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Abstract: This paper deals with the existence and multiplicity of solutions for a perturbed nonlocal
fourth-order class of p(·)&q(·)-Kirchhoff elliptic systems under Navier boundary conditions. By
using the variational method and Ricceri’s critical point theorem, we can find a proper conditions
to ensure that the perturbed fourth-order of (p(x), q(x))-Kirchhoff systems has at least three weak
solutions. We have extended and improved some recent results. The complexity of the combination
of variable exponent theory and fourth-order Kirchhoff systems makes the results of this work novel
and new contribution. Finally, a very concrete example is given to illustrate the applications of
our results.

Keywords: multiple solutions; three critical points theory; (p(x), q(x))-Kirchhoff system;
p(x)-biharmonic operator; variational method

1. Introduction

The presence of the variable exponent p(.) provides the fundamental motivation for
the study of fourth-order partial differential equations, which makes us open the door to
applications for utilizing extremely nonhomogeneous materials that are nowadays becom-
ing increasingly common in industry. One of them has to do with electrorheological fluids,
which were found in 1949 by Willis Winslow [1]. These fluids are especially viscous liquids
and can significantly change their mechanical properties when they contact an electric
field (see Acerbi and Mingione [2], Ružička [3]).Other known applications are related to
image restoration (see Chen, Levine and Rao [4]), elastic materials (see Boureanu [5] and
Zhikov [6]), mathematical biology (see Fragnelli [7]), dielectric breakdown and electrical
resistance (see Bocea and Mihăilescu [8], polycrystal plasticity (see Bocea, Mihăilescu and
Popovici [9]) and models of diffusion in sandpiles (see Bocea, Mihăilescu, Perez-Llanos and
Rossi [10]).

Problem (3) is a nonlocal problem because of the presence of the term M, which
suggests that the equation in (1) is no longer a pointwise identity. Mathematical difficulties
arise when attempting to solve problems in calculus. These difficulties provide researchers
with an interesting and challenging area of study. Problem (3) is an extension of a model
proposed by Kirchhoff [11]. Moreover, Kirchhoff suggested a model that was defined by
the form

ρ
∂2u
∂t2 −

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2dx

)
∂2u
∂x2 = 0, (1)
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which extends D’ Alembert’s wave equation. One notable feature of model (1) is that it

contains a nonlocal term ρ0
h + E

2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2dx. The parameters L, h, E, ρ, ρ0 in model (1)

represent different physical meanings, which we will not cover here.
It is important to note that if p(.) is a constant, then problem (3) has recently been

the subject of extensive research. For example, in [12], Nguyen Thanh Chung studied
the existence of non-trivial solutions for the following Kirchhoff-type system involving
p-biharmonic operator

M
(∫

Ω |∆u|pdx
)
∆
(
|∆u|p−2∆u

)
= |u|p∗−2u + Fu(x, u, v) in Ω,

−M
(∫

Ω |∆v|pdx
)
∆
(
|∆v|p−2∆v

)
= |v|p∗∗−2v + Fv(x, u, v) in Ω,

u = ∂u
∂v = 0, v = ∂v

∂v = 0 on ∂Ω.

After that, in [13], the authors proved the existence of infinitely many weak solu-
tions for (p(x), q(x))-Laplacian-like system, originating from capillary phenomenon of the
following form:

−div((1 + |∇u|p(x)√
1+|∇u|2p(x)

)|∇u|p(x)−2∇u) = λFu(x, u, v) in Ω,

−div((1 + |∇v|q(x)√
1+|∇v|2q(x)

)|∇v|q(x)−2∇v) = λFv(x, u, v) in Ω,

u = ∂u
∂v = 0, v = ∂v

∂v = 0 on ∂Ω.

