
Citation: Górski, T. The k + 1

Symmetric Test Pattern for Smart

Contracts. Symmetry 2022, 14, 1686.

https://doi.org/10.3390/

sym14081686

Academic Editors: José Carlos R.

Alcantud and Jian-Qiang Wang

Received: 25 June 2022

Accepted: 12 August 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Communication

The k + 1 Symmetric Test Pattern for Smart Contracts
Tomasz Górski

Department of Computer Science, Polish Naval Academy of the Heroes of Westerplatte (PNA), Śmidowicza 69,
81-127 Gdynia, Poland; t.gorski@amw.gdynia.pl

Abstract: A smart contract is a pivotal notion in blockchain technology. Distributed applications
contain smart contracts verifying the fulfillment of the conditions, which determine the execution of
transactions between the blockchain network nodes. Those software-controlled logical conditions
are called verification rules. As the number of conditions increases, the complexity of smart contract
testing rapidly grows. This paper aims to propose a smart contract testing pattern that significantly
limits the needed number of test cases. For evaluation expression with four verification rules, the
pattern usage reduces the number of test cases by 68.75% in relation to the full coverage of logical
value combinations. With the increase in the number of logical conditions, not only the number of
test cases but also their percentage decreases. Starting from seven verification rules in the evaluation
expression, the percentage reduction of test cases exceeds 90%. As a result, the cost of preparing and
maintaining test case suites may be substantially cut. It should be emphasized that test execution
time can be reduced even by 3 orders of magnitude (from seconds to milliseconds). Such an approach
is highly important for regression testing, especially when used in continuous software integration,
delivery, and deployment approaches.

Keywords: test pattern; test suite design; smart contract; blockchain; object-oriented programming

1. Introduction

Testing is one of the key disciplines in the software development process. Tests verify
and validate the quality of the software product. The main aim is to check the completeness
and correctness of requirements. Software quality models, requirements, and evaluations
are regulated in a standardized manner [1]. However, the subject is still a matter of research
studies [2]. With the advent of agile methods, testing has become even more important.
The first principle of the agile manifesto claims that the “highest priority is to satisfy
the customer through early and continuous delivery of valuable software” [3]. Humble
and Farley [4] have described the continuous delivery process in a thorough manner.
Nevertheless, implementation of the process in real projects is not a trivial task. It is only
lately that work has started to show up on the most comprehensive, continuous deployment
practice (Donca et al. [5]). Continuous approaches involve high automation of activities
repeated in each sprint. As far as quality assurance is concerned, such an approach means
a lot of regression testing. Recently, Shahin et al. [6] have conducted a thorough analysis of
continuous practices. Among other things, they found that test automation and reducing
build and test time are essential topics. The up-to-date study of Wang et al. [7] in the area
of continuous integration revealed that test automation maturity leads to improvement of
product quality. Moreover, in the area of reducing the cost of testing, there are basically
three techniques: test case selection, test case prioritization, and test suite reduction. They
have been discussed by Khan et al. [8]. Firstly, test case selection filters a test suite and
includes those relevant to testing modified functions (Al-Sabbagh et al. [9]). Secondly, test
case prioritization orders test cases to achieve a certain aim, e.g. elevate the fault detection
rate (Prado Lima et al. [10]). Finally, test suite reduction aims to gain a minimal test suite
that encompasses test cases on the basis of selected criteria, e.g., source code coverage
(Coviello et al. [11]). Furthermore, Kiran et al. [12] conducted a thorough review of test

Symmetry 2022, 14, 1686. https://doi.org/10.3390/sym14081686 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081686
https://doi.org/10.3390/sym14081686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8393-1585
https://doi.org/10.3390/sym14081686
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081686?type=check_update&version=2

Symmetry 2022, 14, 1686 2 of 10

suite optimization methods. They identified five main categories of approaches: greedy
algorithm, meta-heuristic methods, hybrid approaches, clustering techniques, and general
methods. They also concluded that researchers should focus on multi-criteria optimization
because it outperforms single criterion optimization. Their recommendations pointed
in the direction of optimization methods of machine learning and artificial intelligence.
However, optimization takes additional calculation time and may compromise test suite
quality because, in some cases, only approximate results can be achieved, and time is crucial
in continuous approaches. In the report from 2022, Powell [13] states that the duration
time median for a complete continuous integration pipeline is 3.7 min. That time also
encompasses tests.

