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Abstract: The notion of fractional structures has been studied intensely in various fields. Using
this concept, the main idea of this paper is to apply the Cesaro approach and introduce the new
generalized A-structure of spaces on a fractional level. Also, the statistical notions will be studied
using this new structure and some inclusion relations will be computed. In addition, the sequence
space W, (A, f) will be introduced, and some fundamental inclusion relations and topological
properties concerning it will be given.
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1. Introduction

The condition of sequence convergence in analysis demands that almost all points
from the sequence satisfy the convergence condition. For instance, in classical convergence,
almost all elements of the sequence have to belong to an arbitrarily small neighborhood
of the limit point. The main idea of statistical convergence is to relax this condition and
demand validity of the convergence condition only for a majority of the points. Thus, sta-
tistical convergence shows a relaxing atmosphere on conventional convergence. The basic
scenario of this convergence of a sequence ! lies in the fact that most of the members of |
converge and one does not worry about what is going on with other members. Early on,
the idea of statistical convergence, which emerged in the first edition (published in Warsaw
in 1935) of the monograph of Zygmund [1], stemmed not from statistics, but from problems
of series summation. Formally the notion of this convergence was observed by Steinhaus [2]
and Fast [3] and later by Schoenberg [4] and since then this field of study has become an
active research area. Authors in different fields have shown its significance. For example,
statistical convergence is studied in fields such as measure theory [5], trigonometric series,
approximation theory [6], locally convex spaces [7], finitely additive set functions, Banach
spaces [8], and so on [9-15].

Later on, the concept of statistical convergence and strong Cesaro summability were in-
vestigated from the sequence space point of view and linked with the summability theory by
Akbas and Isik [16], Altin et al. [17], Aral and Et [18], Cinar et al. [19-21], Connor et al. [8], Dutta
and Rhoades [22], Esi et al. [23], Et et al. [24-27], Ganie et al. [28-33], Mursaleen et al. [34-38],
Schoenberg [4], and Sheikh et al. [39]. Several others connected the same structures to the summa-
bility applications.

The behavior of statistical convergence is analyzed via the density of subsets B of
counting numbers and its natural density is defined as:

1y .
5(6):}1330; {i<r:ieB}|
Note that the number of entries of B that are not more than ris [{i < r :i € B}|.
Furthermore, for finite B, §(B°) = 1 — §(B). We consider (v;) to be statistically convergent
to Lifforalle > 0,
S({i:|v;i—L| >€})=0.

It will be written as S — lim v; = L, where S represents the set of all sequences that are
statistically convergent.
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We consider a sequence (v;) to be strongly Cesaro summable to A if:

r

.1
Yim 2 )

Z)i—/\‘:O.

The set of sequences that is strongly Cesaro summable is denoted by [C, A] and is

given as:
,

[C,A] = {v = (v;) : lim ! )

— :
r 001"1:1

v; — A‘ = 0 for some )\}.

The study of difference sequence spaces is a recent development in summability theory.
Asin [40], for T € {lw, ¢, €y}, define:

T(A)={v=(vi)) e A: (Lv;) €T}
where Av; = v; — v;_1. This T (A) was further studied in [25,29,32,41] and by many others.
It was later generalized in [26,28], where the authors defined the following:
N(H) = {v = (vj) : (Ajv) € ’H}, for H =l ,c and €,

where A/ v; = A ’101« — N ’10,'“ for all i € N where j > 0 is natural number and:
o (i
N = Z(,l)l (l) Uj+i‘
i=0

Later on Et and Esi [25] generalized these sequence spaces to the following sequence
spaces. Let ¢ = (gx) be any fixed sequence of nonzero complex numbers and let s be a
non-negative integer. Then, Ag,v = (vjgj), Dgv = (vjgj — vj+18j+1), and:

sy (1) ={o= (o)) € A (D30 € 1}, 1)

where H is any sequence space and:

_ _ > s .
AGvj = Ay 10]- — A 1vj+1 = Z(l)”( " )g]-ﬂ,v]-ﬂ, VjeN.
u=0

For areal k, let I'(x) represent the Euler Gamma function with x ¢ {0, —1,—-2,-3,...}
and given by:

