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Abstract: In order to solve general seventh-order ordinary differential equations (ODEs), this study
will develop an implicit block method with three points of the form y(7)(ξ) = f (ξ, y(ξ), y′(ξ), y′′(ξ),
y′′′(ξ), y(4)(ξ), y(5)(ξ), y(6)(ξ)) directly. The general implicit block method with Hermite interpola-
tion in three points (GIBM3P) has been derived to solve general seventh-order initial value problems
(IVPs) using the basic functions of Hermite interpolating polynomials. A block multi-step method is
constructed to be suitable with the numerical approximation at three points. However, the construc-
tion of the new method has been presented while the numerical results of the implementations are
used to prove the efficiency and the accuracy of the proposed method which compared with the RK
and RKM numerical methods together to analytical method. We established the characteristics of
the proposed method, including order and zero-stability. Applications of various IVP problems are
also discussed, and the outcomes are very encouraging for the suggested approach. The proposed
GIBM3P method yields more accurate numerical solutions to the test problems than the existing RK
method, which are in good agreement with analytical and RKM method solutions.

Keywords: implicit numerical method; ODEs; IVPs; block method; order; RKM; seventh-order;
ordinary differential equations

1. Introduction

Higher order differential equations (ODEs) have a significate role in various fields
of applied mathematics and can be used in mathematical models problems that arise in
the fields of applied sciences, biology, chemistry, physics, economics and engineering.
Partial differential equations (PDEs) or ODEs are tools used to model the mathematical
representations of the real problems in applied science and engineering. However, it had
been difficult for mathematicians to use their creativity in finding the solutions of various
types of DEs, either analytically or numerically. For scientists and engineers to use, there
are currently a number of effective classical or modern numerical and analytical methods.
The following list includes a review of the literature on various contemporary techniques
for solving mathematical models that contain ODEs: for the purpose of solving IVPs, the
numerical solutions of special and general sixth-order boundary-value problems (BVPs),
with applications to Bénard layer eigenvalue problems, have been studied by researchers
in [1], non-polynomial spline was used to solve BVPs by researchers in [2], while a new
integrator was created in the research work [3] to solve ODEs of the seventh order. All types
of DEs cannot always be solved directly or indirectly by analytical methods. This proposal
would require us to research how direct GIBM3P is derived. However, the authors [4–8]
have developed linear multistep numerical methods (Lmm) to address this issue, refs [9,10]
have developed one-step numerical methods to solve IVPs of ODEs with orders lower than
seven. Moreover, for future works, the studying of the authors [11–13] for the numerical
solutions of a class of fractional order hybrid DEs and using the suggested technique, the
oscillation of seventh-order neutral DEs can be modifided.
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In this work, a new three-point second-derivative fully implicit block method has been
proposed. The Hermite interpolating polynomial is used as the basis function to derive the
implicit block method, which incorporates the first derivative of f (ξi, y(j)

i ) for j = 0, 1, . . . , 6
to enhance the accuracy of solutions. The novel contributions of this work are: to study
the numerical solutions of seventh-order ODEs, to drive and construct a general implicit
block with three-point GIBM3P method for solving ODEs of seventh-order, to use the
numerical implementations to prove the efficiency and accuracy of the proposed GIBM3P
method compared with the exact and numerical solutions and to apply the constructed
method in solving some problems of ODEs of seventh-order comparing with the numerical
solutions of RK and RKM methods. The derivatives are incorporated into the formula to
produce more precise numerical results. To compare the effectiveness of the new method
to numerical and exact solutions, a few numerical examples were evaluated. To obtain the
numerical approximation at three points simultaneously, a block formulation is presented.
IVPs applications are also discussed, and they produce impressive outcomes for the three-
point block method suggested. The proposed GIBM3P method produces numerical results
that are more precise than those produced by the current RK and RKM methods for
test problems.

2. Preliminary

Definitions that are pertinent to this work are mentioned in this section.