Smart contracts play a key role in blockchain technology. The definition of a smart
contract has been given by Xu et al. [14] as “programs deployed as data in the blockchain
ledger and executed in transactions on the blockchain.” A characteristic feature of a smart
contract is its immutability after deployment. Therefore, testing is particularly important
when applying this technology. Blockchain testing evaluates various elements such as
smart contracts, transactions, wallets, or blocks and also involves mining. Apart from
functional tests, it is required to include security and performance tests. Smart contract tests
need business and domain expertise. However, integration and acceptance tests require
deep technical knowledge of the blockchain framework due to node communication in
a blockchain network. The types of blockchain testing can be categorized as functional,
node, performance, and Application Programming Interface (API) testing. In particular,
node testing independently tests each node on the network to ensure a reliable connection.
API testing validates that requests and responses between distributed applications in the
blockchain network are properly handled. Sánchez-Gómez et al. [15] have carried out a
review on smart contract design and testing methods. They spotted the lack of methods
for quality evaluation of smart contracts and underlined the need for the definition of a
smart contract development process. The review also reveals that the majority of recent
works concentrate on smart contract code generation. However, this requires proven
design and implementation methods. In this area, the proposed testing pattern can fill the
gap. Recently, artificial intelligence methods and especially neural networks have been
applied for smart contract design and testing. In the design field, Tong et al. [16] have
proposed a method for the generation of a smart contract source code. In the area of testing,
Zhang et al. [17] have defined vulnerability prediction method at the smart contract level. It
is worth underlining that in a newly published review of the software testing literature, the
authors highlighted the importance of software architecture and design (Zardari et al. [18]).
They also identified continuous practices and blockchain technology as areas of increasing
importance. Continuous practices foster early testing, which helps in deploying more
reliable smart contracts.

The contribution of this paper comprises the symmetric test pattern. The essence of
the approach proposed in this paper is proactive. It involves analyzing the processing
mechanism of verification rules at the stage of software development. Instead of repeating
dozens, hundreds, or thousands of tests, the focus of the pattern is on an appropriate
construction of a minimum set of tests ensuring full coverage of the verified conditions.
Besides, the pattern also minimizes the costs of building, maintaining, and running tests.
This is achieved by minimizing the number of test cases and applying uncomplicated
logical conditions for single tests. This paper also encompasses an example of test class
design and implementation with defined rules for unit test prioritizing. Automated tests
for a smart contract are prepared in JUnit.

The remaining part of this paper has the following structure. Section 2 introduces the
symmetric test pattern. Section 3 presents an exchange energy smart contract example with
a design in Unified Modeling Language and implementation in Java. In Section 4, test case
design and implementation are depicted. The section also discusses preliminary test results.
Section 5 summarizes the work done and lists the planned tasks.

Symmetry 2022, 14, 1686 3 of 10

2. Symmetric Test Pattern

A verification rule is considered a single logical condition imposed on a smart contract.
Smart contracts may comprise many verification rules. Moreover, an evaluation expression
is a logical statement containing verification rules and logical operators that return a
single Boolean value. Therefore, the value of evaluation expression Eval can be expressed
as a logical product of verification rule values. This can be expressed by the following
Equation (1):

Eval =
k

∏
i=1

vRi (1)

where k is the number of verification rules in the evaluation expression, and vRi is the value
of the i-th verification rule.

