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Abstract: Many fields of mathematics rely on convexity and nonconvexity, especially when studying
optimization issues, where it stands out for a variety of practical aspects. Owing to the behavior of its
definition, the idea of convexity also contributes significantly to the discussion of inequalities. The
concepts of symmetry and convexity are related and we can apply this because of the close link that
has grown between the two in recent years. In this study, harmonic convexity, also known as harmonic
s-convexity for fuzzy number valued functions (F-NV-Fs), is defined in a more thorough manner. In
this paper, we extend harmonically convex F-NV-Fs and demonstrate Hermite–Hadamard (H.H) and
Hermite–Hadamard Fejér (H.H. Fejér) inequalities. The findings presented here are summaries of a
variety of previously published studies.

Keywords: harmonically s-convex fuzzy number valued function in the second sense; Hermite–Hadamard
inequality; Hermite–Hadamard Fejér inequality

1. Introduction

A variety of scientific fields, including mathematical analysis, optimization, economics,
finance, engineering, management science, and game theory, have greatly benefited from
the active, interesting, and appealing field of convexity theory study. Numerous scholars
study the idea of convex functions, attempting to broaden and generalize its various
manifestations by using cutting-edge concepts and potent methods. Convexity theory
offers a comprehensive framework for developing incredibly effective, fascinating, and
potent numerical tools to approach and resolve a wide range of issues in both pure and
practical sciences. Convexity has been developed, broadened, and extended in several
sectors during recent years. Inequality theory has benefited greatly from the introduction of
convex functions. Numerous studies have shown strong connections between the theories
of inequality and convex functions.

Functional analysis, physics, statistics theory, and optimization theory all benefit from
integral inequality. Only a handful of the applications of inequalities in research [1–8]
include statistical difficulties, probability, and numerical quadrature equations. Convex
analysis and inequalities have developed into an alluring, captivating, and attention-
grabbing topic for researchers as a result of various generalizations, variants, extensions,
wide-ranging perspectives, and applications; the reader can refer to [9–15]. Kadakal
and Iscan recently presented n-polynomial convex functions, which are an extension of
convexity [16].

A well-known particular instance of the harmonic mean is the power mean. In areas
such as statistics, computer science, trigonometry, geometry, probability, finance, and
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electric circuit theory, it is frequently employed when average rates are sought. Since it
equalizes the weights of each piece of data, the harmonic mean is the ideal statistic for rates
and ratios. The harmonic convex set is defined by the harmonic mean. Shi [17] was the first
to present the harmonic convex set in 2003. The harmonic and p-harmonic convex functions
were introduced and explored for the first time by Anderson et al. [18] and Noor et al. [19],
respectively. Awan et al. [20] introduced a new class known as n-polynomial harmonically
convex function while maintaining their focus on extensions.

We learned that there is a certain class of function known as the exponential convex
function and that there are many people working on this subject currently [21,22]. This
information was motivated and encouraged by recent actions and research in the field
of convex analysis. Convexity of the exponential type was described by Dragomir [23].
Dragomir’s work was continued by Awan et al. [24], who investigated and examined
an entirely new family of exponentially convex functions. Kadakal and İşcan presented
a fresh idea for exponential type convexity in [25]. The idea of n-polynomial harmonic
exponential type convex functions was recently put out by Geo et al. [26]. In statistical learning,
information sciences, data mining, stochastic optimization, and sequential prediction [27,28],
and the references therein, the benefits and applications of exponential type convexity
are used.

Additionally, symmetry and inequality have a direct relationship with convexity. Be-
cause of their close association, whatever one we focus on may be applied to the other,
demonstrating the important relationship between convexity and symmetry, see [29]. The
traditional ideas of convexity have been successfully extended in a number of instances.
Weir and Mond, for instance, developed the category of preinvex functions. The con-
cept of h-convexity, which also encompasses several other types of convex functions, was
first presented by Varosanec [30]. Additionally, Varosanec has discovered a few h-convex
function-related classical inequalities. Noor et al. [31] introduced the class of h-preinvex
functions and pointed out that by considering multiple viable options for the real function
h, other classes of preinvexity and classical convexity may be retrieved. In a similar work,
they also created a number of entirely new Dragomir–Agarwal and Hermite–Hadamard
inequalities. Cristescu et al. [32] were the first to introduce the class of (h1, h2)-convex
functions, which they also investigated and covered some of its key aspects. By com-
bining ideas from interval analysis and convex analysis, Zhao et al. [33] created a class
of interval-valued h-convex functions and created several entirely new iterations of the
Hermite–Hadamard inequality.

In order to construct the HH inequalities for harmonic convex functions, Iscan [34]
first developed the idea of a harmonic convex set. By defining the Harmonic h-convex
functions on the Harmonic convex set and expanding the HH inequalities that Iscan [34]
developed, Mihai [35] advanced the concept of harmonic convex functions.

