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Abstract: The heat and mass transfer of the unsteady flow of a micropolar fluid over a curved
stretching surface was considered in this study. The Brownian motion and thermophoresis effects
were explored in this analysis. The effects of suction/injection cases on the curved surface were
discussed. Under flow assumptions, a mathematical model was designed employing boundary layer
approximations using partial differential equations. A suitable transformation was developed using
the lie symmetry method. Partial differential equations were transformed into ordinary differential
equations by suitable transformations. The dimensionless system was elucidated through a numerical
technique, namely bvp4c. The involved physical parameters’ influences are described in the form
of graphs as well as numerical results in the form of tables. Our current work is helpful in the
engineering and industrial fields. The unsteadiness parameter increases which Nusselt number at
increased but concentrations declined. The thermophoresis parameter increases when increasing
the Nusselt number because the small number of nanoparticles enhances the heat transfer rate. The
temperature profile declined due to increasing values of unsteadiness parameter for both cases of
suction and injection cases.

Keywords: micropolar fluid; buongiorno model; unsteady flow; curved surface; suction/injection case

1. Introduction

The heat and mass transfer of a nanofluid over a stretched curved surface has been
studied. The combination of a base fluid with nanoparticles is known as a nanofluid.
Mostly, nanoparticles in a nanofluid are a mixture of oxides, carbides, metals, and carbon
nanotube with a base fluid. The heat transfer increases with the thermal conductivity
of a nanofluid. The thermal conductivity of the nanofluid plays a vital role in the heat
transfer phenomenon. The term nanofluid was first used by Choi and Eastman [1] in 1995.
The size of nanoparticles is 1–100 nm and they are dispersed in a base fluid. Masuda
et al. [2] observed the variations in the viscosity and thermal conductivity of liquid by
the inclusion between base fluid and nanoparticles. Yu and Mittra [3] presented a simple
(FDTD) technique which can be used to study curved dielectric surfaces. Nadeem and
Lee [4] analytically considered a nanofluid over an exponentially stretching surface. They
explored the results of Brownian motion and thermophoresis on a non-linear stretching
surface. The based peristaltic hyperbolic tangent fluid flow at the curved channel examined
was studied by Nadeem and Maraj [5]. Malvandi et al. [6] elucidated the characteristics of a
nanofluid with heat generation over a porous stretching sheet. The effects of heat generation
and chemical reaction of a second-order unsteady viscoelastic fluid flow over a rotating
cone were studied by Saleem et al. [7]. Nadeem and Abbas [8] analyzed the flow behavior
of a modified nanofluid with an exponentially stretching sheet. Hosseinzadeh et al. [9]
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highlighted the impact of hybrid nanofluid flow under entropy generation. Recently, a
few researchers have discovered the flow of a nanofluid with different assumptions and
different geometries, as seen in the literature [10,11].

Micropolar fluids a microstructure and a non-symmetric stress tensor. By defining the
nonlinear relationships of shear rate and shear stress, non-viscous liquid can be studied.
The model for micropolar fluids is acceptable for biological fluids, exocytic lubricants,
colloids, liquid crystals, and animal blood. There are various factors related to non-viscous
liquids that can be studied during the studies of physical problems. Moreover, these
fluids have a viscosity that is dependent on shear. Micropolar fluids were invented by
Eringen [12]. Ahmadi [13] deliberated solutions to micropolar fluid flow considering the
effects of microinertia over a semi-infinite surface. A micropolar fluid considering mixed
convection toward a vertical sheet along uniform heat flux was obtained by Gorla [14]. The
results of a based micropolar fluid at a stretching surface were obtained by Kelson and
Desseaux [15]. The results of mixed convection of a base micropolar fluid were obtained by
Bhargava et al. [16] in the presence of porous media. Qasim et al. [17] investigated steady
micropolar fluid flow by considering a stretching surface along Newtonian heating. The
mixed convection of base micropolar fluid under a stagnant region of a vertical sheet was
explained by Ishak et al. [18]. Nadeem and Abbas [19] initiated work on hybrid nanofluid
flow under slip effects. Nadeem et al. [20] analyzed micropolar fluid flow over a Riga
surface. Several investigators (see Refs. [21,22]) highlighted the influence of micropolar
fluid flow with various assumptions and flows on various geometries.