In consequence, all verification rules that constitute a smart contract must be met
for the transaction to be performed. The blockchain transaction will be executed only
when all verification rules return a true Boolean value. This is done by one combination of
logical values and, consequently, by one test case. It is worth noticing that each rule may
separately cause the evaluation expression to return a false Boolean value. In order to test
the operation of a particular verification rule, it must be isolated. That is, a specific rule
should return a false Boolean value, while the rest must return a true Boolean value. Such a
test case unambiguously verifies the operation of a single verification rule.

A set of logical combinations allowing for checking the correct operation of the smart
contract and checking the negative operation of each of the verification rules is presented
in Table 1.

Table 1. Symmetric test cases for evaluation expression with 5 VRs.

No. Test Result VR1 VR2 VR3 VR4 VR5

1 PASS 1 1 1 1 1
2 FAIL 1 1 1 1 0
3 FAIL 1 1 1 0 1
4 FAIL 1 1 0 1 1
5 FAIL 1 0 1 1 1
6 FAIL 0 1 1 1 1

Generalizing the above considerations, a rule can be defined for the number of sym-
metric test cases Ts, which can be expressed by Equation (2).

Ts = k + 1 (2)

It is crucial that we obtain a very low number of test cases. The number of test cases
is only one greater than the number of verification rules included in the evaluated smart
contract. Hence, the name of the pattern contains the “k + 1” part. Moreover, it is worth
noting that when omitting the first row, the remaining rows (for example, rows 2–6 in
Table 1) create a symmetric matrix, i.e., the one for which the element aij = aji. This is the
reason for the “symmetric” part of the pattern’s name.

On the contrary, the number of all possible combinations that lead to test cases can be
calculated using variation with repetitions. If the set is n-elements, then the sequence of
length k is referred to as the k-items variation of the n-element set. The repetition of items
is allowed.

The number of test cases in full coverage T f c for a smart contract can be expressed as
the following Formula (3).

T f c = V̄k
n = nk (3)

where n is the number of elements in the value set N = {0, 1}. Integer 0 means a logical
false value and integer 1 means a logical true value.

Symmetry 2022, 14, 1686 4 of 10

Table 2 contains a complete set of logical value variants for five (k = 5) verification
rules (VRs) that make up the evaluation expression. In Table 2, false logical values in lines
2, 3, 5, 9, and 17 have been highlighted in bold. These lines contain logical combinations
that allow checking the negative operation of single verification rule, starting with the fifth
and ending with the first.

Table 2. Full coverage of test cases for evaluation expression with five VRs.

No. Test Result VR1 VR2 VR3 VR4 VR5

1 PASS 1 1 1 1 1
2 FAIL 1 1 1 1 0
3 FAIL 1 1 1 0 1
4 FAIL 1 1 1 0 0
5 FAIL 1 1 0 1 1
6 FAIL 1 1 0 1 0
7 FAIL 1 1 0 0 1
8 FAIL 1 1 0 0 0
9 FAIL 1 0 1 1 1
10 FAIL 1 0 1 1 0
11 FAIL 1 0 1 0 1
12 FAIL 1 0 1 0 0
13 FAIL 1 0 0 1 1
14 FAIL 1 0 0 1 0
15 FAIL 1 0 0 0 1
16 FAIL 1 0 0 0 0
17 FAIL 0 1 1 1 1
18 FAIL 0 1 1 1 0
19 FAIL 0 1 1 0 1
20 FAIL 0 1 1 0 0
21 FAIL 0 1 0 1 1
22 FAIL 0 1 0 1 0
23 FAIL 0 1 0 0 1
24 FAIL 0 1 0 0 0
25 FAIL 0 0 1 1 1
26 FAIL 0 0 1 1 0
27 FAIL 0 0 1 0 1
28 FAIL 0 0 1 0 0
29 FAIL 0 0 0 1 1
30 FAIL 0 0 0 1 0
31 FAIL 0 0 0 0 1
32 FAIL 0 0 0 0 0

Let us follow an example of an evaluation expression with five verification rules. In
this case, n = 2 and k = 5. Thus, the number of test cases in full coverage T f c = 25 = 32.
Using the symmetric test pattern, we obtain Ts = 6, which reveals a large space for test
suite reduction.