Keep in mind that fuzzy mappings are fuzzy functions with numeric values. On the
other hand, Nanda and Kar [36] were the first to introduce the idea of convex F-NV-Fs.
To this one step further, Khan et al. [37,38] recently proposed h-convex F-NV-Fs and
(h 1,h 2)-convex F-NV-Fs and obtained some to offer new iterations of HH and frac-
tional type of inequalities by employing fuzzy Riemann–Liouville fractional integrals
and fuzzy Riemannian integrals, respectively. Similarly, using fuzzy order relations and
fuzzy Riemann–Liouville fractional integrals, Sana and Khan et al. [39] developed new
iterations of fuzzy fractional HH inequalities for harmonically convex F-NV-Fs. We direct
the readers to [40–73] and the references therein for further information on generalized
convex functions, fuzzy intervals, and fuzzy integrals.

We introduced a new generalization of harmonically convex functions known as
harmonic s-convex F-NV-Fs in the second sense by fuzzy order relation. This work was
motivated and inspired by ongoing research. We developed new iterations of the HH
inequalities utilizing Riemann–Liouville fractional operators with the help of this class. In
addition, we explored the applicability of our study in rare instances.
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2. Preliminaries

We begin by recalling the basic notations and definitions. We define interval as

[X∗, X∗] = {
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It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
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Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ R : X∗ ≤
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≤ X∗ and X∗,X∗ ∈ R }, where X∗ ≤ X∗.

The collection of all closed and bounded intervals of R is denoted and defined as
KC = {[X∗, X∗] : X∗, X∗ ∈ R and X∗ ≤ X∗}. If X∗ ≥ 0, then [X∗, X∗] is called positive
interval. The set of all positive intervals is denoted by KC

+ and defined as KC
+ =

{[X∗, X∗] : [X∗, X∗] ∈ KC and X∗ ≥ 0}.
We now examine some of the properties of intervals using arithmetic operations. Let

[X∗, X∗], [w∗, w∗] ∈ KC and ρ ∈ R, then we have

[X∗, X∗] + [w∗, w∗] = [X∗ +w∗, X∗ +w∗],

[X∗, X∗]× [w∗, w∗] =
[

min{X∗w∗, X∗w∗, X∗w∗, X∗w∗},
max{X∗w∗, X∗w∗, X∗w∗, X∗w∗}

]
ρ.[X∗, X∗]=

{
[ρX∗, ρX∗] if ρ ≥ 0,
[ρX∗, ρX∗] if ρ < 0.

For [X∗, X∗], [w∗, w∗] ∈ KC, the inclusion “ ⊆ ” is defined by

[X∗, X∗] ⊆ [w∗, w∗], if and only if w∗ ≤ X∗, X∗ ≤ w∗. (1)

Remark 1 [40]. The relation “ ≤I ” is defined on KC by

[X∗, X∗] ≤I [w∗, w∗] if and only if X∗ ≤ w∗, X∗ ≤ w∗, (2)

for all [X∗, X∗], [w∗, w∗] ∈ KC, it is an order relation. For given [X∗, X∗], [w∗, w∗] ∈ KC, we
say that [X∗, X∗] ≤I [w∗, w∗] if and only if X∗ ≤ w∗, X∗ ≤ w∗ or X∗ ≤ w∗, X∗ < w∗.

Moore [41] initially proposed the concept of Riemann integral for I-V-F, which is
defined as follows:

Theorem 1 [41]. If S : [µ, ν] ⊂ R→ KC is an I-V-F on such that S(
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Then S is Riemann integrable over [µ, ν] if and only if, S∗ and S∗ both are Riemann integrable
over [µ, ν] such that

(IR)
∫ ν

µ
S(
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Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

]
(3)

Let X ∈ F0 be a real fuzzy number, if and only if ϕ-cuts [X]ϕ is a nonempty compact convex
set of R. This is represented by

[X]ϕ = {

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ R| X(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) ≥ ϕ},

From these definitions, we have

[X]ϕ = [X∗(ϕ), X∗(ϕ)],

where
X∗(ϕ) = in f {
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Proposition 1 [51]. Let X,w ∈ F0. Then fuzzy order relation “ 4 ” is given on F0 by

X 4 w if and only if, [X]ϕ ≤I [w]ϕ for all ϕ ∈ (0, 1], (4)

It is a partial order relation.
We now use mathematical operations to examine some of the characteristics of fuzzy numbers.