For more research on such (p(x), q(x))-Laplacian problems, the interested reader can
refer to the literature [14,15]. In order to consider such problems with variable exponents,
we need to use the novel theory of variable exponents Lebesgue and Sobolev spaces. Over
the past few decades, these spaces have attracted considerable attention (see Cruz-Uribe
and Fiorenza [16], Rădulescu and Repovš [17], Diening, Harjulehto, Hästö and Ružička [18])
and references therein). In [19], Avci et al. investigated the existence and multiplicity of the
solutions for the following p(·)-Kirchhoff-type problem −M

(∫
Ω

1
p(x)
|∇u|p(x)dx

)
∆p(x)u = f (x, u) in Ω,

u = 0 on ∂Ω
(2)

by means of Krasnoselskii’s genus theory. Furthermore, the authors studied a gradient type
system with variable exponents and were able to formulate criteria that guaranteed the
existence of solutions to the problem in [20] with the help of Ekeland Variational Principle.
Our results not only provide a generalization to previous results but also give new contri-
butions in fourth-order elliptic problems. Our aim is to consider the following nonlocal
fourth-order systems of p(·) & q(·)-Kirchhoff type

−M1

(∫
Ω

|∆u|p(x) + |u|p(x)

p(x)
dx

)(
∆2

p(x)u− |u|
p(x)−2u

)
= λFu(x, u, v) + µGu(x, u, v) in Ω,

−M2

(∫
Ω

|∆v|q(x) + |v|q(x)

q(x)
dx

)(
∆2

q(x)v− |v|
q(x)−2v

)
= λFv(x, u, v) + µGv(x, u, v) in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω,

(3)

where N ≥ 2, Ω ⊂ RN is bounded and its boundary ∂Ω is also smooth, ∆2
p(x)u =

∆(|∆u|p(x)−2∆u) is a p(x)-biharmonic operator and the two functions p, q are continu-
ous on Ω.

When p(x) = p, the p(x)-biharmonic operator ∆2
p(x) reduces to p-biharmonic. The

study of fourth-order partial differential equations with constant exponent has intensively
developed in recent years. It has a large variety of applications (see Dănet [21], Ferrero
and Warnault [22], Myers [23] and references therein). Moreover, many articles [24–28] had
investigated p-Kirchhoff type elliptic equations in recent years. The authors use a variety
of methods to investigate the existence of solutions to problem (3) in the case of p(x) = p.
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However, there are few authors are interested in the existence and diversity of solutions
for situations affecting p(x)-biharmonic operators. Inspired by the above literature, we
study the existence and multiplicity of solutions for problem (3).

The structure of this paper is as follows: The second part introduces the knowledge of
space theory and related lemmas, the third part presents the main results and proofs, and
the fourth part considers an important application of the results.

2. Preliminaries

In order to study problem (3), we need knowledge of variable exponent Lebesgue
Spaces and Sobolev space theory, as well as some properties of p(x)-biharmonic operators.

The generalized Lebesgue space is defined as follows:

Lp(x)(Ω) =

{
u : Ω −→ R is measurable and

∫
Ω
|u(x)|p(x)dx < ∞

}
,

where p ∈ C+(Ω) =
{

p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω
}

. The norm of Lp(x)(Ω) is that

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)
dx ≤ 1

}
,

and the space (Lp(x)(Ω), |.|p(x)) is a Banach.
Denote

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x),

and for all x ∈ Ω and k ≥ 1

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,
+∞ if p(x) ≥ N,

and

p∗k (x) =

{
Np(x)

N−kp(x) if kp(x) < N,
+∞ if kp(x) ≥ N.

Proposition 1 (Fan and Zhao [29]). Let p, r ∈ C+(Ω), if r(x) ≤ p∗k (x) for any x ∈ Ω, then the
embedding

Wk,p(x)(Ω) ↪→ Lr(x)(Ω)

is continuous and if r(x) < p∗k (x), then the above embedding is compact.

In the proposition above, the variable exponent Sobolev space Wk,p(x)(Ω) is defined
by

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαN
N

, α = (α1, α2, . . . , αN) with |α| =
i=N

∑
i=1

αi,

whose norm is
‖u‖k,p(x) = ∑

|α|≤k
|Dαu|p(x).