The slip wall condition is a case where the viscous impacts at the wall are invisible.
Boundary slip is also a proper boundary condition for symmetrical surfaces. In the slip
wall condition, the normal velocity is zero, but the tangential velocity is not zero. The
boundary-layer theory is very effective for non-Newtonian fluid models and has received
great attention in the last few years. Such flows are important in lessening the drag friction
forces and enlarging the rate of transfer heat. The study of slip effects play a vital role in
micropumps, micronozzles, microvalves, and hard disk drives. The no-slip condition is
considered when the relative velocity between the fluid and boundary is zero. Saffman [23]
studied the experiments on mass efflux and verified the presence of a non-zero tangential
velocity on the surface of a permeable boundary. Chellam et al. [24] reported the impact of
mass transfer as well as fluid flow in the occurrence of uniformly porous slip boundaries.
Slip effects under a base micropolar fluid in vertical porous sheets were discussed by
Chaudhary and Preethi [25]. Sharma [26] discussed the flow of fluctuating mass and
thermal diffusion with slip conditions at a vertical plate. The MHD flow of a nanofluid
with slip conditions was explored for a permeable sheet by Ibrahim and Shankar [27]. The
slip effects on a porous channel with micropolar fluid in a stretching/shrinking porous
medium were investigated by Xinhui et al. [28]. Several investigators (see Refs. [29,30])
have been highlighted the effects of a stretching surface.

We discussed the unsteady flow of a micropolar fluid over a curved surface. Math-
ematical developed under the flow assumptions, the partial differential equations are
transformed into ordinary differential equations. A nonlinear system of equations was
created by implementing the bvp4c numerical procedure. The effect of the physical pa-
rameters is highlighted using graphs and tables. Our current work will be helpful in the
engineering and industrial fields. No one has discussed this model before. These results
are utilized which helped in the fields of engineering and industry.

2. Materials and Methods

We discussed base micropolar fluids with the Buongiorno model at a permeable
curved surface. In the flow direction, the arc length is s, and the normal to tangent vector
is r which is shown in Figure 1a,b. Figure 1a,b shows the geometry of the stretching.
The surface is stretched, where vw is in the S-direction and c is constant, while vw occurs
because of the porous surface, which characterizes two cases: vw < 0 and vw > 0, which
are related to injection and suction, respectively.
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With the boundary layer approximations as well as the above assumptions, the gov-
erning equations for the flow problem and mathematical model were developed as follows
(see Refs. [31,32]):

1
R + r

∂

∂r
(v(r + R)) +

R
R + r

∂u
∂s

= 0, (1)

u2

R + r
=

1
ρ f

∂p
∂r

, (2)

(
∂u
∂t

+ v
∂u
∂r

+
Ru

R + r
∂u
∂s

+
vu

R + r

)
+

1
ρ f

1
R + r

∂p
∂r

= ( 1 + K1)

(
∂2u
∂2r

+
1

R + r
∂u
∂r
− u

(R + r)2

)
− K1

2
∂N
∂r

, (3)

(
∂N
∂t

+ v
∂N
∂r

+
RN

R + r
∂N
∂s

)
= ( 1 + K1/2)

(
∂2N
∂2r

+
1

R + r
∂N
∂r

)
− K1

2

(
∂N
∂r

+ 2N +
u

R + r

)
, (4)

(
∂T
∂t

+ v
∂T
∂r

+
Ru

R + r
∂T
∂s

)
+

∂qr

∂r
= α f

(
∂2T
∂2r

+
1

R + r
∂T
∂r

)
+

(
ρcp

ρc f

)(
DB

(
∂C
∂r

)(
∂T
∂r

)
+

(
DT
T∞

)(
∂T
∂r

)2
)

, (5)

(
∂C
∂t

+ v
∂C
∂r

+
Ru

R + r
∂C
∂s

)
−
(

DT
T∞

)(
∂2T
∂2r

+
1

R + r
∂T
∂r

)
= DB

(
∂2C
∂2r

+
1

R + r
∂C
∂r

)
. (6)

The respective boundary conditions are:

u = Uw + λ2

(
∂u
∂r −

u
R+r

)
, v = Vw, T = Tw + λ1

(
∂T
∂r

)
, DB

(
∂C
∂r

)
+
(

DT
T∞

)(
∂T
∂r

)
= 0, N = −n ∂U

∂r , at r → 0,

u→ u∞, ∂u
∂r → 0, N → 0, T → T∞, C → C∞, at r → ∞.