Using Formulas (2) and (3), the percentage of reduced number of test cases Rsc for a
smart contract can be expressed as the following Equation (4).

Rsc =
T f c − Ts

T f c × 100 =
nk − (k + 1)

nk × 100 (4)

In the example, for k = 5, we obtain Rsc = 81.25%.
Figure 1 shows a chart of the percentage reduction in the number of test cases for

various numbers of verification rules in the evaluating expression.

Symmetry 2022, 14, 1686 5 of 10

Figure 1. The percentage reduction in the number of test cases.

Table 3 provides data to compare the number of test cases for full coverage with the
number of test cases with the Symmetric Test Pattern used.

Table 3. Symmetric Test Pattern vs. full coverage numbers of test cases.

No. of VRs No. of Test Cases
(Full Coverage)

No. of Test Cases
(STP)

No. of Reduced
Test Cases Rsc

1 2 2 0 0.00%
2 4 3 1 25.00%
3 8 4 4 50.00%
4 16 5 11 68.75%
5 32 6 26 81.25%
6 64 7 57 89.06%
7 128 8 120 93.75%
8 256 9 247 96.48%
9 512 10 502 98.05%
10 1024 11 1013 98.93%
11 2048 12 2036 99.41%
12 4096 13 4083 99.68%

Figure 2 presents a graph of the reduced number of test cases for different numbers
of verification rules in the evaluation expression (a logarithmic scale has been used). The
more logical conditions in the evaluation expression, the greater the saving in the number
of reduced test cases.

Figure 2. The number of reduced test cases.

From the number of 10 verification rules, savings in the number of test cases already
go into the thousands. Such a reduction has a very positive effect on the preparation time

Symmetry 2022, 14, 1686 6 of 10

of test cases because the preparation of a huge number of test cases is prone to errors and
maintenance would be even more challenging.

3. Exchange Energy Smart Contract Example

Blockchain technology and smart contracts are widely applied in the energy sector
(Kirli et al. [19]). Recently, energy exchange that allows prosumers to optimize their
consumption has attracted a lot of researcher attention (Yahaya et al. [20]). The example
shows one use case and its corresponding smart contract, the Exchange Energy. Two
architectural views of the 1 + 5 model were used to present the smart contract design [21]:
Use cases and Contracts. Figure 3 depicts the Exchange Energy use case in the Unified
Modeling Language (UML) Use case diagram. The distributed application of prosumers
exchanging energy is exterior. Thus, it was presented as an actor and marked with the
�IntegratedSystem� stereotype.

Figure 3. The Exchange Energy smart contract in the UML Use case diagram.

The following nine verification rules have been used in the smart contract:

• TheSameCommunity—prosumers must belong to the same community;
• DifferentProsumers—energy exchange is possible between two different prosumers;
• PositiveValue—the quantity of transferred energy must be a positive value;
• SourceSurplusPositive—surplus energy in the source node is a positive value;
• TargetNeedPositive—the target node’s need for energy is a positive value;
• SourceSurplusEnergy—the quantity of energy to transfer must not exceed the source

prosumer surplus of energy;
• TargetProductionPositive—the energy generation of the target node is a positive value;
• TargetBatteryPositive—the target node’s battery charge level is positive;
• TargetNeedForEnergy—the target need for energy must be greater than the sum of

energy stored in batteries and actual generation.

In smart contracts, a different number of verification rules is possible. For further
consideration, there were adopted configurations with 3, 5, 7, and 9 verification rules in the
smart contract. Figure 4 depicts the UML Class diagram showing the smart contract class
with five verification rules classes in the list.

