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Abstract: The resolution of the acceleration and jerk vectors of a particle moving on a space curve in
the Euclidean 3-space is considered. By applying this resolution and Siacci’s theorem, alternative
resolutions of acceleration and jerk vectors are derived based on the quasi-frame. In the osculating
plane, the acceleration vector is resolved as the sum of its tangential and radial components. In
addition, in the osculating and rectifying planes, the jerk vector is resolved along the tangential
direction and two special radial directions. The maximum permissible speed on a space curve at all
trajectory points is established via the jerk vector formula. Finally, some examples are presented to
illustrate how the results work.
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1. Introduction

The geometry of motion in a 3-dimensional space has constantly been crucial in terms
of understanding physical phenomena. Specifically, the mathematical description of a
particle’s motion as a consequence of geometrical analysis is a subject that is required in a
wide variety of applications, such as water wave theory, relativity, non-linear optics, sigma
models, fluid dynamics, and so on. In Newtonian physics, the force acting on a particle,
as defined by the equation F = mA, is proportional to its acceleration A. In certain cases,
it is simpler to deal with the acceleration vector when decomposing it into normal and
tangential components. However, it is more practical to represent the acceleration vector
as the sum of its tangential and radial components when the angular momentum of the
particle is constant.

In 1879, for the osculating plane to the curve, Siacci [1] described the acceleration vector
as the sum of two particular oblique components. Subsequently in 1944, Whittaker [2]
dealt with Siacci’s theorem for the plane and gave a geometrical proof of it. Although
Siacci’s formulas are very remarkable, his formulation of the theorem is inaccurate and his
proof is burdensome. Therefore, in 2011, Casey [3] used the Serret–Frenet frame to prove
Siacci’s theorem in space. Subsequently, in the Finsler manifold F3, in 2012, Küçükarslan
et al. [4] investigated Siacci’s theorem for curves. In 2017, Özen et al. [5] investigated
Siacci’s theorem for the curves on regular surfaces in E3 according to the Darboux frame.
Recently, in 2020, Özen et al. [6] studied Siacci’s theorem for the curves in E3 according to
the modified orthogonal frame. In the same year, Özen [7] studied Siacci’s theorem for the
curves in Minkowski 3-space by using the Serret–Frenet frame.

In contrast, the jerk vector J is the time derivative of the acceleration vector. Thus, for a
particle with a constant mass, the equality J = (1/m)(dF/dt) is satisfied. In the literature,
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there has been considerable interest in the resolution of the jerk vector for the curves in E3,
and several methods and frames for studying the resolution of the jerk vector have been
proposed, for example, the Serret–Frenet frame [8,9], the modified orthogonal frame [6],
and the Bishop frame [10]. Acceleration varies abruptly when a machinist operates a
high-speed train, a stock-car racer races on a track, or a gymnast does gymnastic exercises.
Estimating the lower threshold of merely an observable shock and the highest values of
the jerk that humans can tolerate without undue discomfort is critical in these situations
(see [11]). In addition, in 2017, Tsirlin [12], using the jerk vector formula, gave the maximum
permissible speed on a space curve at all trajectory points.

The Serret–Frenet frame is inadequate for studying the space curves in which the
curvatures have discrete zero points as, in this case, the principal normal and binormal
vectors are discontinuous at points of inflections or along the straight sections of the curve.
Therefore, to solve this problem, Dede et al. [13] introduced a new adapted frame along a
space curve as an alternative frame to the Serret–Frenet frame and denoted this as the quasi-
frame. Numerous studies on the quasi-frame have been discussed; see for example, optical
Hasimoto map [14], Berry phase of the linearly polarized light wave along an optical fiber
and its electromagnetic curves [15], magnetic flux flows with Heisenberg ferromagnetic
spin [16], and evolution of the ruled surfaces [17].

Motivated by these papers, we consider a particle moving on a space curve according
to a quasi-frame in the Euclidean 3-space under the influence of arbitrary forces.

The paper is organized as follows: In Section 2, we present some basic definitions
concerning the Serret–Frenet frame and quasi-frame in the Euclidean 3-spac E3 and the
relation between them. In Section 3, we resolve the acceleration vector A and the jerk vector
J of a particle moving on a space curve according to the quasi basis. Moreover, we give
alternative resolutions of acceleration and jerk vectors. In Section 4, we provide informative
examples to demonstrate how our results work.

