and the determination
of similarity solutions.

Consider now reduction with the use of the symmetry vector
{

XB
3
}

, then it follows
u = − ln Φ(z) + ln U(t, z̄), with the reduced equation

Utt = 0 , U(t, z̄) = U1(z̄)t + U0(z).

We remark that the reduced equation is that of the free particle and it is maximally
symmetric; thus, it admits eight Lie point symmetries which form the sl(3, R) Lie algebra.
A similar result it follows if we assume reduction with respect to the field XB

4 .
Let us assume now reduction with the field

{
XB

1 + XB
4
}

. The reduced equation is
found to be

UzT +
(

eU
)

TT
= 0 (12)

where T = t−
∫ dz̄

Ψ(z̄) and u = − ln(Ψ(z̄)) + U(T, x).

Equation (12) admits the symmetry vectors X̄B
1 = ∂T , X̄2 = T∂T + ∂U and X̄B

3 =
Φ(z)∂z −Φ(z)z∂U . Hence, application for the field X̄B

1 + X̄B
3 gives the similarity transfor-

mation U(T, x) = − ln(Φ(z))+V(τ) , τ = T−
∫ dz

Φ(z) , with the reduced equation, maximal
symmetric ordinary differential equation

Vττ −
eV

(1− eV)
(Vτ)

2 = 0.

Moreover, application of the vector field X̄2 + X̄B
3 in (12) provides the reduced equation

Vλλ

(
eV − λ

)
+ eV(Vλ)

2 −Vλ = 0, (13)

where λ = Te−S(z), M(z) = 1
S,z

, and U(T, z) = S(z) + ln(S(z)z) + V
(

Te−S(z)
)

.
Equation (13) is not maximally symmetric, however it can be integrated and it can

written in the equivalent form

V̄λ̄ =
eλ̄(1 + V̄)V̄

eλ̄−1
, λ̄ = V − ln λ , V̄ = (V,λλ− 1)−1.

Therefore, if we do the change of variables dλ′ = I0
eλ̄(1+V̄)V̄

eλ̄−1 dλ̄, the latter differential
equation becomes V̄λ′ = I0, which is the conservation law for the maximal symmetric
differential equation V̄λ′λ′ = 0.

5. Lie Symmetry Analysis for Equation HC

As far as the Lie symmetries ofHC are concerned, they are calculated

XC
1 = ∂t , XC

2 = ∂y , XC
3 = t∂t + x∂x + y∂y,

XC
4 (Z(y)) = Z(y)

(
∂x − 2∂y

)
+ 2Z(y)y∂u.

Hence, we can infer that equation HC admits infinity Lie symmetries. The nonzero
commutators are [

XC
2 , XC

3

]
= XC

2 ,
[

XC
2 , XC

4 (Z(y))
]
= XC

4

(
Z(y)y

)
,[

XC
3 , XC

4 (Z(y))
]
= XC

4

(
yZ(y)y − Z(y)

)
.
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and [
XC

4 (Z(y)), XC
4 (W(y))

]
= 2XC

4 (Y(y)) with Y(y) = W(y)Z(y)y − Z(y)W(y)y.

We observe that for Z(y)y = 0, a finite-dimensional Lie algebra exists, the four-
dimensional Lie algebra A4,5 of equationHA.

Consider the application of the Lie point symmetries
{

XC
1 + αXC

2 , XC
1 + α∂x

}
, then the

reduced equation is derived

0 =
(

α
(

eU − 1
)
+ 2β + αβeU

)
Uσσ +

(
1 + β2

)
αeU(Uσ)

2, (14)

where now u = U(σ), σ = y− αt + α
β x. We observe that Equation (14) is a maximally

symmetric second-order ordinary differential equation.
We proceed with the second reduction approach, where we apply the Lie symmetries{

XC
1 + αXC

2 , XC
1 + αXC

3
}

. Hence, equation HC is reduced to the second-order ordinary
differential equation

0 =
((

α2 + ω2
)

eU −ω(ω + 2)
)

Uωω +
(

α2 + ω2
)

eU(Uω)
2 + 2

(
ω
(

eU − 1
)
− 1
)
(Uω),

where u = U(ω) and ω = y+αt
x . The latter equation can be integrated as follows

Uω

((
α2 + ω2

)
eU −ω(ω + 2)

)
= I0 (15)

which can be written in the equivalent form Uv = I0.
Let us assume reduction with respect to the Lie symmetry vector

{
XC

1 + XC
4 (Z(y))

}
.

The similarity transformation is u = U(T, X) with T = t−
∫ dχ

Z(y+2x−2χ)
and X = y + 2x,

while the reduced equation is(
UTT + (UT)

2 + 4
(

UYY + (UY)
2
))

eU + 2UTY = 0. (16)

The latter equation admits the reduced symmetry vectors {∂T , ∂Y, T∂T + Y∂Y}. It
follows that reduction with respect to the symmetry vector {∂T + β∂Y} gives U = V(z), z =
1
β T − Y in which V(z) is a solution of the maximal symmetric second-order ordinary
differential equation ((

4 + β2
)

eV − 2β
)

Vzz +
(

β2 + 4
)

eV(Vz)
2 = 0.