2.1. The General Quasi-Linear Seventh-Order ODEs

The general quasi-linear seventh-order ODEs can be written in the following equation

y(7)(ξ) = f (ξ, y(ξ), y′(ξ), y′′(ξ), y′′′(ξ), y(4)(ξ), y(5)(ξ), y(6)(ξ)); ξ0 ≤ ξ ≤ ξ1, (1)

with the following initial conditions:

y(j)(ξ0) = αj, j = 0, 1, . . . , 6. (2)

Special Class Quasi-Linear Seventh-Order ODEs

The following form can be used to express the special class of seventh-order quasi-
linear ODEs:

y(7)(ξ) = φ(ξ, y(ξ)), ξ0 ≤ ξ ≤ ξ1, (3)

with the initial conditions (ICs) in Equation (2).
Such ODEs are frequently found in many physical and engineering problems. Some

scientists and engineers can solve the ODEs in Equation (1) or Equation (3) with ICs (2) using
linear multistep methods. Most of them, used to solve higher order ODEs by converting
the nth-order ODE to equivalent first-order system of ODEs. However, it would be more
efficient if ODEs of seventh-order in Equation (1) or Equation (3) with ICs (2) could be
solved directly using the GIBM3P method which is more efficient since it has less function
evaluations and computational time in implementation. In this paper, we are concerned
with the implicit block method for solving seventh-order ODEs. Accordingly, we developed
the order conditions for GIBM3P, so that based on the order conditions the GIBM3P method
can be derived. By using Hermite polynomials as an approximation, the proposed method
has been created.
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2.2. RKM Methods for Solving Special Class Quasi-Linear Seventh-Order ODEs

RKM methods with s-stages developed by [3,14] proposed in this subsection for
solving special quasi-linear seventh-order ODEs in Equation (3) with ICs (2) take the
following form:

zn+1 = zn + hz
′
n +

h2

2!
z
′′
n +

h3

3!
z
′′′
n +

h4

4!
z(4)n +

h5

5!
z(5)n +

h6

6!
z(6)n + h7

s

∑
i=1

biki (4)

z
′
n+1 = z

′
n + hz

′′
n +

h2

2!
z
′′′
n +

h3

3!
z(4)n +

h4

4!
z(5)n +

h5

5!
z(6)n + h6

s

∑
i=1

b
′
iki (5)

z
′′
n+1 = z

′′
n + hz

′′′
n +

h2

2!
z(4)n +

h3

3!
z(5)n +

h4

4!
z(6)n + h5

s

∑
i=1

b
′′
i ki (6)

z
′′′
n+1 = z

′′′
n + hz(4)n +

h2

2!
z(5)n +

h3

3!
z(6)n + h4

s

∑
i=1

b
′′′
i ki (7)

z(4)n+1 = z(4)n + hz(5)n +
h2

2!
z(6)n + h3

s

∑
i=1

b
′′′′
i ki (8)

z(5)n+1 = z(5)n + hz(6)n + h2
s

∑
i=1

b
′′′′′
i ki (9)

z(6)n+1 = z(6)n + h
s

∑
i=1

b
′′′′′′
i ki (10)

where,

ki = f (xn + cih, yn + hciy
′
n +

h2

2 c2
i y
′′
n +

h3

6 c3
i y
′′′
n + h4

24 c4
i y(4)n + h5

120 c5
i y(5)n + h6

720 c6
i y(6)n

+h7 ∑i−1
j=1 aijk j)

(11)

for i = 2, 3, . . . , s. and h is the step-size.
The order conditions of the RKM method for solving special class sixth-order of

quasi-linear ODEs have been derived by [10]. The parameters of RKM method’s, in
Equations (4)–(11), are ci, aij, b(k)i and are evaluated by resolving the system of algebraic
order conditions, for i, j = 1, 2, . . . , s and k = 0, 1, 2, 3, 4, 5, 6. Table 1 displays Butcher Table
for three-stage RKM integrators.

Table 1. Butcher table of RKM method.