2. Preliminaries

We give some preliminaries in this part that will be used in our later discussion.
The Euclidean space E3 =

(
R3, 〈·, ·〉

)
is a metric space with the standard inner product

〈·, ·〉, which given by
〈G, H〉 = g1h1 + g2h2 + g3h3,

for any two vectors G = (g1, g2, g3) and H = (h1, h2, h3) in E3. Based on this metric, the
norm of a vector G ∈ E3 is given by ‖G‖ =

√
〈G, G〉. A curve ζ = ζ(`) : I ⊆ R→ E3 is a

unit speed curve if ‖ζ ′(`)‖ = 1 for all ` ∈ I. In this case, ` is called arc-length parameter of
the curve ζ(`).

Let ζ(`) be a space curve in E3, parameterized by arc-length `. Denote by >(`),ℵ(`),
B(`) the moving Serret–Frenet frame along the unit speed curve ζ(`), where >(`), ℵ(`),
and B(`) are the unit tangent, principal normal, and binormal vectors defined as

>(`) = ζ ′(`), ℵ(`) = ζ ′′(`)

‖ζ ′′(`)‖ , B(`) = >(`)× ℵ(`), (1)

respectively. In contrast, the Serret–Frenet formulas are defined by >′(`)ℵ′(`)
B′(`)

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 >(`)ℵ(`)
B(`)

, (2)

where κ(`) is the curvature function and τ(`) is the torsion function defined as follows:
κ = κ(`) = ‖>′(`)‖, τ = τ(`) = −〈B′(`),ℵ(`)〉, Ref. [18].

Now, as an alternative to the Serret–Frenet frame, which is donated by { >(`), ℵq(`),
Bq(`), $}, the quasi-frame (or simply q -frame) along a space curve ζ(`), where >(`), ℵq(`),
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Bq(`), and $ are the unit tangent, quasi-normal, quasi-binormal, and projection vectors,
respectively, and they are defined as follows:

>(`) = ζ ′(`), ℵq(`) =
>× $

‖>× $‖ , Bq(`) = >× ℵq, (3)

where $ is the projection vector and can be chosen as $ = (1, 0, 0) or $ = (0, 1, 0) or
$ = (0, 0, 1). For simplicity, we choose the projection vector $ = (1, 0, 0) in this paper.
However, the q-frame is singular in all cases where > and $ are parallel. Thus, in those
cases where > and $ are parallel, the projection vector $ can be chosen as $ = (0, 1, 0)
or $ = (0, 0, 1). We can define the Euclidean angle θ between the principal normal ℵ
and quasi-normal ℵq vectors. Then, the relation between the q-frame and the classical
Serret–Frenet frame is given as follows: >(`)ℵq(`)

Bq(`)

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 >(`)ℵ(`)
B(`)

. (4)

Thus, we have  >(`)ℵ(`)
B(`)

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 >(`)ℵq(`)
Bq(`)

. (5)

By taking the derivative of (4) with respect to `, then substituting (2) and ( 5) into the
results, we obtain the variation equations of the q-frame in the following form: >′(`)ℵ′q(`)

B′q(`)

 =

 0 κ1 κ2
−κ1 0 κ3
−κ2 −κ3 0

 >(`)ℵq(`)
Bq(`)

, (6)

where

κ1(`) = κ(`) cos θ, κ2(`) = κ2
1(`) + κ2

2(`), (7)

κ2(`) = −κ(`) sin θ, θ = − arctan
(

κ2

κ1

)
,

κ3(`) = θ′(`) + τ(`),

The triple (κ1, κ2, κ3) is called the quasi-curvature functions of ζ(`), Ref. [13].