It is well known that the Banach space Wk,p(x)(Ω) is also a separable and reflexive
space due to [29–32].
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We know that the space Wk,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in Wk,p(x)(Ω). Obviously,

the Banach space
(

W2,p(x)(Ω) ∩W1,p(x)
0 (Ω), ‖u‖p(x)

)
is separable and reflexive, where

‖u‖p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣∆u
µ

∣∣∣∣p(x)
dx ≤ 1.

}
.

Remark 1. According to [33], the two norms ‖u‖2,p(x) and ‖∆u‖p(x) are equivalent

in W2,p(x)(Ω) ∩W1,p(x)
0 (Ω). Consequently, the norms ‖.‖2,p(x), ‖.‖p(x) and ‖∆.‖p(x) are also

equivalent.

In order to find weak solutions of problem (3), we define the following work space

X =
(

W2,p(x)(Ω) ∩W1,p(x)
0 (Ω)

)
×
(

W2,q(x)(Ω) ∩W1,q(x)
0 (Ω)

)
,

equipped with the norm ‖(u, v)‖ = max
{
‖u‖p(x), ‖v‖q(x)

}
.

When p−, q− > N, the spaces W2,p(x)(Ω) and W2,q(x)(Ω) are compactly embedded in
C(Ω), so

K = max

 sup
u∈W2,p(x)(Ω)

‖u‖∞

‖u‖p(x)
; sup

v∈W2,q(x)(Ω)

‖v‖∞

‖v‖q(x)

. (4)

Proposition 2. Ref. [34] Suppose that

Jp(x)(u) =
∫

Ω
|∆u|p(x)dx,

then for any u, un ∈ X we have that

(i) ‖u‖p(x) < 1 (=1;>1)⇐⇒ Jp(x)(u) < 1 (=1;>1),

(ii) ‖u‖p(x) ≤ 1 =⇒ ‖u‖p+

p(x) ≤ J(u)p(x) ≤ ‖u‖
p−

p(x),

(iii) ‖u‖p(x) ≥ 1 =⇒ ‖u‖p−

p(x) ≤ J(u)p(x) ≤ ‖u‖
p+

p(x),

(iv) ‖un‖p(x) −→ 0⇐⇒ Jp(x)(un) −→ 0,
(v) ‖un‖p(x) −→ ∞⇐⇒ Jp(x)(un) −→ ∞.

To obtain our main result, we need to make the following assumptions about the
functions M, F and G:

(M0) The continuous functions M1 and M2 : R+ → R+ are increasing and fulfilling that
M1(t), M2(t) ≥ m0 > 0 for any t ≥ 0.
F ∈ C1 : Ω×R2 → R and satisfying the following two conditions:

(F0) There exist α, β ∈ C+(Ω) with 1 < α− ≤ α+ 1 < β− ≤ β+ and

1 + α+

p−
+

1 + β+

q−
< 1, (5)

such that

|Fs(x, s, t)| ≤ C|s|α(x)|t|β(x)+1, |Ft(x, s, t)| ≤ C|s|α(x)+1|t|β(x), ∀(x, s, t) ∈ Ω×R2,

for some positive constant C.

(F1) F(x, s, t) > 0 for all x ∈ Ω, s > s0 > 1 and t > t0 > 1.
F(x, s, t) ≤ 0 for all x ∈ Ω and s, t ∈ [0, 1).
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G : Ω×R2 → R is function such that G(., s, t) is measurable in Ω for all (s, t) ∈ R2

and G(x, ., .) is continuously differentiable in R2 for example x ∈ Ω, Gu, Gy are the
partial derivatives of G which satisfy the following condition.

(G0) sup
|s|≤σ,|t|≤σ

(|Gu(., s, t) + Gv(., s, t)|) ∈ L1(Ω), ∀σ > 0.