Let X,w ∈ F0 and ρ ∈ R, then we have[
X+̃w

]ϕ
= [X]ϕ + [w]ϕ, (5)[

X×̃w
]ϕ

= [X]ϕ × [ w]ϕ, (6)

[ρ.X]ϕ = ρ.[X]ϕ (7)

Definition 1 [49]. A fuzzy number valued map S̃ : K ⊂ R→ F0 is called F-NV-F. For each
ϕ ∈ (0, 1] whose ϕ-cuts define the family of I-V-Fs Sϕ : K ⊂ R→ KC are given by Sϕ(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) =
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ K. Here, for each ϕ ∈ (0, 1] the end point real functions
S∗(., ϕ), S∗(., ϕ) : K → R are called lower and upper functions of S̃.

Definition 2 [49]. Let S̃ : [µ, ν] ⊂ R→ F0 be an F-NV-F. Then fuzzy integral of S̃ over [µ, ν],
denoted by (FR)

∫ ν
µ S̃(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, is given levelwise by[
(FR)

∫ ν

µ
S̃(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

]
ϕ = (IR)

∫ ν

µ
Sϕ(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

=

{∫ ν

µ
S(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ)d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

: S(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ) ∈ R([µ, ν], ϕ)

}
, (8)

for all ϕ ∈ (0, 1], where R([µ, ν], ϕ) denotes the collection of Riemannian integrable functions of
I-V-Fs. S̃ is FR-integrable over [µ, ν] if (FR)

∫ ν
µ S̃(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ)

are Lebesgue-integrable, then S is a fuzzy Aumann-integrable function over [µ, ν].

Theorem 2 [49]. Let S̃ : [µ, ν] ⊂ R→ F0 be a F-NV-F whose ϕ-cuts define the family of I-V-Fs
Sϕ : [µ, ν] ⊂ R→ KC are given by Sϕ(
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) = [S∗(
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ), S∗(
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(9)

for all ϕ ∈ (0, 1]. For all ϕ ∈ (0, 1], FR([µ, ν], ϕ) denotes the collection of all FR-integrable
F-NV-Fs over [µ, ν].

Definition 3 [34]. A set K = [µ, υ] ⊂ R+ = (0, ∞) is said to be a convex set, if, for all
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∈ K. (10)

Definition 4 [34]. The S : [µ, υ]→ R+ is called a harmonically convex function on [µ, υ] if

S

(
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 
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ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

+ (1− ξ)
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)
≤ (1− ξ)S(
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tion over [𝜇, 𝜈]. 
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) + ξS
(
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)
, (11)

for all
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
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Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

,
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 5 [36]. The positive real-valued function S : [µ, υ]→ R+ is called a harmonically
s-convex function in the second sense on [µ, υ] if

S

(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)
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is called a harmonically concave function on [𝜇, 𝜐]. 

)
, (12)
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ [µ, υ] and s ∈ [0, 1]. If (12) is
reversed then, S is called a harmonically s-concave function in the second sense on [µ, υ]. The set
of all harmonically s-convex (harmonically s-concave) functions is denoted by

HSX
(
[µ, υ], R+, s

) (
HSV

(
[µ, υ], R+, s

))
.

Definition 6 [36]. The F-NV-F S̃ : [µ, υ]→ F0 is called convex F-NV-F in the second sense on
[µ, υ] if

S̃
(
(1− ξ)
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 

+ ξ

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ [µ, υ], ξ ∈ [0, 1], where S(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) ≥ 0 for all
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ [µ, υ] and s ∈ [0, 1]. If (13) is
reversed then, S̃ is called concave F-NV-F on [µ, υ]. The set of all convex (concave) F-NV-Fs is
denoted by

FSX([µ, υ], F0, s) (FSV([µ, υ], F0, s)).

Definition 7 [39]. The F-NV-F S̃ : [µ, υ]→ F0 is called harmonically convex F-NV-F on [µ, υ]
if

S̃

(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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∈ [µ, υ]. If (14) is reversed then, S̃ is
called harmonically concave F-NV-F on [µ, υ].

Definition 8. The F-NV-F S̃ : [µ, υ]→ F0 is called harmonically s-convex F-NV-F in the second
sense on [µ, υ] if

S̃

(
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 

∈ [µ, υ] and s ∈ [0, 1]. If (15) is
reversed, then S̃ is called harmonically s-concave F-NV-F in the second sense on [µ, υ]. The set of
all harmonically s-convex (harmonically s-concave) F-NV-F is denoted by

HFSX([µ, υ], F0, s) (HFSV([µ, υ], F0, s)).

Theorem 3. Let [µ, υ] be a harmonically convex set, and let S̃ : [µ, υ]→ FC(R) be a F-NV-F,
whose ϕ-cuts define the family of I-V-Fs Sϕ : [µ, υ] ⊂ R→ K+

C ⊂ KC are given by

Sϕ(
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ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
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ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∈ [µ, υ]. (16)

for all
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Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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∈ [µ, υ], ϕ ∈ [0, 1]. Then S̃ ∈ HFSX([µ, υ], F0, s), if and only if, for all ∈ [0, 1],
S∗(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ) ∈ HSX([µ, υ], R+, s).