(7)

The similarity variables are presented as (see Refs. [33–35]):

T = T∞ + (Tw − T∞)θ(ζ), ζ =
√

a
ν f (1−αt) r, u = as

1−αt F′(ζ),

v = − R
r+R

√ aν f
(1−αt) F(ζ), N = as

1−αt

√
a

ν f (1−αt)G(ζ),

C = C∞ + (Cw − C∞)φ(ζ), P = ρa2s2 p(ζ)
(1−αt)2 .

(8)
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Equation (8), for dimensionless terms, was utilized in Equations (1)–(7), which then
become dimensionless, as follows:

P′ =
F′2

ζ + K0
(9)

2K
ζ+K0

P = (1 + K1)

[
F′′′ + F′′

ζ+K0
− F′

(ζ+K0)
2

]
− K0

ζ+K0
F′2 + K0

ζ+K0
F′F′′ + K0

(ζ+K0)
2 FF′ − KG′

− β0

(
ζ
2 F′′ + F′

)
,

(10)

(
1 +

K1

2

)[
G′′ +

G′

ζ + k

]
− K0

(ζ + K0)
F′G +

K0

(ζ + K0)
FG′ − K1

(
2G + F′′ +

1
ζ + K0

F′
)
+

β0

2
(
ζG′ + G

)
, (11)

1
Pr

(
θ′′ +

1
ζ + K0

θ′
)
+

K0

ζ + K0
Fθ′ − K0

ζ + K0
θ +

(
NBθ′φ′ + NTθ′θ′

)
− β0

2
(
ζθ′
)
= 0, (12)

(
φ′′ +

1
ζ + K0

φ′
)
+

K0

ζ + K0
Fφ′ − K0

ζ + K0
φ +

NB
NT

(
θ′′ +

1
ζ + K0

θ′
)
− β0

2
(
ζφ′
)
= 0, (13)

The pressure profile can be computed as

P(ζ) = ζ+K0
2K0

(
(1 + K1)

[
F′′′ + F′′

ζ+K0
− F′

(ζ+K0)
2

]
− K0

ζ+K0
F′2 + K0

ζ+K0
F′F′′ + K0

(ζ+K0)
2 FF′ − KG′

− β0

(
ζ
2 F′′ + F′

))
.

Dismissing the pressure term, we obtain

(1 + K1)

(
F
′′′′

+ 2
ζ+K0

F′′′ − 1
(ζ+K0)

2 F′′ + 1
(ζ+K0)

3 F′
)
− K0

ζ+K0
(F′′ F′ − FF′′′ )− K0

(ζ+K0)
2

(
F′2 − FF′′

)
− K0

(ζ+K0)
3 FF′ − K

(
G′′ + G′

K0+ζ

)
− β0

ζ+K0

(
F′ + ζ

2 F′′
)
− β0

2 (3F′′ + ζF′′′ ) = 0,
(14)

(
1 +

K1

2

)[
G′′ +

G′

ζ + K0

]
− K0

(ζ + K0)
F′G +

K0

(ζ + K0)
FG′ − K1

(
2G + F′′ +

1
ζ + K0

F′
)
+

β0

2
(
ζG′ + G

)
, (15)

1
Pr

(
θ′′ +

1
ζ + K0

θ′
)
+

K0

ζ + K0
Fθ′ − K0

ζ + K0
θ +

(
NBθ′φ′ + NTθ′θ′

)
− β0

2
(
ζθ′
)
= 0, (16)

(
φ′′ +

1
ζ + K0

φ′
)
+

K0

ζ + K0
Fφ′ − K0

ζ + K0
φ +

NB
NT

(
θ′′ +

1
ζ + K0

θ′
)
− β0

2
(
ζφ′
)
= 0, (17)

with boundary conditions of

F(0) = ω, F′(0) = λ + Π
(

F′′ (0)− F′(0)
K0

)
, F′(∞) = 1,

F′′ (∞) = 0, G(0) = −nF′′ (0), G(∞) = 0, NBφ′(0) + NTθ′(0) = 0,
δθ′(0) + 1 = θ(0), θ(∞) = 0, φ(∞) = 0.