Example 1. Assume that a particle P moves along a helical curve over a clothoid (Cornu spiral or
Euler spiral) [19] in E3, and the position vector of P in Cartesian coordinates is expressed as

X =

(
1√
2

∫ t

0
cos
(

πu2

2

)
du,

1√
2

∫ t

0
sin
(

πu2

2

)
du,

t√
2

)
, (8)

where
∫ t

0 cos
(

πu2

2

)
du and

∫ t
0 sin

(
πu2

2

)
du are called Fresnel integrals. Recently, this curve has

had many applications in real life, for example, the highway, railway route design, or roller coasters,
etc. Thus, we can determine the velocity, acceleration, and jerk vectors as
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V =

(
1√
2

cos
(

πt2

2

)
,

1√
2

sin
(

πt2

2

)
,

1√
2

)
,

a =

(
−πt√

2
sin
(

πt2

2

)
,

πt√
2

cos
(

πt2

2

)
,0
)

,

J =

(
−π2t2
√

2
cos
(

πt2

2

)
− π√

2
sin
(

πt2

2

)
,
−π2t2
√

2
sin
(

πt2

2

)
+

π√
2

cos
(

πt2

2

)
,0
)

.

(9)

From (9), we can write the following equalities:

dx =
1√
2

cos
(

πt2

2

)
dt, dy =

1√
2

sin
(

πt2

2

)
dt, dz =

1√
2

dt.

Using (d`)2 = (dx)2 + (dy)2 + (dz)2, we obtain

d`
dt

= 1,
d2`

dt2 = 0,
d3`

dt3 = 0.

Therefore, the arc-length ` = `(t) = t can be used to parameterize the oriented curve traced
out by the particle P as

δ(`) =

(
1√
2

∫ `

0
cos
(

πu2

2

)
du,

1√
2

∫ `

0
sin
(

πu2

2

)
du,

`√
2

)
. (10)

Then, from (1) we can obtain the Serret–Frenet frame as:

> =

(
1√
2

cos
(

π`2

2

)
,

1√
2

sin
(

π`2

2

)
,

1√
2

)
,

ℵ =

(
−`
|`| sin

(
π`2

2

)
,
`

|`| cos
(

π`2

2

)
,0
)

,

and

B =

(
−`√
2|`|

cos
(

π`2

2

)
,
−`√
2|`|

sin
(

π`2

2

)
,

`√
2|`|

)
and the curvature and the torsion as κ = π|`|/

√
2. Thus, we note that the Serret–Frenet frame

is inadequate for studying the space curves whose curvatures have discrete zero points because, as
we have shown, the principal normal and binormal vectors are discontinuous at ` = 0, and the
curvature is not differentiable as well. Furthermore, the curve forms a symmetrical double spiral.

Therefore, to solve this problem and prevent the occurrence of two reverse oriented
principal normal and binormal vectors, we use the q-frame as an alternative frame to
the Serret–Frenet frame (Figure 1). If we consider (3) and choose the projection vector
$ = (0, 0, 1), we get the following q-frame:
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Y


Figure 1. Helical curve over clothoid.

> =

(
1√
2

cos
(

π`2

2

)
,

1√
2

sin
(

π`2

2

)
,

1√
2

)
,

ℵq =

(
1√
2

sin
(

π`2

2

)
,
−1√

2
cos
(

π`2

2

)
,0
)

,

Bq =

(
1
2

cos
(

π`2

2

)
,
1
2

sin
(

π`2

2

)
,
−1
2

)
.

3. Main Results

In this section, we obtain a new resolution of the acceleration and jerk vectors for a
particle via the q-frame. Thereafter, in the osculating plane, we give alternative resolutions
of the acceleration vector along the radial direction and tangential direction. In addition,
in the osculating and rectifying planes, the jerk vector is resolved along the tangential
direction and two special radial directions.

Theorem 1. Assume that the particle P with mass m moves along an analytic space curve ζ = ζ(`)
with the q-frame. Then the acceleration vector A and the jerk J vector of P at time t with a q-frame
can be expressed as

A =
d2`

dt2>+
√

κ2
1(`) + κ2

2(`)

(
d`
dt

)2
cos θℵq −

√
κ2

1(`) + κ2
2(`)

(
d`
dt

)2
sin θBq, (11)

and
J =

dA
dt

= C>>+ Cℵqℵq + CBqBq, (12)

where

C> =
d3`

dt3 −
(

κ2
1 + κ2

2

)(d`
dt

)3
,

Cℵq = cos θ

[
3
√

κ2
1 + κ2

2

(
d`
dt

)(
d2`

dt2

)
+

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)]

+ sin θ

[(
κ3 − θ′

)√
κ2

1 + κ2
2

(
d`
dt

)3
]

,
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and

CBq = − sin θ

[
3
√

κ2
1 + κ2

2

(
d`
dt

)(
d2`

dt2

)
+

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)]

+cos θ

[(
κ3 − θ′

)√
κ2

1 + κ2
2

(
d`
dt

)3
]

.