I'(x) = /t"*le*tdt.
0

In [6], the fractional operator A* : A — A is defined as:

K, = i F(K + 1) .
A [ l;(](*l) ml]k.ﬂ (2)

This notion is more general than the A™ operator. Note that we assume that (2) holds
throughout the paper. For x to be a natural number, the sum in (2) can be written as a
finite sum:

3 i T(k+1)
;(_1) mvk+i- )

It was further studied in [6,7] and by many others.
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2. Main Results
In this section, we introduce and study Af-statistical convergence and the strong
(p, AE)-Ceséro summability, for g = (g;) with g; # 0 for all i. Furthermore, some new
topological properties will be given.
Following the authors cited, we introduce the following fractional order difference spaces:
loo(T, Ag,p) ={v=(v) €A: supk|AEvk|”k < oo},
colT, 8%, p) = {0 = (1x) € A+ lim [A%o [ = 0},

(T, A, p) ={v=(vx) €A: kIEEO |AGur — APk = 0 for some A € C}
where Aj is given in (1) and p = (py) is a bounded sequence of positive reals.

Definition 1. For a complex number A, we call a sequence (vy) to be Ai-statistically convergent if:

lim 1 {kgn:‘Agvk—M Ze}‘:O.

n—oo n

In such a case, v is Afj-statistically convergent to A and denoted by S(Af) — lim vy = A.
By S (Ag), we designate all sequences that are Ag-statistically convergent.

Theorem 1. For sequences v = (vy), w = (wy) of real or complex numbers, we have:
1. IfS(A§) —limvy = vy and ¢ is any complex number, then S(Af) — lim cvy = cvy.
2. IfS(A§) —limovy = vg and S(A) — limwy = wy, then S(AY) —lim(vy + wy) = vo + wp.

Proof. (i) The result is trivial for ¢ = 0, so we assume that ¢ # 0, then:

1 1
al {r < s |geo — ool = e} < Tk < 85—l 2 (],

thereby proving (i) of the result.

(ii) Now we see:

1
E‘{kg n: |A§ (v + wi) — (0o +wo)| ZGH
1 c 1 .
= ﬁ’{ké n: [Agog —oo| = EH +E‘{k§ n: | Ajwy —wo| > E}‘
and hence result follows. [
Theorem 2. The inclusion c(T, Ag,p) c S(Ag) is proper for p = 1.

Proof. As cissubset of S, it follows that ¢(T, A§, p) C S(A).
Next, we prove the proper containment part of the result. For this, we choose g; =
e=(1,1,---) and define v = (v;,) by:
1, m=r3
ANgom =4 -1, m+1=r> 4)
0, otherwise.

Then, we have v € S(A}), but v ¢ c(T,Af, p), thereby proving the containment
is proper. [

Theorem 3. If v = (vy) is Af-statistically convergent, then it is A-statistically Cauchy sequence.
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Proof. We suppose that v is Aj-statistically convergent to A and € > 0. Then,
|Agom — L| < €/2 for almost all m.
We choose r in such a way that:
|AGor — L| < e/2
holds. Then it is clear that:
|AGum — AGoy| < [AGom — L| + [Agoy — L| <€
for almost all m. Hence, we conclude that v is Aj-statistical Cauchy sequence. [

Theorem 4. Neither S(AY) nor Leo (T, A, p) is included the other although S(AY) and Le (T, A, p)
overlap, for py = 1.

Proof. Define v = (vy,) as follows:
— 4,3
R
Itis clear that v € S(Af) but v & Lo (T, Af, p). Now consider:
v=(1,0,1,0,1,...)and g=¢=(1,1,1,---),
then Afvy, = (—1)" 2*~landov € l(T,Af, p) buto ¢ S(Af). O
Theorem 5. SN S(Af) # @.

Proof. Define v = g = e. Asv € S and Agvm =0,s0v € S(A’é), the intersection
is nonempty. [

Definition 2. For a positive real p, we call a sequence v = (vy) strongly (p, A )-Cesaro summable if:

r

1
Y

P
Agvi — c’ =0.