3. Main Results and Proofs

Define

Φ(u, v) = M̂1

(∫
Ω

|∆u|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|∆v|q(x)

q(x)
dx

)
,

Ψ(u, v) = −
∫

Ω
F(x, u, v)dx, J(u, v) = −

∫
Ω

G(x, u, v)dx,

where M̂i(t) =
∫ t

0
Mi(s)ds (i = 1, 2).

Definition 1. (u, v) ∈ X is a weak solution of problem (3) if only and if

M1

(∫
Ω

|∆u|p(x)

p(x)
dx

) ∫
Ω
|∆u|p(x)−2∆u∆ϕdx + M2

(∫
Ω

|∆v|q(x)

q(x)
dx

) ∫
Ω
|∆v|q(x)−2∆v∆ψdx

= λ
∫

Ω
Fu(x, u, v)dx + λ

∫
Ω

Fv(x, u, v)dx + µ
∫

Ω
Gu(x, u, v)dx + µ

∫
Ω

Gv(x, u, v)dx,

for all (ϕ, ψ) ∈ X.

According to problem (3), we define the following energy functional

I(u, v) = Φ(u, v) + λΨ(u, v) + µJ(u, v) : X −→ R.

Clearly, I ∈ C1(X,R), whose critical points correspond to weak solutions of problem (3).
Our main result is as follows:

Theorem 1. If (M0), (F0)–(F1) and (G0) hold, then there exist ρ, δ > 0 and an open interval
Λ ⊆ [0,+∞) such that for any λ ∈ Λ and µ ∈ [0, δ], problem (3) has at least three solutions in X
whose norms are less than ρ.

To demonstrate our primary result, we will employ the Ricceri three points theo-
rem [35].

Theorem 2. Ref. [35] Let real Banach space X be separable and reflexive, the continuous Gâteaux
differentiable functional Φ : X −→ R be sequentially weakly lower semicontinuous, whose Gâteaux
derivative has a continuous inverse on X∗ and the Gâteaux derivatives of continuous Gâteaux
differentiable functionals Ψ, J be compact. Assume that the following assertions:

(1) lim
‖u‖X→∞

(Φ(u) + λΨ(u)) = ±∞ for all λ > 0.

(2) There exist r ∈ R and u0, u1 ∈ X such that

Φ(u0) < r < Φ(u1).

(3)

inf
u∈Φ−1]−∞,r]

Ψ(u) >
(Φ(u1)− r)Ψ(u0) + (r−Φ(u0))Ψ(u1)

Φ(u1)−Φ(u0)
.
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Then there exist ρ, δ > 0 and an open interval Λ ⊆ [0,+∞) such that for any λ ∈ Λ and
µ ∈ [0, δ], the equation

Φ
′
(u) + λΨ

′
(u) + µJ

′
(u) = 0

has at least three solutions in X whose norms are less than ρ.

Proposition 3. Ref. [36] Suppose that (M0) holds. Then

(i) Φ is bounded on any bounded subset and sequentially weakly lower semicontinuous;
(ii) Φ

′
: X −→ X∗ is strictly monotone and continuous;

(iii) Φ
′

: X −→ X∗ is a homeomorphism.

Proof of Theorem 1. Note that Ψ
′

is compact and Proposition 3 ensures that Φ is weakly
lower semicontinuous and bounded on each bounded subset. We know that Φ

′
has a

continuous inverse on X
′
. Moreover,

lim
‖(u,v)‖→+∞

Φ(u, v) + λΨ(u, v) = +∞

for all λ ∈ (0,+∞). Indeed,

Φ(u, v) = M̂1

(∫
Ω

|∆u|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|∆v|q(x)

q(x)
dx

)
≥ m0

p+
Jp(x)(u) +

m0

q+
Jq(x)(v)

≥ m0

p+
min

(
‖u‖p−

p(x), ‖u‖
p+

p(x)

)
+

m0

q+
min

(
‖v‖q−

q(x), ‖v‖
q+

q(x)

)
. (6)

By (F0), we have
|F(x, u, v)| ≤ C

′ |u|α(x)+1|v|β(x)+1.