(18)

The physical interest is defined as

C f =
τrs

ρ f u2
w

, Ns =
sqw

k f (Tw − T∞)
, Shs =

shm

DB(Cw − C∞)
, Cm =

τm

ρhn f u2
w

, (19)

where the quantities (τrs and qw) are calculated as:
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τrs = (1 + K)
(

∂u
∂r −

u
R+r

)
r=0

, τm = ( 1 + K/2)
(

∂N
∂r + N

R+r

)
r=0

,

qw = −
(

∂T
∂r

)
r=0

, hm = −
(

∂C
∂r

)
r=0

.
(20)

Using Equation (19) in Equation (20), then we obtain

Re−1/2
s C f = (1 + K)

(
F′′ (0)− F′(0)

K0

)
, (21)

ResCm =

(
1 +

K
2

)(
G′(0)− nF′′ (0)

K0

)
, (22)

Re−1/2
s Nus = −θ′(0), (23)

Re−1/2
s Shs = −φ′(0) (24)

where Res is the local Reynold number.

3. Numerical Procedure

Equations (14)–(18) were numerically elucidated using the Matlab program, and we
employed the bvp4c function to solve the above system. The tolerance level is 10−5. The
following procedure was available:

f (ζ) = S(1); f ′(ζ) = S(2); f ′′ (ζ) = S(3); f ′′′ (ζ) = S(4); SS1 = f ′′′′ (ζ);
G(ζ) = S(5); G′(ζ) = S(6); G′′ (ζ) = SS2; θ(ζ) = S(7); θ′(ζ) = S(8); θ′′ (ζ) = SS3; φ(ζ) = S(9);

φ′(ζ) = S(10); φ′′ (ζ) = SS4;
(25)

SS1 = −
(

2
x+K0

S(4)− 1
(x+K0)

2 S(3) + 1
(x+K0)

3 S(2)
)
−
(

1
(1+K1)

) (
− K0

x+K0
S(3)S(2)− S(4)S(1)

)
− K0

(x+K0)
2 (S(2)S(2)− S(1)S(3))− K0

(x+K0)
3 S(1)S(2)− K1

(
SS2 + S(6)

K0+x

)
− β0

x+K0

(
S(2) + x

2 S(3)
)
− β0

2 (3S(3) + xS(4)));

(26)

SS2 = S(6)
x+K0

−
(

1 + K1
2

)−1(
− K0

(x+K0)
S(2)S(5) + K0

(x+K0)
S(1)S(6)− K1

(
2S(5) + S(3) + 1

x+K0
S(2)

)
+ β0

2 (xS(6) + S(5))
)

;
(27)

SS3 = − S(8)
x + K0

−
(

1
Pr

)−1( K0

x + K0
S(1)S(8)− K0

x + K0
S(8) + (NBS(7)S(10) + NTS(8)S(8))− β0

2
(xS(8))

)
; (28)

SS4 = −
(

1
x + K0

S(10) +
K0

x + K0
S(1)S(10)− K0

x + K0
S(9) +

NB
NT

(
SS3 +

1
x + K0

S(8)
)
− β0

2
(xS(10))

)
; (29)

The relevant boundary conditions were

S0(1)−ω; S0(2)− λ−Π
(

S0(3)− S0(2)
K0

)
; Sin f (2)− 1; Sin f (3); S0(5) + nS0(3);

Sin f (5); NBS0(10) + NTS0(8); δS0(8) + 1− S0(7); Sin f (7); Sin f (9);
(30)