Proof. According to a q-frame, let a particle P with mass m > 0 move on a space curve in
Euclidean space E3 under the effect of arbitrary forces. Let X be the position vector of P at
time t with an arbitrary fixed origin O in the space E3. Let ζ parametrized by the arc-length
` described at time t be the oriented curve traced out by P. Therefore, the unit tangent
vector for the curve ζ is given as

> =
dX
d`

. (13)

Then, from (6), (7), and (13), we deduce the velocity V, the acceleration vector A, and
the jerk J vector of P at time t with q-frame as

V =
dX
dt

=
d`
dt
>,

A =
dV
dt

=
d2`

dt2>+ κ1

(
d`
dt

)2
ℵq + κ2

(
d`
dt

)2
Bq,

(14)

or

A =
d2`

dt2>+
√

κ2
1(`) + κ2

2(`)

(
d`
dt

)2
cos θℵq −

√
κ2

1(`) + κ2
2(`)

(
d`
dt

)2
sin θBq,

and
J =

dA
dt

,

which implies that (11) and (12) hold. The proof is complete.

Theorem 2. (Siacci’s Theorem according to Quasi-Frame). Assume that the particle P with mass
m moves along an analytic space curve ζ = ζ(`) with the q-frame. Suppose that the component of
its angular momentum, which is along the vector

(
sin θℵq + cos θBq

)
, never vanishes. Then, the

acceleration vector A of P can be expressed as

A =

d2`

dt2 +
λ1

√
κ2

1 + κ2
2

λ2

(
d`
dt

)2
>+

−n
√

κ2
1 + κ2

2

λ2

(
d`
dt

)2
en (15)

= At>+ Anen,

where At lies along the tangent line of ζ, whereas An is directed from the particle P to the foot of the
perpendicular, that is, from the origin to osculating plane to ζ at P.

Proof. The acceleration and jerk vectors in (11) and (12) can be expressed as follows:

A =
d2`

dt2>+
√

κ2
1 + κ2

2

(
d`
dt

)2(
cos θℵq − sin θBq

)
, (16)
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and

J =

[
d3`

dt3 −
(

κ2
1 + κ2

2

)(d`
dt

)3
]
>

+

[
3
√

κ2
1 + κ2

2

(
d`
dt

)(
d2`

dt2

)
+

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)](
cos θℵq − sin θBq

)
+

[(
κ3 − θ′

)√
κ2

1 + κ2
2

(
d`
dt

)3
](

sin θℵq + cos θBq
)
. (17)

We can observe that, because
{
>,ℵq,Bq

}
is a right-handed orthonormal basis, the

vectors
{
>,
(
cos θℵq − sin θBq

)
,
(
sin θℵq + cos θBq

)}
form a right-handed orthonormal

system. Let a particle P move on a space curve ζ = ζ(`). As a result, according to the
q-frame, P has a position vector. Assume that the position vector of P be resolved as follows:

X = λ1>− λ2
(
cos θℵq − sin θBq

)
+ λ3

(
sin θℵq + cos θBq

)
, (18)

where

λ1 = 〈X ,>〉, − λ2 =
〈
X ,
(
cos θℵq − sin θBq

)〉
, λ3 =

〈
X ,
(
sin θℵq + cos θBq

)〉
. (19)

Denote by n and n∗ the vectors

n = λ1>− λ2
(
cos θℵq − sin θBq

)
, n∗ = λ1>+ λ3

(
sin θℵq + cos θBq

)
, (20)

which lie in the osculating plane and rectifying plane to C at P, respectively. Then, we have

n2 = 〈n, n〉 = λ2
1 + λ2

2, (n∗)2 = 〈n∗, n∗〉 = λ2
1 + λ2

3, (21)

where n and n∗ are the lengths of the vectors n and n∗, respectively. It is well known that
the angular momentum vector LO of P about O is given by

LO = X ×mV.