0 0
3
5 −

√
6

10
1
2 0

3
5 +

√
6

10
1
2

1
2 0

1 0 − 119
120

− 1
40 −

√
6

360
1
60 +

√
6

360 0
1

18
1
18 −

√
6

48
1
18 +

√
6

48
1
9

7
36 −

√
6

48
7
18 −

√
6

18
1
9

7
36 −

√
6

48
7
18 −

√
6

18

3. Analysis of Proposed GIBM3P Method for Solving General Quasi-Linear
Seventh-Order ODEs

The derived method has been introduced in this section.
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3.1. Proposed GIBM3P Method

Using the Hermite interpolating polynomial P3(ξ), which is defined in the following
equation, the new method is derived.

P3(ξ) =
n

∑
i=0

mi−1

∑
k=0

f (k)i Li,k(ξ), (12)

where fi = f (ξi), ξi = a + ih, i = 0, 1, . . . and h = b−a
n , n is a positive integer. Li,k(ξ) can

be defined by
Li,mi (ξ) = `i,mi (ξ), i = 0, 1, . . . , n,

`i,k(ξ) =
(ξ − ξi)

k

k!

n

∏
j=0,j 6=i

(
ξ − ξ j

ξi − ξ j
)mj , i = 0, 1, . . . , n, k = 0, 1, . . . , mi.

Furthermore, recursively for k = mi − 2, mi − 3, . . . , 0.

Li,k(ξ) = `i,k(ξ)−
mi−1

∑
v=k+1

`
(v)
i,k (ξi)Li,v(ξ).

For the purpose of directly solving the IVPs for the general class in Equation (1) or the
special class in Equation (3) with ICs (2), a block method with some derivatives is developed
in this paper. The derivation of the proposed method is based on the interpolating of
Hermit polynomial denoted by P3(t) which interpolates at three points. This Hermit
polynomial has the form in Equation (12) where, fi = f (ξi) for j = 0, 1, . . . , 6 and ξi = a+ ih;
i = 0, 1, 2, . . . , m and h = b−a

m , where Lik(ξ) is the generalized Hermite polynomial for
k = 0, 1, . . . , mi and i = 0, 1, . . . , m, where m is an integer’s positive. We use

P3(ξ) = f0L00(ξ) + f1L10(ξ) + f2L20(ξ) + f3L30(ξ) + f
′
0L01(ξ) + f

′
1L11(ξ) + f

′
2L21(ξ) + f

′
3L31(ξ),

where f
′
= g(ξi, y(j)

i ) is the derivative of the function f of order one with respect to ξ for
j = 0, 1, . . . , 6 and i = 0, 1, 2, . . . , m. The approximation at three points ξm+1, ξm+2 and ξm+3
have computed the approximated solutions, ym+1, ym+2 and ym+3, respectively, where
ξm = starting point and ξm+2 = ending point in the block [ξm, ξm+3] with step-size 3h. The
numerical solution yn+3 at the ending point ξm+3 should be used as the initial value in the
subsequent iteration, see Figure 1 which explains the block method with three points.

Figure 1. The block method with three points.

Hermite Polynomials

We used Hermite polynomials in this study, which are defined as follows:

L00(ξ) =
1
36

ξ2(ξ + 1)2(ξ + 2)2(1 +
11
3
(ξ + 3)) (13)

L10(ξ) =
1
4

ξ2(ξ + 1)2(ξ + 3)3 (14)

L20(ξ) = −1
4

ξ3(ξ + 2)2(ξ + 3)2 (15)



Symmetry 2022, 14, 1605 5 of 12

L30(ξ) =
1
36

(ξ + 1)2(ξ + 2)2(ξ + 3)2(1− 11
3

ξ) (16)

L01(ξ) =
h

36
ξ2(ξ + 1)2(ξ + 2)2(ξ + 3) (17)

L11(ξ) =
h
4

ξ2(ξ + 1)2(ξ + 2)(ξ + 3)2 (18)

L21(ξ) =
h
4

ξ2(ξ + 1)(ξ + 2)2(ξ + 3)2 (19)

L31(ξ) =
h

36
ξ(ξ + 1)2(ξ + 2)2(ξ + 3)2 (20)

Using the assumption s = ξ−ξn+3
h , then, Hermite polynomials can be written in the

independent variable ξ.