4. Results and Discussion

The present problem was solved numerically by using the bvp4c/shooting procedure.
The effect of distinct parameters is graphically portrayed along the temperature and concen-
tration profiles. Figures 2–5 depict the variation in temperature profiles along the distinct
values of flow parameters. Figure 2 shows that by enlarging the value of the unsteadiness
parameter β0, the temperature profile declines for in the cases of both suction and injection.
A physical increase in β0 causes an increase in the thickness of the thermal layer. In Figure 3,
the variation in the temperature plot is displayed against the thermophoresis parameter.
Figure 3 shows the impacts of NT on the temperature profile. The temperature profile
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reduced due to increasing values of NT . Physically, NT is directly proportional to the heat
thermal coefficient which arises with fluid; hence, the heat transfer rate at the surface
diminishes. In Figure 4, the variation in the temperature plot is displayed against the
thermal slip parameter. Figure 4 reveals that the value of δ increases when the temperature
plot is reduced. Physically, δ is directly proportional to the heat thermal coefficient which
arises with fluid; hence, the heat transfer rate at the surface diminishes. In Figure 5, it
is shown that θ(ζ) decreases with greater values of K0 in the cases of both suction and
injection. Figures 6 and 7 illustrate the variation in the concentration field for altered
values of physical parameters. Figure 6 shows the diversity in the concentration profile for
different values of the unsteadiness parameter. It is clarified that the concentration field
decreases for the parameter of β0 in the cases of both suction and injection. Figure 7 shows
that the concentration field is reduced due to enhancement in the values of NB.
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Tables 1 and 2 present the influence of several physical parameters on the Re1/2
s Cf,

Re1/2
s Nus , and Re1/2

s Cm for micropolar nanofluid. We also acknowledge the influence of
strong and weak concentrations. The effects of δ on Re1/2

s Nus are shown. It is noted
that δ increases as the value of Re1/2

s Nus decreases, because the thermal slip reduces the
heat transfer rate on the curved surface. The value of Re1/2

s Nus declines in the case of a
weak concentration correlated to a strong concentration. Thermal slip does not influence
Re1/2

s Cf or Re1/2
s Cm. In terms of the impacts of Π on Re1/2

s Cf, Re1/2
s Nus , and Re1/2

s Cm, it
is observed that the value of Π increases as the values of Re1/2

s Cf, Re1/2
s Nus , and Re1/2

s Cm
increase, because the slip velocity increases, which increased in heat transfer, Re1/2

s Cm, or
skin frictions because the motion of the fluid flow increases. The Re1/2

s Cf, Re1/2
s Nus , and

Re1/2
s Cm values decline when a weak concentration is correlated to a strong concentration.

In terms of the influence of λ on the Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm values, it is observed

that the value of λ increases as the Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm values increase which

increase in heat transfer, Re1/2
s Cm, and skin frictions due to the increase in the motion of

the fluid flow. In terms of the influence of ω on the Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm, it

is seen that the values of Re1/2
s Cf and Re1/2

s Cm decrease with an increase in ω due to the
suction flow, which prevents any decreases in the skin friction and Re1/2

s Cm. Meanwhile,
the Re1/2

s Nus value increases as the ω heat transfer rate increases. The Re1/2
s Cf, Re1/2

s Nus ,
and Re1/2

s Cm values decrease in the case of n = 0.5 compared to when n = 0. In terms of
the impact of K0 on the Re1/2

s Cf, Re1/2
s Nus , and Re1/2

s Cm, it is seen that the Re1/2
s Cf and

Re1/2
s Cm values decrease with an increase in K0 due to the increased values of curvature,

which force a reduction in the skin friction and Re1/2
s Cm values. Meanwhile, the Re1/2

s Nus

value increases with larger values of K0 because the increases in the values of the curvature
parameter prevent the heat transfer rate at the surface from increasing. The Re1/2

s Cf,
Re1/2

s Nus , and Re1/2
s Cm values decrease in the case of a weak concentration as compared

to that of a strong concentration. In terms of the effects of K1 on Re1/2
s Cf, Re1/2

s Nus , and
Re1/2

s Cm, it is seen that the Re1/2
s Cf and Re1/2

s Cm values increase with an increase in K1
because the values of the micropolar parameter are increased, which prevent any decreases
in skin friction and Re1/2

s Cm. Meanwhile, the Re1/2
s Nus value decreases as the value of K1

increases, because decreasing the values of the micropolar parameter forces reductions to
the heat transfer rate at the surface to occur. In terms of the influence of T0 on Re1/2

s Cf,
Re1/2

s Nus , and Re1/2
s Cm, it is seen that the Re1/2

s Cf and Re1/2
s Cm values increase with an

increase in T0 because the skin friction enhances due to the heat, while Re1/2
s Nus declines

with as the values of T0 increase because radiation increases, which reduces the heat
transfer rate at the surface. In terms of the impact of NT on Re1/2

s Nus , it is noted that NT
increases as Re1/2

s Nus increases because the small number of nanoparticles enhances the
heat transfer rate of the wall. There are no effects of thermal slip on Re1/2

s Cf and Re1/2
s Cm.