Proof. The proof is similar to the proof of Theorem 2.13, see [39]. �
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Example 1. We consider the F-NV-Fs S̃ : [0, 2]→ FC(R) defined by

S̃(
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, 2
√
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ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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]
0 otherwise,

Then, for each ϕ ∈ [0, 1], we have Sϕ(
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) =
[

ϕ
√
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, (2− ϕ)
√
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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, ϕ)

∈ HSX([µ, υ], R+, s) with s = 1, for each ϕ ∈ [0, 1]. Hence S̃ ∈ HFSX([µ, υ], F0, s).

Remark 2. If s = 1, then Definition 8 reduces to the Definition 7.
If S∗(µ, ϕ) = S∗(υ, ϕ) with ϕ = 1, then harmonically s-convex F-NV-F in the second

sense reduces to the classical harmonically s-convex function in the second sense, see [36].
If S∗(µ, ϕ) = S∗(υ, ϕ) with ϕ = 1 and s = 1, then harmonically s-convex F-NV-F in the

second sense reduces to the classical harmonically convex function, see [34].
If S∗(µ, ϕ) = S∗(υ, ϕ) with ϕ = 1 and s = 0 then harmonically s-convex F-NV-F in the

second sense reduces to the classical harmonical P-convex function, see [36].

3. Fuzzy Hermite–Hadamard Inequalities

Two different sorts of inequalities are proven in this section. The first is H.H and their
different forms, and the second is H.H. Fejér inequalities for convex F-NV-Fs with F-NV-Fs
as the integrands.

Theorem 4. Let S̃ ∈ HFSX([µ, υ], F0, s), whose ϕ-cuts define the family of I-V-Fs
Sϕ : [µ, υ] ⊂ R→ K+

C are given by Sϕ(
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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S̃(µ) +̃ S̃(υ)

1 + s
(18)

Proof. Let S̃ ∈ HFSX([µ, υ], F0, s). Then, by hypothesis, we have
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2µυ
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µυ
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)
.
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)
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, ϕ
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(
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)
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(
µυ

ξµ+(1−ξ)υ
, ϕ
)

dξ +
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0 S∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
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(

2µυ
µ+υ , ϕ

)
≤ µυ

υ−µ

∫ υ
µ
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

≤ S(µ) +S(υ).
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Theorem 5. Let S̃ ∈ HFSX([µ, υ], F0, s), whose ϕ-cuts define the family of I-V-Fs
Sϕ : [µ, υ] ⊂ R→ K+

C are given by Sϕ(
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) = [S∗(
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ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

2 d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

4 31 4
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[
S̃(µ) +̃ S̃(υ)

][1
2
+

1
2s

]
, (21)

where

31 =
1

s + 1

[
S̃(µ) +̃ S̃(υ)

2
+̃ S̃

(
2µυ

µ + υ

)]
,

32 = 2s−2
[
S̃

(
4µυ

µ + 3υ

)
+̃ S̃

(
4µυ

3µ + υ

)]
,

and
31 = [31∗, 31

∗], 32 = [32∗, 32
∗].

If S̃ ∈ HFSV([µ, υ], F0, s), then inequality (21) is reversed.

Proof. Take
[
µ, 2µυ

µ+υ

]
, we have

2sS̃

 µ
4µυ
µ+υ

ξµ + (1− ξ)
2µυ
µ+υ

+
µ

4µυ
µ+υ

(1− ξ)µ + ξ
2µυ
µ+υ

 4 S̃
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2µυ
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2µυ
µ+υ
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2µυ
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(
µ
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In consequence, we obtain
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(

4µυ
µ+3υ , ϕ

)
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υ−µ
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µ
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functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 
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ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
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ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

. (22)
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Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

2 d

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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Therefore, for every ϕ ∈ [0, 1], by using Theorem 4, we have
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Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)
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tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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S̃(µ) +̃ S̃(υ)
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+

1
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]
�

Theorem 6. Let S̃ ∈ HFSX([µ, υ], F0, s) and Q̃ ∈ HFSX([µ, υ], F0, s), whose ϕ-cuts
Sϕ, Qϕ : [µ, υ] ⊂ R→ K+

C are defined by Sϕ(
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ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
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ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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4 Λ̃(µ, υ)
∫ 1

0
ξs · ξsdξ+̃ ∂̃(µ, υ)

∫ 1

0
ξs(1− ξ)sdξ,

where Λ̃(µ, υ) = S̃(µ)×̃Q̃(µ) +̃ S̃(υ)×̃Q̃(υ), ∂̃(µ, υ) = S̃(µ)×̃Q̃(υ) +̃ S̃(υ)×̃Q̃(µ), and
Λϕ(µ, υ) = [Λ∗((µ, υ), ϕ), Λ∗((µ, υ), ϕ)] and ∂ϕ(µ, υ) = [∂∗((µ, υ), ϕ), ∂∗((µ, υ), ϕ)].