Therefore

Ψ(u, v) = −
∫

Ω
F(x, u, v)dx

≥ −C
′
∫

Ω
|u|α(x)+1|v|β(x)+1dx

≥ −C
′ |Ω|max

(
‖u‖1+α+

∞ , ‖u‖1+α−
∞

)
max

(
‖v‖1+β+

∞ , ‖v‖1+β−
∞

)
. (7)

Since the embeddings W2,p(x)(Ω) ↪→ C(Ω) and W2,q(x)(Ω) ↪→ C(Ω) are continuous,
thus there exists a constant C0 > 0 such that

Ψ(u, v) ≥ −C
′
C0|Ω|max

(
‖u‖1+α+

p(x) , ‖u‖1+α−

p(x)

)
max

(
‖v‖1+β+

q(x) , ‖v‖1+β−

q(x)

)
. (8)

In view (5), there exist p1 < p− and q1 < q− such that 1+α+

p1
+ 1+β+

q1
= 1. Thus it

follows from the Young inequality and (8) that Ψ(u, v) ≥ −C
′
C0|Ω|(

1+α+

p1
‖u‖p1

p(x) +
1+β+

q1
max

(
‖v‖q1

q(x), 1
))

.
Without loss of generality, we may assume ‖u‖p(x) ≥ ‖v‖q(x). If ‖v‖q(x) > 1, we get

Φ(u, v) + λΨ(u, v) ≥ m0
p+ ‖u‖

p+

p(x) +
m0
q+ ‖v‖

q+

q(x) − λC
′
C0|Ω|

(
1+α+

p1
‖u‖p1

p(x) +
1+β+

q1
‖v‖q1

q(x)

)
. If

‖v‖q(x) < 1, we get Φ(u, v) + λΨ(u, v) ≥ m0
p+ ‖u‖

p+

p(x) − λC
′
C0|Ω| (1+α+)

p1
‖u‖p1

p(x). By the
assumptions on q1 and p1, we deduce that

lim
‖(u,v)‖→∞

Φ(u, v) + λΨ(u, v) = +∞.
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Now, from (F1) we can choose δ > 1 such that F(x, s, t) > 0 for all s, t > δ, x ∈ Ω.
Then using (F2) we obtain

F(x, s, t) > 0 = F(x, 0, 0) ≥ F(x, τ1, τ2), for all s, t > δ, τ1, τ2 ∈ [0, 1) x ∈ Ω. (9)

There exist two positive real numbers a, b such that 0 < a < min(1, K), with K is given
by (4) and b > δ with min(bp− , bq−)|Ω| > 1. It follows from (9) that∫

Ω
sup

0≤s,t≤a
F(x, s, t)dx ≤ 0 <

∫
Ω

F(x, b, b)dx.

Set r := min
(

m0
p+ (

a
K )

p+ , m0
q+ (

a
K )

q+
)

By choosing (u0(x), v0(x)) = (0, 0), (u1(x), v1(x)) = (b, b), we have Φ(u0, v0) =
Ψ(u0, v0) = 0,

Φ(u1, v1) = M̂1

(∫
Ω

bp(x)

p(x)
dx

)
+ M̂2

(∫
Ω

bq(x)

q(x)
dx

)

≥ m0

∫
Ω

(
bp(x)

p(x)
+

bq(x)

q(x)

)
dx

≥ m0|Ω|
(

bp−

p+
+

bq−

q+

)
≥ m0

p+
+

m0

q+
> r.

Thus
Φ(u0, v0) ≤ r ≤ Φ(u1, v1).