Thus, from (14) and (18), we have

LO = mλ3

(
d`
dt

)(
cos θℵq − sin θBq

)
+ mλ2

(
d`
dt

)(
sin θℵq + cos θBq

)
. (22)

Now we aim to resolve the acceleration vector A in (11) along the radial direction and
tangential direction in the osculating plane, as well as the jerk vector J in (12) along the
tangential direction, radial direction in the osculating plane, and radial direction in the
rectifying plane. Let us begin by expressing the vector

(
cos θℵq − sin θBq

)
in terms of n

and >. Considering (20), we can deduce that this is possible if and only if λ2 6= 0. We can
assure that λ2 is nonzero by assuming the physical condition that the angular momentum
component along the vector

(
sin θℵq + cos θBq

)
never vanishes. Second, let us represent

the vector
(
sin θℵq + cos θBq

)
in terms of n∗ and >. Considering (20), this is possible if

and only if λ3 6= 0. We can assure that λ3 is nonzero by assuming the second physical
condition that the angular momentum component along the vector

(
cos θℵq − sin θBq

)
never vanishes. Thus, we obtain the following equations:

cos θℵq − sin θBq =
1

λ2
(−n + λ1>), sin θℵq + cos θBq =

1
λ3

(n∗ − λ1>). (23)
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Hence, in view of (21), n 6= 0 and n∗ 6= 0. Therefore, we can define the unit vectors en
and en∗ as:

en =
1
n

n, en∗ =
1

n∗
n∗. (24)

From (23) and (24), we get

cos θℵq − sin θBq =
1

λ2
(−nen + λ1>), sin θℵq + cos θBq =

1
λ3

(n∗en∗ − λ1>). (25)

Substituting (25) into (16) and (17), we can obtain the acceleration vector A as in (15).
The proof is complete.

With the help of Theorem 2 and substituting (25) into (17), we can state the following
theorem.

Theorem 3. Assume that the particle P with mass m moves along an analytic space curve ζ = ζ(`)
with the q-frame. Suppose that the component of its angular momentum never vanishes. Then, the
jerk J of P can be expressed as

J =

[
d3`

dt3 −
(

κ2
1 + κ2

2

)(d`
dt

)3
+ 3
√

κ2
1 + κ2

2
λ1

λ2

d`
dt

d2`

dt2

+
λ1

λ2

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)
− λ1(κ3 − θ′)

λ3

√
κ2

1 + κ2
2

(
d`
dt

)3
]
>

+

[
−3n

λ2

√
κ2

1 + κ2
2

(
d`
dt

)(
d2`

dt2

)
− n

λ2

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)]
en

+

[
n∗(κ3 − θ′)

λ3

√
κ2

1 + κ2
2

(
d`
dt

)3
]

en∗ .

= Jt>+ Jnen + Jn∗en∗ , (26)

where Jt is the component that lies on the tangent line of ζ, whereas Jn is the component that lies on
the line passing through the particle P towards the foot of the perpendicular, that is, from the origin
to osculating plane to ζ at P, and Jn∗ is the component that lies on the line passing through the
particle P towards the foot of the perpendicular, that is, from the origin to rectifying plane to ζ at P.

Remark 1. We note that if κ3 = 0, then the q-frame
{
>(`),ℵq(`),Bq(`)

}
becomes the Bishop

frame. In this case, Theorem 3 reduces to Theorem 1 in [10].

Corollary 1. Assume that the particle P moves along an analytic space curve with the q-frame
and lies in the osculating plane, which does not contain the origin of space, in Euclidean 3-space.
Suppose that the component of its angular momentum never vanishes along the normal vector of
this plane. Then, the jerk vector becomes

J =

[
d3`

dt3 −
(

κ2
1 + κ2

2

)(d`
dt

)3
+ 3
√

κ2
1 + κ2

2
λ1

λ2

d`
dt

d2`

dt2

+
λ1

λ2

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)]
>

+

[
−3n

λ2

√
κ2

1 + κ2
2

(
d`
dt

)(
d2`

dt2

)
− n

λ2

(
d`
dt

)3 d
d`

(√
κ2

1 + κ2
2

)]
en.