Proof. Since S̃, Q̃ are harmonically s-convex F-NV-Fs, then for each, we have

S∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
≤ ξsS∗(µ, ϕ) + (1− ξ)sS∗(υ, ϕ),

S∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
≤ ξsS∗(µ, ϕ) + (1− ξ)sS∗(υ, ϕ).

and
Q∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
≤ ξsQ∗(µ, ϕ) + (1− ξ)sQ∗(υ, ϕ),

Q∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
≤ ξsQ∗(µ, ϕ) + (1− ξ)sQ∗(υ, ϕ).
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From the definition of harmonically s-convexity of F-NV-Fs, it follows that S̃(
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

) < 0̃
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≤ (S∗(µ, ϕ)×Q∗(µ, ϕ) +S∗(υ, ϕ)×Q∗(υ, ϕ))
∫ 1

0 ξs · ξsdξ

+(S∗(µ, ϕ)×Q∗(υ, ϕ) +S∗(υ, ϕ)×Q∗(µ, ϕ))
∫ 1

0 ξs(1− ξ)sdξ.

It follows that

µυ
υ−µ

∫ υ
µ S∗(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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4 Λ̃(µ, υ)
∫ 1

0
ξs · ξsdξ+̃ ∂̃(µ, υ)

∫ 1

0
ξs(1− ξ)sdξ.

�

Theorem 7. Let S̃ ∈ HFSX([µ, υ], F0, s), Q̃ ∈ HFSX([µ, υ], F0, s), whose ϕ-cuts
Sϕ, Qϕ : [µ, υ] ⊂ R→ K+

C are defined by Sϕ(
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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Integrating over [0, 1], we have
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for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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is called a harmonically concave function on [𝜇, 𝜐]. 
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+ Λ̃(µ, υ)
∫ 1

0 ξs(1− ξ)sdξ+̃ ∂̃(µ, υ)
∫ 1

0 ξs · ξsdξ.

The theorem has been proved.
The right fuzzy H.H. Fejér inequality, which is connected to the right part of the

classical H.H. Fejér inequality for harmonically s-convex F-NV-Fs via fuzzy order relations,
is the first inequality we will develop. �

Theorem 8. (Second fuzzy H.H. Fejér inequality) Let S̃ ∈ HFSX([µ, υ], F0, s), whose ϕ-cuts
define the family of I-V-Fs Sϕ : [µ, υ] ⊂ R→ K+

C are given by Sϕ(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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is called a harmonically concave function on [𝜇, 𝜐]. 
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4
[
S̃(µ) +̃ S̃(ν)

] ∫ 1

0
ξs∇

(
µυ

ξµ + (1− ξ)υ

)
dξ. (25)

If S̃ ∈ HFSV([µ, υ], F0, s), then inequality (25) is reversed.

Proof. Let S be a s-convex F-NV-F. Then, for each ϕ ∈ [0, 1], we have

S∗
(

µv
(1−ξ)µ+ξv , ϕ

)
∇
(

µv
(1−ξ)µ+ξv

)
≤
(
ξsS∗(µ, ϕ) + (1− ξ)sS∗(v, ϕ)

)
∇
(

µv
(1−ξ)µ+ξv

)
,

S∗
(

µv
(1−ξ)µ+ξv , ϕ

)
∇
(

µv
(1−ξ)µ+ξv

)
≤
(
ξsS∗(µ, ϕ) + (1− ξ)sS∗(v, ϕ)

)
∇
(

µv
(1−ξ)µ+ξv

)
.

(26)

and
S∗
(

µv
ξµ+(1−ξ)v , ϕ

)
∇
(

µv
ξµ+(1−ξ)v

)
≤ ((1− ξ)sS∗(µ, ϕ) + ξsS∗(v, ϕ))∇

(
µv

ξµ+(1−ξ)v

)
,

S∗
(

µv
ξµ+(1−ξ)v , ϕ

)
∇
(

µv
ξµ+(1−ξ)v

)
≤ ((1− ξ)sS∗(µ, ϕ) + ξsS∗(v, ϕ))∇

(
µv

ξµ+(1−ξ)v

)
.