3.2. Derivation of Proposed GIBM3P Method

The three-point fully implicit block method with second derivatives was presented in
this section as a solution to general seventh-order ODEs. The domain of definition [a, b] for
this proposed method only has three points for each block. The approximated solution z(j)

n+1,
for j = 0, 1, 2, 3, 4, 5, 6 at the first point ξn+1 of Equation (12) can be obtained by integrating
Equation (12) multiple times up to seventh-times with respect to the variable ξ, respectively,
over the interval [ξm, ξm+1]. The integral formulas can be written as follows:

By integrating Equation (1), we get the following equations:

z(6)n+1 = z(6)n +
∫ ξn+1

ξn
f (Z(ξ))dξ (21)

z(5)n+1 = z(5)n + hz(6)n +
∫ ξn+1

ξn
f (Z(ξ))dξ (22)

z(4)n+1 = z(4)n + hz(5)n +
h2

2!
z(6)n +

∫ ξn+1

ξn
f (Z(ξ))dξ (23)

z(3)n+1 = z(3)n + hz(4)n +
h2

2!
z(5)n +

h3

3!
z(6)n +

∫ ξn+1

ξn
f (Z(ξ))dξ (24)

z
′′
n+1 = z

′′
n + hz(3)n +

h2

2!
z(4)n +

h3

3!
z(5)n +

h4

4!
z(6)n +

∫ ξn+1

ξn
f (Z(ξ))dξ (25)

z
′
n+1 = z

′
n + hz

′′
n +

h2

2!
z(3)n +

h3

3!
z(4)n +

h4

4!
z(5)n +

h5

5!
z(6)n +

∫ ξn+1

ξn
f (Z(ξ)) (26)

zn+1 = zn + hz
′
n +

h2

2!
z
′′
n +

h3

3!
z(3)n +

h4

4!
z(4)n +

h5

5!
z(5 )

n +
h6

6!
z(6)n +

∫ ξn+1

ξn
f (Z(ξ))dξ (27)

where f (Z(ξ)) = f (ξ, z(j)(ξ)) for j = 0, 1, . . . , 6. Let ξn+1 = ξn + h and the change of
coordinate s = ξ−ξn+3

h , dξ = hds where, f will be replaced by the following interpolating of
Hermite polynomial in Equation (12), Θ(s) = f0L00(s) + f1L10(s) + f2L20(s) + f3L30(s) +
g0L01(s) + g1L11(s) + g2L21(s) + g3L31(s). Using the approximate concepts, the following
formulas can be obtained:

z(6)n+1 = z(6)n +
∫ −2

−3
θ(s)hds (28)

z(5)n+1 = z(5)n + hz(6)n −
∫ −2

−3
h(−2− s)Θ(s)hds (29)

z(4)n+1 = z(4)n + hz(5)n +
h2

2!
z(6)n +

∫ −2

−3

(h(−2− s))2

2!
θ(s)hds (30)
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z(3)n+1 = z(3)n + hz(4)n +
h2

2!
z(5)n +

h3

3!
z(6)n −

∫ −2

−3

(h(−2− s))3

3!
θ(s)hds (31)

z
′′
n+1 = z

′′
n + hz(3)n +

h2

2!
z(4)n +

h3

3!
z(5)n +

h4

4!
z(6 )

n +
∫ −2

−3

(h(−2− s))4

4!
θ(s)hds (32)

z
′
n+1 = z

′
n + hz

′′
n +

h2

2!
z(3)n +

h3

3!
z(4) +

h4

4!
z(5 )

n +
h5

5!
z(6 )

n +
∫ −2

−3

(h(−2− s))5

5!
θ(s)hds (33)

zn+1 = zn + hz
′
n +

h2

2!
z
′′
n +

h3

3!
z(3)n +

h4

4!
z(4)n +

h5

5!
z(5)n +

h6

6!
z(6)n +

∫ −2

−3

(h(−2− s))6

6!
θ(s)hds (34)