On the other hand, reduction of Equation (16) with respect to the similarity transfor-
mation provided by T∂T + Y∂Y gives((

4λ2 + 1
)

eV − 2λ
)

Vλλ +
(

4λ2 + 1
)

eV(Vλ)
2 +

(
8λeV − 2

)
Vλ = 0,

that is
Vλ

((
4λ2 + 1

)
eV − 2λ

)
= I0,

which can be written as a maximal symmetric second-order differential equation.
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6. Lie Symmetry Analysis for Equation HD

We proceed our analysis with the derivation of the Lie symmetry vectors for equation
HD. The application of the Lie symmetry condition shows us that equation HD admits
infinity Lie symmetries as they are described by the following families of vector fields

XD
1 (Φ(t)) = Φ(t)∂t +

(
1
6

Φtty2 +
1
3

xΦ
)

∂x +
2
3

yΦt∂y

−1
3

(
Φttx +

1
2

Φttty2 − 2Φtu
)

∂u ,

XD
2 (Ψ(t)) = Ψ(t)∂x −Ψ(t)t∂u ,

XD
3 (Σ(t)) =

1
2

Σty∂x + Σ∂y −
1
2

Σtty∂u,

and
XD

4 = 2x∂x + ∂y + 2u∂u.

The nonzero commutators of the admitted Lie symmetries are[
XD

1 (Φ), XD
2 (Ψ)

]
= XD

2

(
ΦΨt −

1
3

ΦtΨ
)

,

[
XD

1 (Φ), XD
3 (Σ)

]
= XD

3

(
2
3

ΣΦt − 3ΦΣt

)
,[

XD
2 (Ψ), XD

4

]
= 2XD

2 (Ψ) ,
[

XD
3 (Σ), XD

4

]
= XD

3 (Σ),[
XD

1 (Φ(t)), XD
1 (Φ̄(t))

]
= XD

1 (ΦΦ̄t − Φ̄Φt),[
XD

3 (Σ(t)), XD
3 (Σ̄(t))

]
= XD

2 (Σ̄Σt − ΣΣt).

For Φ(t) = 1 , Ψ(t) = 1 and Σ(t) = 1, we find the four-dimensional subalgebra

X̄D
1 = ∂t , X̄D

2 = ∂x , X̄D
3 = ∂y , XD

4 ,

which form the A3,3 ⊗ A1 Lie algebra. The commutators and the Adjoint representation of
the four dimensional Lie algebra

{
X̄D

1 , X̄D
2 , X̄D

3 , XD
4
}

are presented in Tables 5 and 6.

Table 5. Commutators for the elements which form the finite Lie algebra of Equation (5).[
XI , XJ

]
X̄D

1 X̄D
2 X̄D

3 XD
4

X̄D
1 0 0 0 0

XD
2 0 0 0 2X̄D

2
X̄D

3 0 0 0 X̄D
3

XD
4 0 −2X̄D

2 −X̄D
3 0

Table 6. Adjoint representation for the elements which form the finite Lie algebra (5).

Ad
(

e(εXi)
)

Xj X̄D
1 X̄D

2 X̄D
3 XD

4

X̄D
1 X̄D

1 X̄D
2 X̄D

3 XD
4

X̄D
2 X̄D

1 X̄D
2 X̄D

3 XD
4 − 2εX̄D

2
X̄D

3 X̄D
1 X̄D

2 X̄D
3 XD

4 − εX̄D
3

XD
4 X̄D

1 e2εX̄D
2 eεX̄D

3 XD
4

We proceed with the application of the Lie symmetries for the finite Lie algebra A3,3 ⊗
A1 for the reduction of the partial differential equation HD. From Table 6 we derive the
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one-dimensional optimal system, which is consisted by the one-dimensional Lie algebras{
X̄D

1
}

,
{

X̄D
2
}

,
{

X̄D
3
}

,
{

X̄D
4
}

,
{

X̄D
1 + αX̄D

2
}

,
{

X̄D
1 + αX̄D

3
}

,
{

X̄D
1 + αX̄D

4
}

,
{

X̄D
2 + αX̄D

3
}

,{
X̄D

1 + αX̄D
2 + βX̄D

3
}

.
Therefore, by applying the Lie symmetries

{
X̄D

1 + αX̄D
2
}

,
{

X̄D
1 + βX̄D

3
}

for the reduc-
tion of Equation (5), we end with the second-order ordinary differential equation(

α2 + β2U + αβ2
)