Figure 4. Configuration of ExchangeEnergyContract class with five verification rules in the list.

Symmetry 2022, 14, 1686 7 of 10

Classes have been marked with corresponding stereotypes from the UML Profile
for Smart Contracts. The implementation of the Exchange Energy smart contract uses the
VerificationRule interface and the SmartContract abstract class from the abstract layer of the
smart contract design pattern [22]. The interface declares the runRule() method, which must
be implemented by concrete verification rule classes. The principle of constructing simple
logical conditions for the verification rules has been adopted. Such an approach helps
avoid complexity within the validation rules and makes testing easier. Listing 1 shows
the source code of the SourceSurplusEnergy verification rule class with the implemented
runRule() method.

Listing 1. The source code of the SourceSurplusEnergy verification rule.

publ ic c l a s s SourceSurplusEnergy implements V e r i f i c a t i o n R u l e {
@Override
publ ic boolean runRule (@NotNull Transact ion t) {
i f (t . getSourceSurplus () >= t . getQuanti ty ()) {
System . out . p r i n t l n (‘ ‘ SourceSurplusEnergy − PASS ’ ’) ;
re turn true ;
} e l s e {
System . out . p r i n t l n (‘ ‘ SourceSurplusEnergy − FAIL ’ ’) ;
re turn f a l s e ;
}
}
}

Similarly, the abstract class SmartContract declares the reference variable for the
verification rule list and the checkSC() method, which checks logical conditions of specific
verification rules. Listing 2 shows the source code of the ExchangeEnergyContract class.

Listing 2. The ExchangeEnergyContract class implementation in Java.

publ ic f i n a l c l a s s ExchangeEnergyContract extends SmartContract {
publ ic ExchangeEnergyContract () {
r u l e s L i s t = Arrays . a s L i s t (new TheSameCommunity () ,
new DifferentProsumers () , new Pos i t iveValue () ,
new SourceSurplusEnergy () , new TargetNeedForEnergy ()) ;
}
@Override
publ ic boolean checkSC (Transact ion t r) {
boolean c o r r e c t = f a l s e ;
f o r (V e r i f i c a t i o n R u l e vR : r u l e s L i s t) {
c o r r e c t = vR . runRule (t r) ;
i f (! c o r r e c t) break ;
}
re turn c o r r e c t ;
}
}

The list of verification rules is initialized in the constructor of the ExchangeEnergy-
Contract class. Listing 2 shows the initialization of this list with five verification rules. If
the smart contract is to contain another number of verification rules, the objects of the
appropriate rule classes should be instantiated and added to the list in the constructor. The
implementation of the checkSC() method realizes the logical product of verification rules
expressed by Formula (1). The operation of this method is independent of the number
of verification rules and the types of rule classes in the list. Additionally, it stops when
the checked rule returns a false Boolean value. This manner of evaluation shortens the
smart contract checking time. The IntelliJ IDEA with Java 18 was used to implement the
symmetric test pattern, and its source code is available in the GitHub repository [23].

4. Test Classes Design and Implementation

The great advantage of the pattern is the small number of test cases that examine the
operation of the smart contract verification rules. In the case of the considered example,

Symmetry 2022, 14, 1686 8 of 10

we have five verification rules (k = 5). Therefore, according to Rule (2), the number of test
cases Ts = 6, only one more than the number of verification rules. One test class is enough
to prepare a test suite for the smart contract. The Test5VRsExchangeEnergyContract class
consists of six test cases. Each of them runs the checkSC() method with different attribute
values of the Transaction class instance. The attributes of the Transaction class have been
used in the terms of the logical verification rules. Therefore, by changing the values of these
attributes, we control the operation of the verification rules. All test cases are performed on
the same instance of the smart contract class. Each test case verifies the smart contract. One
test verifies the smart contract positively, whereas five of them result in negative evaluation.
In each of the failed test cases, a different verification rule returns a false value, while the
others are true. Listing 3 depicts the Test5VRsExchangeEnergyContract class with six test
cases for the ExchangeEnergyContract smart contract class.