(27)
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After adding (26) and (27), and integrating over [0, 1], we obtain∫ 1
0 S∗

(
µv

(1−ξ)µ+ξv , ϕ
)
∇
(

µv
(1−ξ)µ+ξv

)
dξ

+
∫ 1

0 S∗
(

µv
ξµ+(1−ξ)v , ϕ

)
∇
(

µv
ξµ+(1−ξ)v

)
dξ

≤
∫ 1

0


S∗(µ, ϕ)


ξs∇

(
µv

(1−ξ)µ+ξv

)
+(1− ξ)s∇

(
µv

ξµ+(1−ξ)v

)


+S∗(v, ϕ)


(1− ξ)s∇

(
µv

(1−ξ)µ+ξv

)
+ξs∇

(
µv

ξµ+(1−ξ)v

)



dξ,

∫ 1
0 S∗

(
µv

(1−ξ)µ+ξv , ϕ
)
∇
(

µv
(1−ξ)µ+ξv

)
dξ

+
∫ 1

0 S∗
(

µv
ξµ+(1−ξ)v , ϕ

)
∇
(

µv
ξµ+(1−ξ)v

)
dξ

≤
∫ 1

0


S∗(µ, ϕ)


ξs∇

(
µv

(1−ξ)µ+ξv

)
+(1− ξ)s∇

(
µv

ξµ+(1−ξ)v

)


+S∗(v, ϕ)


(1− ξ)s∇

(
µv

(1−ξ)µ+ξv

)
+ξs∇

(
µv

ξµ+(1−ξ)v

)



dξ.

= 2S∗(µ, ϕ)
∫ 1

0 ξs∇
(

µv
(1−ξ)µ+ξv

)
dξ

+2S∗(v, ϕ)
∫ 1

0 ξs∇
(

µv
ξµ+(1−ξ)v

)
dξ,

= 2S∗(µ, ϕ)
∫ 1

0 ξs∇
(

µv
(1−ξ)µ+ξv

)
dξ

+2S∗(v, ϕ)
∫ 1

0 ξs∇
(

µv
ξµ+(1−ξ)v

)
dξ.

Since ∇ is symmetric, then

= 2[S∗(µ, ϕ) +S∗(ν, ϕ)]
∫ 1

0 ξs∇
(

µυ
ξµ+(1−ξ)υ

)
dξ,

= 2[S∗(µ, ϕ) +S∗(ν, ϕ)]
∫ 1

0 ξs∇
(

µυ
ξµ+(1−ξ)υ

)
dξ.

(28)

since ∫ 1
0 S∗

(
µυ

(1−ξ)µ+ξυ
, ϕ
)
∇
(

µυ
(1−ξ)µ+ξυ

)
dξ

=
∫ 1

0 S∗
((

µυ
ξµ+(1−ξ)υ

)
, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ

= µυ
ν−µ

∫ ν
µ S∗(
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We now use mathematical operations to examine some of the characteristics of fuzzy 
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Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ)∇(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ)∇(

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

Proposition 1. [51] Let 𝔵, 𝔴 ∈ 𝔽଴. Then fuzzy order relation “ ≼ ” is given on 𝔽଴ by 𝔵 ≼ 𝔴 if and only if, [𝔵]ఝ ≤ூ [𝔴]ఝ for all 𝜑 ∈ (0, 1], (4)

It is a partial order relation. 
We now use mathematical operations to examine some of the characteristics of fuzzy 

numbers. Let 𝔵, 𝔴 ∈ 𝔽଴ and 𝜌 ∈ ℝ, then we have [𝔵+෥𝔴]ఝ  = [𝔵]ఝ + [𝔴]ఝ, (5)[𝔵 ×෥ 𝔴]ఝ = [𝔵]ఝ × [ 𝔴]ఝ, (6)[𝜌. 𝔵]ఝ  = 𝜌. [𝔵]ఝ (7)

Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ = (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ

ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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)
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hence
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

4
[
S̃(µ) +̃ S̃(ν)

] ∫ 1

0
ξs∇

(
µυ

ξµ + (1− ξ)υ

)
dξ,

This concludes the proof. �

Next, we construct the first H.H. Fejér inequality for harmonically s-convex F-NV-F,
which generalizes the first H.H. Fejér inequality for a harmonically convex function.

Theorem 9 (First fuzzy fractional H.H. Fejér inequality). Let S̃ ∈ HFSX([µ, υ], F0, s), whose
ϕ-cuts define the family of I-V-Fs Sϕ : [µ, υ] ⊂ R→ K+

C are given bySϕ(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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Definition 1. [49] A fuzzy number valued map 𝔖෩: 𝐾 ⊂ ℝ → 𝔽଴ is called F-NV-F. For each 𝜑 ∈ (0, 1]  whose 𝜑 -cuts define the family of I-V-Fs 𝔖ఝ: 𝐾 ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ 𝐾. Here, for each 𝜑 ∈ (0, 1] the end point real 
functions 𝔖∗(. , 𝜑), 𝔖∗(. , 𝜑): 𝐾 → ℝ are called lower and upper functions of 𝔖෩ . 