By integration the Equations (28)–(34), we obtained the following new formulas:

z(7−i)
n+1 = ∆i + hi(ai1 f0 + ai2 f1 + ai3 f2 + ai4 f3) + hi+1(ai5g0 + ai6g1 + ai7g2 + ai8g3). (35)

for i = 1, 2, . . . , 7, where

∆i =
i−1

∑
j=0

hj

j!
z(7−j )

n , (36)

and

A =



6893
18144

313
672

89
672

397
18144

1283
30240

−851
3360

−269
3360

−163
30240

19519
68040

1301
10080

181
2520

3329
272160

371
12960

−313
2520

−89
2016

−137
45360

62387
544320

89
3360

439
20160

1031
272160

1879
181440

−359
10080

−13
960

−17
18144

25883
816480

1457
332640

1579
332640

137
163296

3137
1197504

−89
11880

−283
95040

−311
1496880

34673
5132160

325
532224

1091
1330560

10541
71850240

6163
11975040

−3359
2661120

−689
1330560

−871
23950080

19607
16679520

73
988416

73
617760

259
12130560

9239
111196800

−7723
43243200

−103
1372800

−589
111196800

186629
1077753600

293
37065600

7613
518918400

18719
7005398400

53329
4670265600

−709
32432400

−971
103783680

−1549
2335132800



(37)

Evaluating the P3(x) at the point yn+2 over [xn+1, xn+2] obtains a three-point fully
implicit method. The second formula, yn+2, is obtained by using the same method as for
the first formula, yn+1

z(7−i)
n+2 = ∆7+i + hi(bi1 f0 + bi2 f1 + bi3 f2 + bi4 f3) + hi+1(bi5g0 + bi6g1 + bi7g2 + bi8g3). (38)

for i = 1, 2, . . . , 7, where

∆7+i =
i−1

∑
j=0

hj

j!
z(7−j )

n+1 , (39)

and
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B =



3
224

109
224

109
224

3
224

31
10080

113
1120

−113
1120

−31
10080

1921
272160

869
2520

1429
10080

431
68040

73
45360

121
2016

−103
2520

−19
12960

569
272160

533
4032

103
3360

941
544320

43
90720

19
960

−103
10080

−73
181440

73
163296

11819
332640

1777
332640

283
816480

151
1496880

443
45040

−23
11880

−97
1197504

5459
71850240

9869
1330560

2087
2661120

287
5132160

409
23950080

1151
1330560

−799
2661120

−157
11975040

131
12130560

157
123552

493
4942080

127
16679520

269
111196800

61
457600

−1717
43243200

−199
111196800

9281
7005398400

95987
518918400

2909
259459200

971
1077753600

691
2335132800

1829
103783680

−149
32432400

−991
4670265600



(40)

The purpose of evaluating the P3(x) at the point yn+3 over [xn+2, xn+3] is to derive a
three-point fully implicit method. By applying the same technique as for the first formula
yn+1 we have the third formula at xn+3 :

z(7−i)
n+3 = ∆14+i + hi(ci1 f0 + ci2 f1 + ci3 f2 + ci4 f3) + hi+1(ci5g0 + ci6g1 + ci7g2 + ci8g3). (41)

for i = 1, 2, . . . , 7, where

∆14+i =
i−1

∑
j=0

hj

j!
z(7−j )

n+2 , (42)

and

C =



397
18144

89
672

313
672

6893
18144

163
30240

269
3360

851
3360

−1283
30240

1313
136080

611
10080

1697
5040

3617
38880

43
18144

181
5040

1301
10080

−313
22680

151
60480

163
10080

2627
20160

107
6048

37
60480

19
2016

767
20160

−89
30240

7
14580

1061
332640

1171
33264

2281
816480

703
5987520

61
33264

5477
665280

−37
74844

299
3991680

41
80640

467
63360

3029
7983360

73
3991680

769
2661120

173
120960

−557
7983360

331
33359040

113
1647360

521
411840

6047
133436160

269
111196800

53
1372800

287
1372800

−3329
389188800

5359
4670265600

697
86486400

31891
172972800

11293
2335132800

29
103783680

389
8646400

4579
172972800

−181
194594400



(43)

3.3. The Zero-Stability and the Order of the Proposed GIBM3P Method

The zero-stability and the order of the proposed GIBM3P method have been examined
in this section.