Listing 3. The Test5VRsExchangeEnergyContract source code.

c l a s s Test5VRsExchangeEnergyContract {
ExchangeEnergyContract sC = new ExchangeEnergyContract () ;
@Test
void checkSCPosi t ive () {
System . out . p r i n t l n ("−−− checkSCPosi t ive ") ;
Transact ion t r =
new Transact ion (1 0 0 , 300 , 400 , 20 , 10 , 1001 , 1002 , 101 , 101) ;
asser tTrue (sC . checkSC (t r)) ; }
@Test
void checkSCNegativeTargetNeedForEnergy () {
System . out . p r i n t l n ("−−− checkSCInNegativeTargetNeedForEnergy ") ;
Transact ion t r =
new Transact ion (1 0 0 , 300 , 400 , 20 , 500 , 1001 , 1002 , 101 , 101) ;
a s s e r t F a l s e (sC . checkSC (t r)) ; }
@Test
void checkSCNegativeSourceSurplusEnergy () {
System . out . p r i n t l n ("−−− checkSCNegativeSourceSurplusEnergy ") ;
Transact ion t r =
new Transact ion (1 0 0 , 10 , 400 , 20 , 10 , 1001 , 1002 , 101 , 101) ;
a s s e r t F a l s e (sC . checkSC (t r)) ; }
@Test
void checkSCNegativePosit iveValue () {
System . out . p r i n t l n ("−−− checkSCNegativePosit iveValue ") ;
Transact ion t r =
new Transact ion (0 , 300 , 400 , 20 , 10 , 1001 , 1002 , 101 , 101) ;
a s s e r t F a l s e (sC . checkSC (t r)) ; }
@Test
void checkSCNegativeDifferentProsumers () {
System . out . p r i n t l n ("−−− checkSCNegativeDifferentProsumers ") ;
Transact ion t r =
new Transact ion (1 0 0 , 300 , 400 , 20 , 10 , 1001 , 1001 , 101 , 101) ;
a s s e r t F a l s e (sC . checkSC (t r)) ; }
@Test
void checkSCNegativeTheSameCommunity () {
System . out . p r i n t l n ("−−− checkSCNegativeTheSameCommunity ") ;
Transact ion t r =
new Transact ion (1 0 0 , 300 , 400 , 20 , 10 , 1001 , 1002 , 101 , 102) ;
a s s e r t F a l s e (sC . checkSC (t r)) ; }
}

The test class and test automation have been designed and implemented in the IntelliJ
IDEA with JUnit v.5.7. Moreover, test classes for a smart contract with three, seven, and
nine verification rules in the list were designed and implemented in a similar way. The
source code of all four test classes is available in the GitHub repository [23].

The tests were run twenty times for each of the smart contract configurations with
three, five, seven, and nine verification rules. As a result, the mean value of the verification
time of the evaluation expression for each test case was obtained. It is assumed that the

Symmetry 2022, 14, 1686 9 of 10

positive test case may take the longest time because it evaluates all rules in the list. The test
suite execution time was also measured.

Figure 5 shows a chart with a mean value of full expression evaluation time (positive
test case) for various numbers of verification rules in the list.

Figure 5. Evaluation time of full verification rules list.

The smart contract evaluation time is expressed in single milliseconds and increases
linearly as the number of verification rules in the list grows. Figure 6 shows a chart with a
mean value of test suite execution time for various numbers of verification rules.

Figure 6. Test suite execution time.

The test suite execution time is limited to tens of milliseconds and also increases
linearly. The percentage growth of that time diminishes with the increase of verification
rules number (from 3 to 5 rules, it increases 14%; from 5 to 7 rules, 12%; and from 7 to
9 rules, 11%). This is in line with the proportional increase in the number of rules.