Uσσ + β2(Uσ)
2 = 0, (17)

with u = U(σ) and σ = y− βt + β
α x. Equation (17) is maximally symmetric and can be

linearized.
On the other hand, from the Lie symmetry

{
X̄D

2 + X̄D
3
}

we find the second-order
partial differential equation

UYt + UYY + UUYY + (UY)
2 = 0. (18)

where u = U(t, Y), Y = y − x. Equation (18) admits infinity Lie symmetries consisted
by the vector fields YD

1 = ∂t , YD
2 = t∂t + (U − 1)∂U , YD

3 = Y∂Y + (U + 1)∂U , YD
4 =

t2 + tY∂t + (Y− t(U + 1))∂U and YD
5 = ζ(t)∂Y + ζ(t)t∂U . Vector fields

{
YD

1 , YD
2 , YD

4
}

form
the sl(2, R) Lie algebra.

Hence, from the vector field
{

YD
1 + αYD

3
}

it follows the similarity transformation
U = −1 + V(κ)eαt, κ = Ye−αt, with the reduced equation, the differential equation Vκκ +

1
V−κα (Vκ)

2 = 0, which can be integrated further

Nλ =
N
λ
(1 + αN)2 with N = (Vκ − α)−1 and κ = V − κα. (19)

Easily, Equation (19) can be written as Nλ̄λ̄ = 0. A similar result follows if we perform the
reduction of Equation (18) with the rest of the symmetry vectors.

7. Lie Symmetry Analysis for Equation HE

The fifth equation of our study, namely equationHE admits the following Lie symmetries

XE
1 (Φ(t)) = Φ(t)∂t +

1
2

yΦt∂y +

(
1
4

Φtty−
1
2

Φtu
)

∂u,

XE
2 = ∂x , XE

3 (Σ(t)) = Σ(t)∂y +
1
2

Σt∂u,

XE
4 = 2x∂x + y∂y + u∂u.

The Lie symmetries form an infinity Lie algebra, with nonzero commutators[
XE

1 (Φ(t)), XE
3 (Σ(t))

]
= XD

3 (ΣΦt − 2ΦΣt) ,
[

XE
2 , XE

4

]
= 2XE

2 ,[
XE

3 (Σ(t)), XE
4

]
= XE

3 (Σ(t)),

and [
XE

1 (Φ(t)), XE
1 (Φ̄(t))

]
= XE

1 (ΦΦ̄t − Φ̄Φt).

The four-dimensional finite algebra A3,3 ⊗ A1 follows for Φ(t) = 1 and Σ(t) = 1,
that is, A3,3 ⊗ A1 is consisted by the Lie symmetry vectors

{
X̄E

1 , XE
2 , X̄E

3 , XE
4
}

. We pro-
ceed with the application of the Lie symmetry vectors and the determination of the
similarity transformations
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From the symmetry vectors
{

X̄E
1 + αXE

2
}

,
{

X̄E
1 + βX̄E

3
}

we find the similarity transforma-
tion u = U(σ), σ = y− βt + β

α x with the reduced equation, the maximal symmetric equation(
2Uβ + α− β2

)
Uσσ + 2β(Uσ)

2 = 0.

On the other hand, reduction with the symmetry vector
{

XE
2 + X̄E

3
}

provides the
second-order partial differential equation

VYt −VYY + 2VVYY + 2(VY)
2 = 0, (20)

where u = V(t, Y), Y = y− x. Equation (20) is of the form of Equation (18). Indeed, if we
replace in (20) V = − 1

2 U and t→ −t Equation (20) is written in the form of Equation (18).

8. Conclusions

We applied the Lie symmetry analysis for a family of five partial differential equations
of the form (1) which are integrable with the method of hydrodynamic reductions. In
particular, we determined the Lie point symmetries and we studied the algebraic properties
of the admitted symmetries. Moreover, from the invariant functions provided by the Lie
symmetries, we defined similarity transformations which were used to reduce the number
of independent variables for the differential equations. With the application of two different
similarity transformations we were able to reduce the partial differential equations into
a second-order ordinary differential equation. We summarize this result in the following
proposition.

Proposition 1. The five partial differential equations HA, HB, HC, HD and HE which are
integrable with the method of hydrodynamic reductions can be linearized with the use of similaritry
transformations given by the Lie point symmetries.

Equation HA admits a finite Lie algebra of four dimensions, while the remaining
differential equations, HB, HC, HD and HE admit infinity Lie point symmetries which,
however, are constructed by four generic vector fields. The application of the Lie point
symmetries for these equations indicates that these five equations posses a common feature:
they are reduced to a maximal symmetric ordinary differential equation which can be
linearized. We show that this is possible not only when we investigate for “travel-wave”
solutions but also for more general reductions.

In a future study we plan to investigate further by applying the theory of Lie symme-
tries and other differential equations, which are integrable by the method of hydrodynamic
reductions.
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