3.3.1. Order of the GIBM3P Method

The three-point implicit block method’s formulas, which are given in Equations (35),
(38) and (41) for i = 1, 2, . . . , 7, can be expressed in matrix form as follows:

αYm = hβY
′
m + h2γY

′′
m + h3ψY

′′′
m + h4δY(4)

m + h5 ϕY(5)
m + h6λY(6)

m + h7oFm + h8ρGm
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where, α, β, γ, ψ, δ, ϕ, λ, o and ρ are 21× 21 matrices. We can define the linear operator
as follows

L[Z(x); h] = αYm − hβY
′
m − h2γY

′′
m − h3ψY

′′′
m − h4δY(4)

m − ϕh5Fm − h6λ− h7oFm − h8ρGm. (44)

Expanding Equation (44) using Taylor series at the point x where Z(x) is an arbitrary
differentiable and continuous function.

L[Z(x); h] = C0Z(x) + C1hZ′(x) + · · ·+ CphpZp(x) + Cp+1hp+1Zp+1(x) + . . . (45)

The linear operator of the proposed method in Equation (45) has order=p if Cj = 0
for j = 0, 1, . . . , p + 6 and Cp+7 6= 0. Where Cp+7 is the error constant. In the three-point
implicit block method, we have Cj = 0; j = 0, 1, . . . , 14. Therefore, the order of the three-
point block method is eight.

3.3.2. Zero-Stability of the New Method

In this subsection, the zero-stability of the three-point fully implicit block method is
studied. The formulas of the new method in Equations (35), (38) and (41) for i = 1, 2, . . . , 7
are considered as a zero stable in case the roots ri = 1, 2, . . . , N of the first characteristic
polynomial ρ(R) = |RA(0) − A(1)| = 0 are found to satisfy | R |≤ 1.

Moreover, in order to determine the matrix form of the first characteristic polyno-
mial of the method, we will employ the following formulas. When the formulas in the
Equations (35) and (38) are substituted for i = 1, 2, . . . , 7, we obtain

y(6)n+2 = y(6)n +
223h
567

fn +
20h
21

fn+1 +
13h
21

fn+2 +
20h
567

fn+3 +
43h2

945
gn −

16h2

105
gn+1 −

19h2

105
gn+2

− 8h2

945
gn+3

(46)

y(5)n+2 = 2hy(6)n + y(5)n +
5731h2

8505
fn +

296h2

315
fn+1 +

109h2

315
fn+2 +

344h2

8505
fn+3 +

206h3

2835
gn −

20h3

63
gn+1

− 52h3

315
gn+2 −

4h3

405
gn+3

(47)

y(4)n+2 = 2h2y(6)n + 2hy(5)n + y(4)n +
5048h3

8505
fn +

164h3

315
fn+1 +

4h3

21
fn+2 +

244h3

8505
fn+3 +

172h4

2835
gn

− 4h4

15
gn+1 −

34h4

315
gn+2 −

4h4

567
gn+3

(48)

y
′′′
n+2 =

4
3

h3y(6)n + 2h2y(5)n + 2hy(4)n + y
′′′
n +

1804h4

5103
fn +

2168h4

10395
fn+1 +

934h4

10395
fn+2 +

376h4

25515
fn+3

+
3224h5

93555
gn −

7361909h5

53507520
gn+1 −

16h5

297
gn+2 −

68h5

18711
gn+3

(49)

y
′′
n+2 =

2
3

h4y(6)n +
4
3

h3y(5)n + 2h2y(4)n + 2hy
′′′
n + y

′′
n +

44761h5

280665
fn +

692h5

10395
fn+1 +

361h5

10395
fn+2

+
236h5

40095
fn+3 +

1391h6

93555
gn −

592h6

10395
gn+1 −

221h6

10395
gn+2 −

136h6

93555
gn+3

(50)