5. Conclusions

The present paper introduces the pattern of smart contract testing. The use of the
pattern reduces the number of necessary test cases for testing a smart contract. In addition,
as the number of verification rules grows, the number of test cases increases linearly.
The significant advantage is the simplicity of the verification rules and the evaluation
mechanism that can shorten the checking time of a smart contract. Moreover, the pattern
has two proven aspects: both design and implementation, which is an advantage in model-
driven engineering applications. As a result, it can be obtained reliable smart contract
verification rules, codes, and relevant test classes. The number of test cases is only one
more than the number of verification rules. The execution time of the test suite is only tens
of milliseconds. Moreover, that time increases linearly and in proportion to the number
of verification rules. Currently, a blockchain platform-independent implementation has
been developed in Java. It is planned to build implementations for two different blockchain
frameworks: one in Java and the other in Solidity. In addition, performance tests will be

Symmetry 2022, 14, 1686 10 of 10

performed for various numbers of verification rules in a smart contract. The evaluation of
the verification rules list is limited to a logical product. The author also plans to conduct an
analysis and identify a formula defining the number of test cases when using evaluation
expressions containing different logical operators like inclusive and exclusive OR. Applying
the pattern in the continuous delivery environment and checking its impact on the efficiency
of the entire solution is also considered.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. ISO/IEC 25010:2011. Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation

(SQuaRE)—System and Software Quality Models. March 2011; pp. 1–34. Available online: https://www.iso.org/standard/35733.
html (accessed on 11 June 2022).

2. Tran, H.K.V.; Unterkalmsteiner, M.; Börstler, J.; bin Ali, N. Assessing test artifact quality—A tertiary study. Inf. Softw. Technol.
2021, 139, 106620. [CrossRef]

3. The Agile Manifesto. Principles behind the Agile Manifesto. Available online: agilemanifesto.org/principles.html (accessed on
11 June 2022).

4. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, 1st ed.;
Addison-Wesley Professional: Crawfordsville, IN, USA, 2010.

5. Donca, I.-C.; Stan, O.P.; Misaros, M.; Gota, D.; Miclea, L. Method for Continuous Integration and Deployment Using a Pipeline
Generator for Agile Software Projects. Sensors 2022, 22, 4637. [CrossRef] [PubMed]

6. Shahin, M.; Babar, M.A.; Zhu, L. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices. IEEE Access 2017, 5, 3909–3943. [CrossRef]

7. Wang, Y.; Mäntylä, M.V.; Liu, Z.; Markkula, J. Test automation maturity improves product quality—Quantitative study of open
source projects using continuous integration. J. Syst. Softw. 2022, 188, 111259. [CrossRef]

8. Khan, S.U.R.; Lee, S.P.; Javaid, N.; Abdul, W. A Systematic Review on Test Suite Reduction: Approaches, Experiment’s Quality
Evaluation, and Guidelines. IEEE Access 2018, 6, 11816–11841. [CrossRef]

9. Al-Sabbagh, K.W.; Staron, M.; Hebig, R. Improving test case selection by handling class and attribute noise. J. Syst. Softw. 2022,
183, 111093. [CrossRef]

10. Prado Lima, J.A.; Vergilio, S.R. Test Case Prioritization in Continuous Integration environments: A systematic mapping study. Inf.
Softw. Technol. 2020, 121, 106268. [CrossRef]

11. Coviello, C.; Romano, S.; Scanniello, G.; Marchetto, A.; Corazza, A.; Antoniol, G. Adequate vs. inadequate test suite reduction
approaches. Inf. Softw. Technol. 2020, 119, 106224. [CrossRef]

12. Kiran, A.; Butt, W.H.; Anwar, M.W.; Azam, F.; Maqbool, B. A Comprehensive Investigation of Modern Test Suite Optimization
Trends, Tools and Techniques. IEEE Access 2019, 7, 89093–89117. [CrossRef]

13. Powell, R. The 2022 State of Software Delivery. Available online: https://circleci.com/resources/2022-state-of-software-delivery/
(accessed on 11 June 2022).