On the other hand

− (Φ(u1,v1)−r)Ψ(u0,v0)+(r−Φ(u0,v0))Ψ(u1,v1)
Φ(u1,v1)−Ψ(u0,v0)

= r
∫

Ω F(x,b,b)dx

M̂1

(∫
Ω

bp(x)
p(x) dx

)
+M̂2

(∫
Ω

bq(x)
q(x) dx

) > 0. (10)

Let (u, v) ∈ X such that Φ(u, v) ≤ r. Then Φ(u, v) ≥ m0

(
1

p+ Jp(x)(u) +
1

q+ Jq(x)(v)
)

,
which implies that

Jp(x)(u) ≤
rp+

m0
< 1, Jq(x)(u) ≤

rq+

m0
< 1. (11)

According to Proposition 2, we get ‖u‖p ≤ 1, ‖v‖q ≤ 1 and therefore by (11), we have

‖u‖p ≤
(

rp+
m0

) 1
p+ , ‖u‖q ≤

(
rq+
m0

) 1
q+ , |u| ≤ K

(
rp+
m0

) 1
p+ ≤ a, |v(x)| ≤ K

(
rp+
m0

) 1
q+ ≤ a, ∀x ∈ Ω.

It follows from (10) that

− inf
(u,v)∈Φ−1((−∞,r])

Ψ(u, v) = sup
Φ(u,v)≤r

−Ψ(u, v) ≤ sup
{(u,v)∈X:|u(x)|,|v(x)|≤a,∀x∈Ω}

∫
Ω

F(x, u, v)dx

≤
∫

0≤s,t≤a
F(x, s, t)dx ≤ 0

< − (Φ(u1, v1)− r)Ψ(u0, v0) + (r−Φ(u0, v0))Ψ(u1, v1)

Φ(u1, v1)−Ψ(u0, v0)
.

Hence according to Theorem 2, we finish the proof of Theorem 1.



Symmetry 2022, 14, 1630 8 of 10

4. Application

Let α, β ∈ C+(Ω). Next we will investigate the following specific Kirchhoff problem

−M1

(∫
Ω

|∆u|p(x) + |u|p(x)

p(x)
dx

)(
∆2

p(x)u− |u|
p(x)−2u

)
=

λ
(
|u|α(x)−1u|v|α(x)+1 − |u|β(x)−1u|v|β(x)+1

)
+ µ|u|γ1(x)−2u in Ω,

−M2

(∫
Ω

|∆v|q(x) + |v|q(x)

q(x)
dx

)(
∆2

q(x)v− |v|
q(x)−2v

)
=

λ
(
|u|α(x)+1|v|α(x)−1v− |u|β(x)+1|v|β(x)−1v

)
+ µ|v|γ2(x)−2v in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω,

(12)

where
(1 + α+)(

1
p−

+
1

q−
) < 1, β+ < α− (13)

and
γ1, γ2 ∈ C+(Ω), γ+

1 < p−, γ+
2 < q−. (14)

Theorem 3. If (M0) and (13) hold and two functions γ1, γ2 satisfy (14), then there exist ρ, δ > 0
and an open interval Λ ⊆ [0,+∞) such that for any λ ∈ Λ and µ ∈ [0, δ], problem (12) admits at
least three solutions whose norms in X are less than ρ.

Proof of Theorem 3. Define

Ψ(u, v) = −
∫

Ω

(
1

α(x) + 1
|u|α(x)+1|u|α(x)+1 − 1

β(x) + 1
|u|β(x)+1|u|β(x)+1

)
dx

and

J(u, v) = −
∫

Ω

(
1

γ1(x)
|u|γ1(x) +

1
γ2(x)

|v|γ2(x)
)

dx.