y
′
n+2 =

4
15

h5y(6)n +
2
3

h4y(5)n +
4
3

h3y(4)n + 2h2y
′′′
n + 2hy

′′
n + y

′
n +

2749h6

47385
fn +

344h6

19305
fn+1 +

43h6

3861
fn+2

+
200h6

104247
fn+3 +

4502h7

868725
gn −

196h7

10725
gn+1 −

4652h7

675675
gn+2 −

412h7

868725
gn+3

(51)

yn+2 =
4

45
h6y(6)n +

4
15

h5y(5)n +
2
3

h4y(4)n +
4
3

h3y
′′′
n + 2h2y

′′
n + 2hy

′
n + yn +

969008h7

54729675
fn +

8368h7

2027025
fn+1

+
6152h7

2027025
fn+2 +

2224h7

4209975
fn+3 +

27688h8

18243225
gn −

400h8

81081
gn+1 −

3826h8

2027025
gn+2 −

2384h8

18243225
gn+3

(52)
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Furthermore, by substituting Equations (46)–(52) into the formulas from the Equation (41)
for i = 1, 2, . . . , 7, we get

y(6)n+3 = y(6)n +
93h
224

fn +
243h
224

fn+1 +
243h
224

fn+2 +
93h
224

fn+3 +
57h2

1120
gn −

81h2

1120
gn+1 −

81h2

1120
gn+2

− 57h2

1120
gn+3

(53)

y(5)n+3 = 3hy(6)n + y(5)n +
603h2

560
fn +

2187h2

1120
fn+1 +

729h2

560
fn+2 +

27h2

160
fn+3 +

27h3

224
gn −

243h3

560
gn+1

− 234h3

1120
gn+2 −

9h3

280
gn+3

(54)

y(4)n+3 =
9
2

h2y(6)n + 3hy(5)n + y(4)n +
657h3

448
fn +

2187h3

1120
fn+1 +

2187h3

2240
fn+2 +

117h3

1120
fn+3 +

351h4

2240
gn

− 729h4

1120
gn+1 −

729h4

2240
gn+2 −

27h4

1120
gn+3

(55)

y
′′′
n+3 =

9
2

h3y(6)n +
9
2

h2y(5)n + 3hy(4)n + y
′′′
n +

27h4

20
fn +

16767h4

12320
fn+1 +

729h4

1232
fn+2 +

81h4

1120
fn+3

+
3429h5

24640
gn −

43938491h5

74910528
gn+1 −

6561h5

24640
gn+2 −

27h5

1540
gn+3

(56)

y
′′
n+3 =

27
8

h4y(6)n +
9
2

h3y(5)n +
9
2

h2y(4)n + 3hy
′′′
n + y

′′
n +

46251h5

49280
fn +

6561h5

8960
fn+1 +

2187h5

7040
fn+2

+
4293h5

98560
fn+3 +

4617h6

49280
gn −

579568537h6

1498210560
gn+1 −

729h6

4480
gn+2 −

1053h6

98560
gn+3

(57)

y
′
n+3 =

81
40

h5y(6)n +
27
8

h4y(5)n +
9
2

h3y(4)n +
9
2

h2y
′′′
n + 3hy

′′
n + y

′
n +

24003h6

45760
fn +

59049h6

183040
fn+1

+
6561h6

45760
fn+2 +

4023h6

183040
fn+3 +

23247h7

457600
gn −

705760183h7

3477988800
gn+1 −

37179h7

457600
gn+2

− 118669h7

21621600
gn+3

(58)

yn+3 =
81
80

h6y(6)n +
81
40

h5y(5)n +
27
8

h4y(4)n +
9
2

h3y
′′′
n +

9
2

h2y
′′
n + 3hy

′
n + yn +

1571319h7

6406400
fn

+
387099h7

3203200
fn+1 +

373977h7

6406400
fn+2 +

30213h7

3203200
fn+3 +

5913h8

256256
gn −

4992226654501h8

56385154425600
gn+1

− 220887h8

6406400
gn+2 −

1863h8

800800
gn+3

(59)

The Equations (35), (46)–(59) for i = 1, 2, . . . , 7 have now been substituted in order to
determine the matrix and the first characteristic polynomial. The matrices’ general form is
A(i) for i = 0, 1 can be denoted by A(1) which is a matrix with all of its elements being zero,
barring the following situations.