14. Xu, X.; Weber, I.; Staples, M. Architecture for Blockchain Applications; 1st ed.; Springer: Cham, Switzerland, 2019; pp. 5–7. [CrossRef]
15. Sánchez-Gómez, N.; Torres-Valderrama, J.; García-García, J.A.; Gutiérrez, J.J.; Escalona, M.J. Model-Based Software Design and

Testing in Blockchain Smart Contracts: A Systematic Literature Review. IEEE Access 2020, 8, 164556–164569. [CrossRef]
16. Tong, Y.; Tan, W.; Guo, J.; Shen, B.; Qin, P.; Zhuo, S. Smart Contract Generation Assisted by AI-Based Word Segmentation. Appl.

Sci. 2022, 12, 4773. [CrossRef]
17. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. A Novel Smart Contract Vulnerability Detection Method Based

on Information Graph and Ensemble Learning. Sensors 2022, 22, 3581. [CrossRef] [PubMed]
18. Zardari, S.; Alam, S.; Al Salem, H.A.; Al Reshan, M.S.; Shaikh, A.; Malik, A.F.K.; Masood ur Rehman, M.; Mouratidis, H. A

Comprehensive Bibliometric Assessment on Software Testing (2016–2021). Electronics 2022, 11, 1984. [CrossRef]
19. Kirli, D.; Couraud, B.; Robu, V.; Salgado-Bravo, M.; Norbu, S.; Andoni, M.; Antonopoulos, I.; Negrete-Pincetic, M.; Flynn, D.;

Kiprakis, A. Smart contracts in energy systems: A systematic review of fundamental approaches and implementations. Renew.
Sustain. Energy Rev. 2022, 158, 112013. [CrossRef]

20. Yahaya, A.S.; Javaid, N.; Alzahrani, F.A.; Rehman, A.; Ullah, I.; Shahid, A.; Shafiq, M. Blockchain Based Sustainable Local Energy
Trading Considering Home Energy Management and Demurrage Mechanism. Sustainability 2020, 12, 3385. [CrossRef]

21. Górski, T. The 1+5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021,
13, 2000. [CrossRef]

22. Górski, T. Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules. Appl. Sci. 2022,
12, 5339. [CrossRef]

23. The STP Repository. Available online: https://github.com/drGorski/SymmetricTestPattern (accessed on 25 June 2022).

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://doi.org/10.1016/j.infsof.2021.106620
agilemanifesto.org/principles.html
http://dx.doi.org/10.3390/s22124637
http://www.ncbi.nlm.nih.gov/pubmed/35746421
http://dx.doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1016/j.jss.2022.111259
http://dx.doi.org/10.1109/ACCESS.2018.2809600
http://dx.doi.org/10.1016/j.jss.2021.111093
http://dx.doi.org/10.1016/j.infsof.2020.106268
http://dx.doi.org/10.1016/j.infsof.2019.106224
http://dx.doi.org/10.1109/ACCESS.2019.2926384
https://circleci.com/resources/2022-state-of-software-delivery/
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1109/ACCESS.2020.3021502
http://dx.doi.org/10.3390/app12094773
http://dx.doi.org/10.3390/s22093581
http://www.ncbi.nlm.nih.gov/pubmed/35591270
http://dx.doi.org/10.3390/electronics11131984
http://dx.doi.org/10.1016/j.rser.2021.112013
http://dx.doi.org/10.3390/su12083385
http://dx.doi.org/10.3390/sym13112000
http://dx.doi.org/10.3390/app12115339
https://github.com/drGorski/SymmetricTestPattern

	Introduction
	Symmetric Test Pattern
	Exchange Energy Smart Contract Example
	Test Classes Design and Implementation
	Conclusions
	References