In such a case, v is strongly (p, Ay)-Cesaro summable to ¢, and such sequences that are
strongly (p, Ay )-Cesaro summable will be abbreviated by W, (Ay), for a real or complex number c.

Theorem 6. The inclusion Wy(A§) C W, (AY) holds provided 0 < p < q < 0.
The proof is trivial using Holder’s inequality.

Theorem 7. Let v = (v;) be strongly (p, Ay )-Cesaro summable to A, then for 0 < p < oo, it is
Ag-statistically convergent to c.
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Proof. Choose v = (v;) and € > 0, we see:
r

r ; p
Y Agvi_c‘ = )

p T
Myoi—e| + Y
i=1 i=1 i=1

|v,-77L\Ze |vi—c|<e

p
Agvi - C‘

=X

P
A’;vi - C‘
i=1

>

{igr: |A§vi—1| 26}"6’7

and so:
K p 1 . K
Avi—c‘ 2;‘{z§r:|Agvi—c|zeH~6p.

From this, if v = (v;) is (p, Af)-Cesaro summable to ¢, then it is Aj-statistically
convergent toc. [

Corollary 1. Let v = (v;) be N-bounded and A-statistically convergent to ¢, then it also strongly
(p, Ag)-Cesaro summable to c.

3. New Statistical Convergence Using Modulus Function

In this section, we introduce some new scenarios of spaces by employing modulus functions.
In [42], modulus functions f : [0, c0) — [0, c0) are introduced as functions that satisfy
the following properties:
1. f(v)=0iffv =0,
2. flv+w)<f(v)+f(w) forallv,w >0,
3. fisacontinuous function from the right at 0,
4.  fisincreasing function.

Definition 3. For a sequence of positive reals p = (p;), we define the following spaces:

s )" =0},

for § a modulus function and 0 < h = infy py < sup, py = H < co.

n

VWMEDZ{U=@MEA:ggiEH(

Theorem 8. The inclusion Wy (Ag, ) C S(AY) is proper for any modulus function §.

Proof. For a modulus function j, let v € W, (A§, f) and choose € > 0. Z and Z overi <vr
1 2

with |Afv; — ¢| > e and [A§v; — ¢| < ¢, respectively. Then:

P L[ )] = T [i([age <))
LY [t

1

Ly min([j(e)]", [§(e)]")

rT

al{i = 80— = e min [ (1€ ")

v

Y

v



Symmetry 2022, 14, 1685

6 0f 8

Hence, v € S(Af). To establish proper containment, choose g = ¢ = (1,1, ) and
define the sequence v = (v;) as:

Afo

g 3 (6)

i i#Em
a 1, i=m>.

It is obvious that v € S(Af) — W, (A, f) when p; = 1 and f(v) = v is unbounded. [
Theorem 9. S(A}) C Wy (A, ) where f is bounded.

Proof. For € > 0, we choose Z and Z as defined in previous theorem. If there exists an
1 2
integer M with f(v) < M, for every v > 0, then f is bounded and hence we can see that:

L i DI < (2 )] Sl D))

i=1
< % Zmax(Mh,MH) + % Z [f(e)}p"
1 2

A

< max(Mh,MH)%Hi <r: ’Aﬁvi — c| > e}‘
+max(f(e)", f(e)™).

Consequently, v € W, (A§, f). Moreover, for a sequence as defined in (6), it is obvious
that S(A§) C Wy (A, f) does not hold for an unbounded f. [

Theorem 10. If modulus function f is bounded, then S(A§) = Wy(Ag, ).

Proof. As f is bounded, we see that the equality S(A}) = W, (A, f) holds by using
Theorems (8) and (9). O

4. Conclusions

In this paper, we have studied the basic structure of some new sequence spaces by
approaching the Cesaro notion and the generalized structure of the A-operator using
statistical convergence. Furthermore, some inclusion relations have been given between the
spaces studied in this article. Further, the spaces {«(T, A, p), c(T, A, p) and co(T, A, p)
have been introduced and studied. Moreover, the notion of the space W, (A, f) has been
presented, and its various topological structures have been given using the notion of
fractional order. The consequences of the results obtained in this article are more general
and extensive than the existing known results.
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