Definition 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be an F-NV-F. Then fuzzy integral of 𝔖෩  over [𝜇, 𝜈], denoted by (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ , is given levelwise by 
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ఓ = ቊන 𝔖(𝒾, 𝜑)𝑑𝒾ఔ
ఓ : 𝔖(𝒾, 𝜑) ∈  ℛ([ఓ,ఔ],ఝ)ቋ, (8)

for all 𝜑 ∈ (0, 1], where  ℛ([ఓ,ఔ],ఝ) denotes the collection of Riemannian integrable func-
tions of I-V-Fs. 𝔖෩  is 𝐹𝑅 -integrable over [𝜇, 𝜈]  if (𝐹𝑅) ׬ 𝔖෩(𝒾)𝑑𝒾ఔఓ ∈ 𝔽଴.  Note that, if 𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑) are Lebesgue-integrable, then 𝔖 is a fuzzy Aumann-integrable func-
tion over [𝜇, 𝜈]. 
Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
ఓ ቉ 

= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)d
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(30)

If S̃ ∈ HFSV([µ, υ], F0, s), then inequality (30) is reversed.

Proof. Since S is a s-convex, then for ϕ ∈ [0, 1], we have

S∗
(

2µν
µ+ν , ϕ

)
≤ 1

2s

(
S∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
+S∗

(
µυ

ξµ+(1−ξ)υ
, ϕ
))

S∗
(

2µν
µ+ν , ϕ

)
≤ 1

2s

(
S∗
(

µυ
(1−ξ)µ+ξυ

, ϕ
)
+S∗

(
µυ

ξµ+(1−ξ)υ
, ϕ
))

,
(31)

By multiplying (31) by ∇
(

µυ
(1−ξ)µ+ξυ

)
= ∇

(
µυ

ξµ+(1−ξ)υ

)
and integrate it by ξ over

[0, 1], we obtain

S∗
(

2µν
µ+ν , ϕ

) ∫ 1
0 ∇

(
µυ

ξµ+(1−ξ)υ

)
dξ

≤ 1
2s

 ∫ 1
0 S∗

(
µυ

(1−ξ)µ+ξυ
, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ

+
∫ 1

0 S∗
(

µυ
ξµ+(1−ξ)υ

, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ


S∗
(

2µν
µ+ν , ϕ

) ∫ 1
0 ∇

(
µυ

ξµ+(1−ξ)υ

)
dξ

≤ 1
2s

 ∫ 1
0 S∗

(
µυ

(1−ξ)µ+ξυ
, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ

+
∫ 1

0 S∗
(

µυ
ξµ+(1−ξ)υ

, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ


(32)



Symmetry 2022, 14, 1639 15 of 18

since ∫ 1
0 S∗

(
µυ

(1−ξ)µ+ξυ
, ϕ
)
∇
(

µυ
(1−ξ)µ+ξυ

)
dξ

=
∫ 1

0 S∗
(

µυ
ξµ+(1−ξ)υ

, ϕ
)
∇
(

µυ
ξµ+(1−ξ)υ

)
dξ,

= µυ
ν−µ

∫ ν
µ S∗(
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(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

, ϕ)∇(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)
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is called a harmonically concave function on [𝜇, 𝜐]. 

,

(33)

From (32) and (33), we have

S∗
(

2µν
µ+ν , ϕ

)
≤ 21−s∫ ν

µ ∇(
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

)d
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 

∫ ν
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
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for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Theorem 2. [49] Let 𝔖෩: [𝜇, 𝜈] ⊂ ℝ → 𝔽଴ be a F-NV-F whose 𝜑-cuts define the family of I-V-Fs 𝔖ఝ: [𝜇, 𝜈] ⊂ ℝ → 𝒦஼  are given by 𝔖ఝ(𝒾) = [𝔖∗(𝒾, 𝜑), 𝔖∗(𝒾, 𝜑)] for all 𝒾 ∈ [𝜇, 𝜈] and for all 𝜑 ∈ (0, 1]. Then 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈] if and only if 𝔖∗(𝒾, 𝜑) and 𝔖∗(𝒾, 𝜑) both are 𝑅-integrable over [𝜇, 𝜈]. Moreover, if 𝔖෩  is 𝐹𝑅-integrable over [𝜇, 𝜈], then 

ቈ(𝐹𝑅) න 𝔖෩(𝒾)𝑑𝒾ఔ
ఓ ቉  ఝ =  ቈ(𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ

ఓ ,   (𝑅) න 𝔖∗(𝒾, 𝜑)𝑑𝒾ఔ
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= (𝐼𝑅) න 𝔖ఝ(𝒾)𝑑𝒾ఔ
ఓ  