Proof. Consider κ3 − θ′ = τ in Theorem 3, and set τ = 0 for the planar case to complete
the proof directly.
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Corollary 2. Assume that the particle P moves with a uniform motion with a speed� along an
analytic space curve with the q-frame in Euclidean 3-space such that the jerk satisfies the condition
‖J‖ ≤ jmax. Then the maximum speed admissible on the curve at all trajectory points must satisfy

� ≤
3
√

jmax
6
√

max Φ(`)
,

where

Φ(`) = Φ2
1 + Φ2

2 + Φ2
3 +

2λ1

n
Φ1Φ2 +

2λ1

n∗
Φ1Φ3 +

2λ2
1

nn∗
Φ2Φ3,

and

Φ1(`) =

[
λ1

λ2

d
d`

(√
κ2

1 + κ2
2

)
−
(

κ2
1 + κ2

2

)
− λ1(κ3 − θ′)

λ3

√
κ2

1 + κ2
2

]
,

Φ2(`) = −
n
λ2

d
d`

(√
κ2

1 + κ2
2

)
,

Φ3(`) =
n∗(κ3 − θ′)

λ3

√
κ2

1 + κ2
2.

Proof. In the case of uniform motion, let the particle P move along a curve with a uniform
motion with d`/dt =�, d2`/dt2 = 0, and d3`/dt3 = 0. Thus, from Theorem 3, we get

Jt =

[
λ1

λ2

d
d`

(√
κ2

1 + κ2
2

)
−
(

κ2
1 + κ2

2

)
− λ1(κ3 − θ′)

λ3

√
κ2

1 + κ2
2

]
�3

= Φ1(`)�3,

Jn = −
[

n
λ2

d
d`

(√
κ2

1 + κ2
2

)]
�3 = Φ2(`)�3,

and

Jn∗ =

[
n∗(κ3 − θ′)

λ3

√
κ2

1 + κ2
2

]
�3 = Φ3(`)�3.

Then

‖J‖ = �3

√
Φ2

1 + Φ2
2 + Φ2

3 +
2λ1

n
Φ1Φ2 +

2λ1

n∗
Φ1Φ3 +

2λ2
1

nn∗
Φ2Φ3

= �3
√

Φ,

which implies that

� ≤
3
√

jmax
6
√

max Φ(`)
.

The proof is complete.

4. Applications

In this section, we present applications of the results derived to calculate the compo-
nents of acceleration and jerk vectors with respect to a q-frame by applying Theorems 1–3
and Corollaries 1 and 2.

Example 2. Consider a particle P moves along a right-handed circular helix lying on a clylinder,
which has a radius a, and the angular frequency Ω of P is not time dependent. Then, the position
vector of P in Cartesian coordinates is given by

X = (a cos(Ωt),a sin(Ωt),bt), (27)



Symmetry 2022, 14, 1610 10 of 15

where t is the time and a, b are positive constants. Let the helix axis be the z-axis, and ϕ be the helix
angle satisfying tan ϕ = aΩ

b . The velocity, acceleration, and jerk vectors can be obtained as

V = (−aΩ sin(Ωt),aΩ cos(Ωt),b),

A =
(
−aΩ2 cos(Ωt),−aΩ2 sin(Ωt),0

)
,

and
J =

(
aΩ3 sin(Ωt),−aΩ3 cos(Ωt),0

)
.

From (27), we have

dx = −aΩ sin(Ωt)dt, dy = aΩ cos(Ωt)dt, dz = bdt.

Using (d`)2 = (dx)2 + (dy)2 + (dz)2, the speed� of the particle P, and its first and second
derivatives can be given by

� =
d`
dt

=
√

a2Ω2 + b2,
d2`

dt2 = 0,
d3`

dt3 = 0.

We see that the arc-length ` = `(t) = �t can be used to parameterize the oriented curve
traced out by the particle P as

ζ(`) =

(
a cos

(
Ω`

�

)
,a sin

(
Ω`

�

)
,
b`
�

)
. (28)

Then, from (1) and (28), we can obtain the Serret–Frenet frame as follows:

> =

(
− sin ϕ sin

(
Ω`

�

)
, sin ϕ cos

(
Ω`

�

)
, cos ϕ

)
,

ℵ =

(
− cos

(
Ω`

�

)
,− sin

(
Ω`

�

)
, 0
)

,

and

B =

(
cos ϕ sin

(
Ω`

�

)
,− cos ϕ cos

(
Ω`

�

)
, sin ϕ

)
.