The impact of NB on Re1/2
s Nus is shown. It is noted that NB increases with decreased

Re1/2
s Nus due to the collision of fluid and nanoparticles, which reduce the heat transfer rate

at the surface. No impacts of δ on Re1/2
s Cf or Re1/2

s Cm were found. In terms of the effects
of β0 on Re1/2

s Cf, Re1/2
s Nus , and Re1/2

s Cm, it is seen that the Re1/2
s Cf and Re1/2

s Cm values
increase with an increase in β0, while Re1/2

s Nus decreases with larger values of β0, because
the decreasing values of unsteadiness force a decline in the heat transfer rate at the surface.
Table 3 compares the present analysis with Nogrehabadi et al. [36] and Sahoo and Do [37]
for Re1/2

s Cf with diverse values of the suction parameter.



Symmetry 2022, 14, 1629 10 of 14

Table 1. Computational analysis of Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm for physical values when

n = 0.0.

β0 NB NT T0 K1 K0 ω λ Π δ Re1/2
s Nus Re1/2

s Cf Re1/2
s Cm

0.10 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 1.2700 0.3774 −0.6640

0.30 1.0252 1.6475 −1.5880

0.50 0.3034 1.8409 −2.3542

0.70 0.0525 2.2916 −3.4971

0.50 0.10 1.3240 1.5409 −3.3542

0.30 1.3170 1.5409 −3.3542

0.50 1.3034 1.5409 −3.3542

0.70 1.2840 1.5409 −3.3542

0.50 0.10 1.2245 1.5409 −3.3542

0.30 1.2862 1.5409 −3.3542

0.50 1.3034 1.5409 −3.3542

0.70 1.3137 1.5409 −3.3542

0.50 0.10 1.4242 1.3640 −2.8175

0.30 1.3583 1.4737 −3.0859

0.50 1.3034 1.5409 −3.3542

0.70 1.2569 1.5655 −3.6225

0.50 0.10 1.2831 −0.7659 −0.5922

0.30 1.2956 1.6675 −1.1999

0.50 1.3296 1.8126 −2.2200

0.70 1.8271 2.2740 2.5751

0.50 0.10 1.3156 −0.8746 −0.3638

0.30 1.2361 −1.2702 −1.1912

0.50 1.1296 −1.5126 −1.2200

0.70 1.0426 −2.4959 −1.6223

0.50 0.00 1.2849 2.1518 −4.0259

0.20 1.3074 1.8256 −3.6167

0.40 1.3296 1.5126 −3.2200

0.60 1.3514 1.2097 −2.8323

0.40 0.00 1.0927 −1.4449 −2.6394

0.20 1.1381 −1.6614 −3.0333

0.40 1.3296 −1.8126 −3.2200

0.60 1.3370 −2.0450 −3.4929

0.40 0.00 1.0863 0.9174 −2.0755

0.20 1.2045 −1.3762 −2.2529

0.40 1.3296 −1.5126 −3.2200

0.60 1.4658 −2.0693 −3.4202

0.40 0.00 2.7467 1.5126 −3.2200

0.20 1.7981 1.5126 −3.2200

0.40 1.3296 1.5126 −3.2200

0.60 1.0529 1.5126 −3.2200
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Table 2. Computational analysis of Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm for physical values when

n = 0.5.

β0 NB NT T0 K1 K0 ω λ Π δ Re1/2
s Nus Re1/2

s Cf Re1/2
s Cm

0.10 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 1.2387 −0.4436 −0.4829