(9)

for all 𝜑 ∈ (0, 1]. For all 𝜑 ∈ (0, 1], ℱℛ([ఓ,ఔ],ఝ) denotes the collection of all 𝐹𝑅-integrable F-
NV-Fs over [𝜇, 𝜈]. 
Definition 3. [34] A set 𝐾 = [𝜇, 𝜐] ⊂ ℝା = (0, ∞) is said to be a convex set, if, for all 𝒾, 𝒿 ∈𝐾, 𝜉 ∈ [0, 1], we have 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿 ∈ 𝐾. (10)

Definition 4. [34] The 𝔖: [𝜇, 𝜐] → ℝା is called a harmonically convex function on [𝜇, 𝜐] if 𝔖 ൬ 𝒾𝒿𝜉𝒾 + (1 − 𝜉)𝒿൰ ≤ (1 − 𝜉)𝔖(𝒾) + 𝜉𝔖(𝒿), (11)

for all 𝒾, 𝒿 ∈ [𝜇, 𝜐], 𝜉 ∈ [0, 1], where 𝔖(𝒾) ≥ 0 for all 𝒾 ∈ [𝜇, 𝜐]. If (11) is reversed then, 𝔖 
is called a harmonically concave function on [𝜇, 𝜐]. 
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Then we complete the proof. �
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) = 1, then from (25) and (30), we acquire the inequality (17).
If s = 1, then from (25) and (30), we acquire the inequality for harmonically convex F-NV-Fs,

see [39].
If S∗(µ, ϕ) = S∗(µ, ϕ) with ϕ = 1 and s = 1, from (25) and (30), we acquire the inequality

for a classical harmonically convex function.

4. Conclusions

We presented the idea of fuzzy number valued harmonically s-convex functions in
this study. Some new fuzzy Hermite–Hadamard type integral inequalities are produced
using this new class. A number of exceptional instances are thoroughly deduced. We
also provide some instances to demonstrate the effectiveness and validity of our findings.
These findings are novel in the literature, as far as we know. The class of fuzzy number
valued harmonically s-convex functions has many uses in mathematics, including convex
analysis, fuzzy theory, special functions, related optimization theory, and mathematical
inequalities. These applications may encourage further study in a variety of fields of the
pure and applied sciences.
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25. Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequalities Appl. 2020, 2020, 82. [CrossRef]
26. Geo, W.; Kashuri, A.; Butt, S.I.; Tariq, M.; Aslam, A.; Nadeem, M. New inequalities via n–polynomial harmoniaclly exponential

type convex functions. AIMS Math. 2020, 5, 6856–6873. [CrossRef]
27. Alirezaei, G.; Mahar, R. On Exponentially Concave Functions and Their Impact in Information Theory; Information Theory and

Applications Workshop (ITA): San Diego, CA, USA, 2018; Volume 2018, pp. 1–10.
28. Pal, S.; Wong, T.K.L. Exponentially concave functions and a new information geometry. Ann. Probab. 2018, 46, 1070–1113.

[CrossRef]
29. Iqbal, A.; Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Revisiting the Hermite–Hadamard fractional integral inequality

via a Green function. AIMS Math. 2020, 5, 6087–6107. [CrossRef]
30. Varosanec, S. On h–convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [CrossRef]

http://doi.org/10.1016/j.cam.2018.10.022
http://doi.org/10.1007/s40315-020-00352-7
http://doi.org/10.7153/jmi-2021-15-50
http://doi.org/10.1515/ms-2017-0417
http://doi.org/10.3934/math.2020418
http://doi.org/10.3934/math.2020290
http://doi.org/10.1155/2019/6926107
http://doi.org/10.1007/s13398-020-00825-3
http://doi.org/10.1186/s13660-019-1991-0
http://doi.org/10.1186/s13660-018-1848-y
http://doi.org/10.7153/jmi-08-20
http://doi.org/10.7153/jmi-08-13
http://doi.org/10.3934/math.2020089
http://doi.org/10.1186/1029-242X-2013-527
http://doi.org/10.1016/j.jmaa.2007.02.016
http://doi.org/10.1186/s13660-020-02393-x
http://doi.org/10.1016/j.heliyon.2020.e05420
http://doi.org/10.1186/s13662-020-02967-5
http://doi.org/10.18576/amis/120215
http://doi.org/10.1186/s13660-020-02349-1
http://doi.org/10.3934/math.2020440
http://doi.org/10.1214/17-AOP1201
http://doi.org/10.3934/math.2020391
http://doi.org/10.1016/j.jmaa.2006.02.086


Symmetry 2022, 14, 1639 17 of 18

31. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard inequalities for h–preinvex functions. Filomat 2014, 28, 1463–1474.
[CrossRef]

32. Cristescu, G.; Noor, M.A.; Awan, M.U. Bounds of the second degree cumulative frontier gaps of functions with generalized
convexity. Carpath. J. Math. 2015, 31, 173–180. [CrossRef]

33. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h–convex interval-valued functions.
J. Inequal. Appl. 2018, 2018, 302. [CrossRef]
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