In addition, we can get the curvature and the torsion as

κ =
aΩ2

�2 , τ =
bΩ
�2 .

From (7), we obtain

κ1 =
aΩ2

�2 cos θ, κ2 = − aΩ2

�2 sin θ,

and

κ3 = θ′(`) +
bΩ
�2 , θ = − arctan

(
κ2

κ1

)
.

Considering (4), we get the following q-frame:

> =

(
− sin ϕ sin

(
Ω`

�

)
, sin ϕ cos

(
Ω`

�

)
, cos ϕ

)
,
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ℵq =

(
− cos θ cos

(
Ω`

�

)
+ sin θ cos ϕ sin

(
Ω`

�

)
,

− cos θ sin
(

Ω`

�

)
− sin θ cos ϕ cos

(
Ω`

�

)
,

sin θ sin ϕ),

and

Bq =

(
sin θ cos

(
Ω`

�

)
+ cos θ cos ϕ sin

(
Ω`

�

)
,

sin θ sin
(

Ω`

�

)
− cos θ cos ϕ cos

(
Ω`

�

)
,

cos θ sin ϕ).

Therefore, by applying Theorem 1, we get the acceleration and jerk vectors with the q-frame as
follows:

A = aΩ2(cos θℵq − sin θ
)
Bq,

and

J =
dA
dt

= −
(

a2Ω4

�

)
>+

(
abΩ3

�

)
sin θℵq +

(
abΩ3

�

)
cos θBq.

By considering (19) and (28), we have

λ1 =
b`
� cos ϕ, λ2 = a, λ3 =

b`
� sin ϕ. (29)

In addition, from (18) and (28), we have

ζ(`) =

(
b`
� cos ϕ

)
>− a

(
cos θℵq − sin θBq

)
+

(
b`
� sin ϕ

)(
sin θℵq + cos θBq

)
=

(
b`
� cos ϕ

)
>−

(
a cos θ − b`

� sin ϕ sin θ

)
ℵq +

(
a sin θ +

b`
� sin ϕ cos θ

)
Bq.

From (21) and (29), we obtain

n =

√(
b`
�

)2
cos2 ϕ + a2, n∗ =

b`
� .

Therefore, by applying Theorems 1, 2, and 3, we get an alternative resolution of the components
of the acceleration and jerk vectors as follows:

At =
Ω2b2`

a2Ω2 + b2 , An = −Ω2

√
b4`2

(a2Ω2 + b2)
2 + a2,

and
Jt = −Ω2

√
a2Ω2 + b2, Jn = 0, Jn∗ = bΩ2.

Furthermore, by applying Corollary 2, if the jerk satisfies the condition ‖J‖ ≤ jmax, we can
calculate the maximum permissible speed on a circular helix at all trajectory points as follows:

Φ1(`) =
−Ω2

a2Ω2 + b2 , Φ2(`) = 0, Φ3(`) =
bΩ2

(a2Ω2 + b2)
3/2 .

Then

Φ(`) =
a2Ω6

(a2Ω2 + b2)
3 ,
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which implies that
‖J‖ = aΩ3,

and

� ≤
3
√

jmax
6
√

max Φ(`)
.

Then
�max =

√
a2Ω2 + b2.

Example 3. Let a particle P move along the logarithmic spiral curve. Then, the position vector of P
in Cartesian coordinates can be expressed as

X =
(

eΩt cos(Ωt),0,eΩt sin(Ωt)
)

, (30)

where t is the time and Ω the angular frequency. The velocity, acceleration, and jerk vectors can be
obtained as

V = ΩeΩt(cos(Ωt)− sin(Ωt),0, sin(Ωt) + cos(Ωt)),

A = 2Ω2eΩt(− sin(Ωt),0, cos(Ωt)),

and
J = 2Ω3eΩt(− sin(Ωt)− cos(Ωt),0, cos(Ωt)− sin(Ωt)).