0.30 1.3774 −0.5491 −0.5038

0.50 1.4413 −1.0546 −1.4398

0.70 1.5472 −1.1999 −1.7156

0.50 0.10 1.1634 −1.0546 −1.4398

0.30 1.0559 −1.0546 −1.4398

0.50 1.0413 −1.0546 −1.4398

0.70 1.0206 −1.0546 −1.4398

0.50 0.10 0.9572 −1.0546 −1.4398

0.30 1.0226 −1.0546 −1.4398

0.50 1.0413 −1.0546 −1.4398

0.70 1.0526 −1.0546 −1.4398

0.50 0.10 1.1131 −0.9813 −1.2598

0.30 1.0630 −1.0395 −1.3798

0.50 1.0215 −1.0606 −1.4998

0.70 0.9862 −1.0447 −1.6198

0.50 0.10 0.9124 −2.2180 −1.5941

0.30 1.0343 −1.3561 −1.5290

0.50 1.0413 −1.0546 −1.4398

0.70 0.5037 −22.9779 10.7449

0.50 0.10 1.5078 −1.9102 −1.9608

0.30 0.6701 −1.3918 −2.1640

0.50 0.3413 −1.0546 −2.4398

0.70 0.1856 −1.0211 −3.2148

0.50 0.00 0.9768 −1.0076 −1.2888

0.20 1.0094 −1.0319 −1.3616

0.40 1.0413 −1.0546 −1.4398

0.60 1.0727 −1.0764 −1.5233

0.40 0.00 1.0273 −1.0219 −1.1099

0.20 1.0362 −1.0530 −1.3134

0.40 1.0413 −1.0546 −1.4398

0.60 1.2837 −1.0807 −1.5794

0.40 0.00 0.5517 −1.0230 −0.7457

0.20 0.6602 −1.0463 −0.8614

0.40 1.0413 −1.0546 −1.4398

0.60 1.2326 −1.0736 −1.6826

0.40 0.00 2.1024 −1.0546 −1.4398

0.20 1.3965 −1.0546 −1.4398

0.40 1.0413 −1.0546 −1.4398

0.60 0.8296 −1.0546 −1.4398
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Table 3. The present results compared with Nogrehabadi et al. [36] and Sahoo and Do [37] for
Re1/2

s Cf when rest of physical parameters are zero and K0 → 10, 000 .

ω Sahoo and Do [33] Nogrehabadi et al. [34] Present Results

0.00 1.00112 1.00021 1.00001

0.10 0.87143 0.87204 0.871721

0.20 0.77491 0.77633 0.776014

0.30 0.69974 0.70152 0.700910

0.50 0.58912 0.59110 0.591021

1.00 0.42841 0.43011 0.430211

5. Final Remarks

We analyzed micropolar fluid flow over a stretched curved surface. The results of the
dimensionless system and physical parameters that appeared under the flow assumptions
were elaborated upon through graphs and tables. The main achievements of the current
analysis are highlighted below:

• In terms of the values of Re1/2
s Cf, Re1/2

s Nus , and Re1/2
s Cm, a weak concentration

(n = 0.5) enables greater values in comparison to a strong concentration (n = 0.0).
• The temperature profile achieves greater values near the surface in the case of ω > 0

as compared to ω < 0.
• Surprisingly, the concentration profile achieves greater values near the surface in the

case of ω > 0 as compared to ω < 0 due to increments in the β0 and NB.
• The unsteadiness parameter increases, which resists increases in the Nusselt number

in a strong concentration (n = 0.0) but declines in a weak concentration (n = 0.5).
• The thermophoresis parameter increases as the Nusselt number increases because the

small number of nanoparticles enhances the heat transfer rate.
• The higher value of the unsteadiness parameter β0, the lower the temperature profile

for the cases of both suction and injection.
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Nomenclature

ε (1) Non-dimensional parameter
Res (1) Reynolds number
λ (1) Stretching parameter
N (m/s) Angular velocity components
u, v (m) Velocity components
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K0 (1) Curvature parameter
u (m/s) Velocity vector r-direction
Shs (1) Sherwood number
NT (1) Thermophoresis parameter
n (1) Microgyration
ω (1) Stretching parameter
α
(
m2/s

)
Thermal diffusivity

T (K) Temperature
Tw (K) Wall temperature
λ (1) Stretching parameter
K1 (1) Micropolar parameter
k
(
Ns/m2) Vertex viscosity(

cp
)

f (J/kg K) Heat capacity of fluid
s (m) Arc length
NB (1) Brownian motion parameter
τrs (pa) Wall shear stress
Tw (K) Wall temperature
Pr (1) Prandtl number
R (m) Radius of curvature
ρ
(
kg/m3) Fluid density

T∞ (K) Ambient temperature
µ
(
Ns/m2) Dynamic viscosity

T∞ (K) Ambient temperature
Π (1) Velocity slip
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