(i,j) ∈ {(1,15), (2,16), (3,17), (4,18), (5,19), (6,20), (7,21), (8,15), (9,16), (10,17), (11,18),
(12,19), (13,20), (14,21), (15,15), (16,16) ,(17,17), (18,18), (19,19), (20,20), (21,21)} are all equal
to one, where the Kroneker A(0) and A(1) are a 21 × 21 matrices.

Then, R14(R− 1)7 = 0, leads to R = 0 (14-times) and R = 0 (7-times). Hence, it can be
concluded that the proposed method is zero stable.

4. Numerical Implementations

The seventh-order GIBM3P method is used in this section to solve a collection of
seventh-order ODEs. Figure 2 compares the numerical results to show the efficacy of the
proposed method. The notations that were used are as follows:
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• RK Classical Runge–Kutta method.
• RKM Direct Runge–Kutta–Mohammed method.
• GIBM3P Proposed direct implicit block with three points method.

Problems Tested of ODEs

Example 1. (Linear, non-homogenous ODE)

y(7)(t) = −2y(t) + e−t, 0 < t ≤ b.

Initial conditions, y(i)(0) = (−1)i, i = 0, 1, . . . , 6.
Exact solution: y(t) = e−t, b = 1.

Example 2. (Linear, homogenous ODE)

y(7)(t) = −cos(t), 0 < t ≤ b.

Initial conditions, y(2i+1)(0) = (−1)i, i = 0, 1, 2; y(i)(0) = 0; i = 0, 2, 4, 6.
Exact solution: y(t) = sin(t), b = π.

Example 3. (Non linear ODE)

y(7)(t) = y4(t)− 128y(t)− e−8t, 0 < t ≤ b.

Initial conditions, y(0) = 0; y(i)(0) = (−1)ii!; i = 1, . . . , 6.
Exact solution: y(t) = e−2t, b = 1.

Example 4. (Homogenous ODE)

y(7)(t) = y(t) + y′(t) + y′′(t); , 0 < t ≤ b.

Initial conditions, y(2i+1)(0) = (−1)i, i = 0, 1, 2; y(2i)(0) = 0, i = 0, 1, 2, 3.
Exact solution: y(t) = sin(t), b = π

Example 5. (Nonlinear ODE)

y(7)(t) = y6(t) + y′3(t)− 30y′′2(t), 0 < t ≤ b.

Initial conditions, y
′
(0) = (−1)ii!, i = 0, 1, 2, . . . , 6.

Exact solution: y(t) = 1
1+t , b = 10

Example 6. (Homogenous ODE)

y(7)(t) = y′(t) + y′′(t) + 604800(1 + t)3 + 10(1 + t)8(10 + t), −1 < t ≤ b.

Initial conditions, y(i)(0) = 0, i = 0, 1, . . . , 6.
Exact solution: y(t) = (1 + t)10, b = 1
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Figure 2. Numerical Solutions Using Proposed GIBM3P Method Versus (a) Classical RK method,
RKM method and Analytical Solutions for Examples 1–3. (b) Classical RK method, and Analytical
Solutions for Examples 4–6.

5. Discussion and Conclusions

The general implicit block method with three points (GIBM3P) has been developed in
this paper using the Hermite approximation method to solve a general class of seventh-
order ODEs. The purpose of this article is to develop a direct-implicit block method for
the general class of seventh-order ODEs. The proposed method has been numerically
compared to direct RKM, existing RK methods, and exact solutions. This comparison
leads us to the conclusion that the new method is accurate and effective. Based on the
results of the implementations, we can say that the proposed method is more efficient
than RK and RKM methods in terms of computation time while also requiring fewer
function evaluations.
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