Clearly Ψ
′

and J
′

are compact. By the Sobolev embedding, there exists C1 > 0 such
that

Ψ(u, v) ≥ −
∫

Ω

(
1

α(x) + 1
‖u‖α(x)+1‖v‖α(x)+1

)
≥ − |Ω|

1 + α−
max

(
‖u‖1+α+

∞ , ‖u‖1+α−
∞

)
max

(
‖v‖1+α+

∞ , ‖v‖1+α−
∞

)
≥ −C1

|Ω|
1 + α−

max
(
‖u‖1+α+

p(x) , ‖u‖1+α−

p(x)

)
max

(
‖v‖1+α+

q(x) , ‖v‖1+α−

q(x)

)
.

As in proof of Theorem 1, we may assume that ‖u‖p(x), ‖v‖q(x) −→ ∞. Then Ψ(u, v) ≥
−C1

|Ω|
1+α− ‖u‖

1+α+

p(x) ‖v‖
1+α+

q(x) .

Since (1 + α+)
(

1
p− + 1

q−

)
< 1, we can find p2 ∈ (1, p−) and q2 ∈ (1, q−) such that

(1 + α+)

(
1
p2

+
1
q2

)
= 1.

In view of Young’s inequality, we obtain

Ψ(u, v) ≥ −C1
|Ω|

1 + α−

(
1 + α+

p2
‖u‖p2

p(x) +
1 + α+

q2
‖v‖q2

q(x)

)
.

This together with (6) imply that lim
‖(u,v)‖→∞

Φ(u, v) + λΨ(u, v) = +∞.
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Now we assume that ‖u‖p(x) −→ ∞, ‖v‖q(x) is bounded. Then Ψ(u, v) ≥ −C1
|Ω|

1+α−

‖u‖1+α+

p(x) max
(
‖v‖1+α+

q(x) , 1
)

, so,

Ψ(u, v) ≥ −C1
|Ω|

1 + α−

(
1 + α+

p2
‖u‖p2

p(x) +
1 + α+

q2
max

(
‖v‖q2

q(x), 1
))

.

Hence, the coercivity of Φ + λΨ is achieved. Let

H(x, s, t) =
1

α(x) + 1
|s|α(x)+1|t|α(x)+1 − 1

β(x) + 1
|s|β(x)+1|t|β(x)+1.

Since β+ < α−, we can choose δ
′
> 1 such that

H(x, s, t) > 0 = H(x, 0, 0) ≥ H(x, τ1, τ2), ∀s, t > δ
′
, τ1, τ2 ∈ [0, 1), x ∈ Ω.

Similar to the proof of Theorem 1, we know that all conditions of Theorem 2 are
fulfilled. Hence, the proof of Theorem 3 is complete.

5. Conclusions

The fourth-order Kirchhoff types were extensively investigated in this study. This
results supports some previously published research. We believe that researchers working
in this domain will be inspired by our work and pave the path for future research in
this area.

We have studied the problem (3) under Dirichlet boundary conditions. We used
Ricceri’s theorem to prove the multiple solutions. The importance of this study is to
establish the same result of the following problem under Neuman boundary conditions:

−M1

(∫
Ω

|∆u|p(x) + |u|p(x)

p(x)
dx

)(
∆2

p(x)u− |u|
p(x)−2u

)
= λFu(x, u, v) + µGu(x, u, v) in Ω,

−M2

(∫
Ω

|∆v|q(x) + |v|q(x)

q(x)
dx

)(
∆2

q(x)v− |v|
q(x)−2v

)
= λFv(x, u, v) + µGv(x, u, v) in Ω,

∂u
∂ν = ∂

∂ν

(
|∆u|p(x)−2∆u

)
= 0 on ∂Ω.

∂v
∂ν = ∂

∂ν

(
|∆v|q(x)−2∆v

)
= 0 on ∂Ω.

(15)

As we know, the space of study and the embedding properties are not the same, which
makes the study more difficult to obtain the desired results.

This problem has been left as an open question for researchers who are interested in
the subject.
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17. Rădulescu, V.D.; Repovš, D.D. Partial Diferential Equations with Variable Exponents: Variational Methods and Qualitative Analysis;

Chapman and Hall/CRC: Hoboken, NJ, USA, 2015.
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