From (30), we have

dx = ΩeΩt(cos(Ωt)− sin(Ωt))dt, dy = 0dt, dz = ΩeΩt(sin(Ωt) + cos(Ωt))dt.

Using (d`)2 = (dx)2 + (dy)2 + (dz)2, we obtain

d`
dt

=
√

2ΩeΩt,
d2`

dt2 =
√

2Ω2eΩt,
d3`

dt3 =
√

2Ω3eΩt.

Therefore, the arc-length ` = `(t) =
√

2
(
eΩt − 1

)
can be used to parameterize the oriented

curve traced out by the particle P as

ζ∗(`) =

(
`+
√

2√
2

cos ln

(
`+
√

2√
2

)
,0,

`+
√

2√
2

sin ln

(
`+
√

2√
2

))
. (31)

Then, from (1) and (31), we can obtain the Serret–Frenet frame as follows:

> =
1√
2

(
cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

)
, 0, cos ln

(
`+
√

2√
2

)
+ sin ln

(
`+
√

2√
2

))
,

ℵ =
1√
2

(
− cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

)
, 0, cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

))
,

and
B = (0,−1, 0).

Moreover, we can get the curvature and the torsion as

κ =
1

`+
√

2
, τ = 0.

From (7), we obtain

κ1 =
1

`+
√

2
cos θ, κ2 = − 1

`+
√

2
sin θ,
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and

κ3 = θ′(`), θ = − arctan
(

κ2

κ1

)
.

Considering (4), we get the following q-frame:

> =
1√
2

(
cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

)
, 0, cos ln

(
`+
√

2√
2

)
+ sin ln

(
`+
√

2√
2

))
,

ℵq =

(
1√
2

cos θ

(
− cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

))
,− sin θ,

1√
2

cos θ

(
cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

)))
,

and

Bq =

(
−1√

2
sin θ

(
− cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

))
,− cos θ,

−1√
2

sin θ

(
cos ln

(
`+
√

2√
2

)
− sin ln

(
`+
√

2√
2

)))
.

Therefore, by applying Theorem 1, we get the acceleration and jerk vectors with the q-frame as
follows:

A =
√

2Ω2eΩt>+
2Ω2e2Ωt

`+
√

2
cos θℵq −

2Ω2e2Ωt

`+
√

2
sin θBq,

and
J =

dA
dt

= C>>+ Cℵqℵq + CBqBq,

where

C> =
√

2Ω3eΩt − 2
√

2Ω3e3Ωt(
`+
√

2
)2 ,

Cℵq = cos θ

6Ω3e2Ωt

`+
√

2
− 2
√

2Ω3e3Ωt(
`+
√

2
)2

,

and

CBq = − sin θ

6Ω3e2Ωt

`+
√

2
− 2
√

2Ω3e3Ωt(
`+
√

2
)2

.

By considering (19) and (31), we get

λ1 =
`+
√

2
2

, λ2 =
`+
√

2
2

, λ3 = 0. (32)

In addition, from (18) and (31), we have

ζ∗(`) =

(
`+
√

2
2

)
>−

(
`+
√

2
2

)
cos θℵq +

(
`+
√

2
2

)
sin θBq.
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From (21) and (32), we obtain

n =
`+
√

2√
2

= eΩt, n∗ =
`+
√

2
2

=
1√
2

eΩt.

Therefore, by applying Theorem 2 and Corollary 1, we get the components of the acceleration
and jerk vectors as follows:

At = 2
√

2Ω2eΩt, An = −2Ω2eΩt,

and
Jt = 2

√
2Ω3eΩt, Jn = −4Ω3eΩt, Jn∗ = 0.

5. Conclusions

In terms of the Serret–Frenet frame, various resolutions of acceleration and jerk vectors
have been derived in E3. However, the Serret–Frenet frame is inadequate for studying
space curves whose curvatures have discrete zero points. As a result, at the aforementioned
points, the theories presented in these works are ineffective. However, the q-frame is well
defined for all the curves. Therefore, in the present study, we establish the acceleration and
jerk vectors in terms of this frame. Our resolutions for the acceleration and jerk vectors
are a new contribution to the field. It may be beneficial in the future for some specific
applications in various fields of science. As an application, using the jerk vector formula,
we established the maximum permissible speed on a space curve at all trajectory points.
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