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Abstract: This paper introduces the Symmetric Extensible Quantum Secret Sharing protocol, a novel
quantum protocol for secret sharing. At its heart, it is an entanglement-based protocol that relies on
the use of maximally entangled GHZ tuples, evenly distributed among the players, endowing the
spymaster with the ability to securely share a secret message with the agents. Its security stems from
the fact that it is highly improbable for a malicious eavesdropper or a rogue double agent to disrupt
its successful execution. It is characterized by symmetry, since all agents are treated indiscriminately,
utilizing identical quantum circuits. Furthermore, it can be seamlessly extended to an arbitrary
number of agents. Finally, after the completion of the quantum part of the protocol, the spymaster
will have to publicly transmit some information, in order to allow the agents to unlock the secret
message. This part of the protocol can be considered as an additional advantage, due to the fact that
it gives the spymaster the privilege of deciding if, or when, it is the right time for the agents to unlock
the secret message, after the completion of the quantum part of the protocol.

Keywords: quantum secret sharing; quantum cryptography; quantum entanglement; GHZ states

1. Introduction

After the landmark announcement of IBM’s new quantum computer, which managed
to successfully break the 100-qubit barrier [1], it appears that we have moved closer than
originally anticipated to the realization of practical quantum computation and the definitive
transition from the digital era to the quantum era. However, such rapid technological ad-
vancements also herald some rather serious issues with our current infrastructure—issues
that can pose significant threats to our information security. After the publication of one of
the most famous papers in the field of quantum computing by Peter Shor in 1994 [2], which
proposed an algorithm that can solve the integer factorization problem in polynomial time,
and is thus theoretically able to break any cryptosystem based on the aforementioned
problem, it was made apparent that, if quantum computers become a reality, then the
existing digital security protocols must be replaced with ones that can withstand attacks
from a quantum computer.

Fortunately, after recognizing the potential vulnerability of the current infrastructure,
the scientific community came up with an explosion of proposals in the field of quantum
cryptography, which resulted in a profound increase of the maturity of the field. Quantum
cryptography in its present state can be broken down into two main branches. The first
branch is referred to as post-quantum cryptography or quantum-resistant cryptography,
and it relies on the development of cryptographic protocols that are based on the complexity
of certain mathematical problems. It is believed, but not yet proven, that the aforementioned
problems can not be solved in polynomial time even with a quantum computer. The second
branch of the field, known as quantum cryptography, strives to create secure cryptosystems
based on the clever implementation of certain properties of quantum mechanics, such
as entanglement and superposition of quantum states, the non-locality principle, the no-
cloning theorem, etc. This branch of quantum cryptography, which this paper is part of,
was originally created by proposing two novel solutions to the fundamental problem of
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key distribution. The historic works of Bennett and Brassard for the BB84 QKD protocol [3],
and Ekert for the E91 QKD protocol [4], were instrumental, as they established the two
main methods of sharing information between two or more players utilizing the power
of quantum mechanics, known as the prepare-and-measure and the entanglement-based
methods, upon which every quantum cryptographic protocol is based on.

After these two protocols, a rapid expansion of the sub-field of quantum key dis-
tribution ensued that resulted in multiple attempts on transitioning other sub-fields of
cryptography into their quantum counterparts. One of the numerous sub-fields of cryptog-
raphy which can be improved with the use of quantum mechanics, in order to enhance its
security and efficiency against a quantum computer, is the field of secret sharing, which
can be described as a clandestine game between three or more individual players that are
located in two different geographical locations and are unable to communicate in person.
For the sake of simplicity, we shall initially describe the simplest version of the game,
involving only three players. However, the game can be scaled up to as many players
as we want. Therefore, we start by dividing the three players into two groups. The first
group consists of the dealer or spymaster, which is a single person, and, for this game,
we shall give this honor to Alice, who is located in Athens. The second group consists of
her secret agents, the rest of the players—in this case Bob and Charlie, who are located
in Corfu. In this game, the spymaster Alice wants to send a set of secret instructions to
her agents for them to act upon. However, Alice is not certain that she can trust both of
her agents because she suspects that one of them, but not both, is a double agent and is
working for the enemy, with the goal of foiling her plans. However, she knows that, if both
of her agents partake in the mission together, the agent who is loyal to Alice will prevent
the double agent from causing any damage. Furthermore, aside from the possible double
agent who wants to sabotage the mission, Alice must also take precautions to assure the
confidentiality of the mission from possible eavesdroppers, which for the sake of the game
will be referred to as Eve. Therefore, Alice must somehow find a way to make both her
agents act on her behalf, and, at the same time, prevent both the dishonest agent and Eve
from tempering with the mission.

This elaborate game may at first sight seem a little redundant or even superfluous,
yet the field of secret sharing has been proven vital for a certain type of problems with
multiple real world uses, as for example, to guarantee that a single individual or a small
group of the involved party can not access a valuable shared resource, such as a shared
bank account. This means that, in order to take any action, all involved members must act
in concert. As a consequence, this requirement makes it considerably more difficult for any
individual who wants to have unauthorized access to secret information or to perform an
unauthorized action, to achieve her purpose. Practically, this implies that the only way for
a malicious player to perform any action is to convince every single member to go along.

The pioneering works of Hillery et al. [5] and Cleve et al. [6], which proved that
secret sharing can be achieved with the use of quantum mechanics, paved the way for the
creation of a new field with the name of Quantum Secret Sharing (QSS for short). Since
then, there has been extensive progress in this field, with a plethora of proposals actively
continuing the research to this day [7–14]. Multiple research groups have devised protocols
demonstrating the viability of QSS (see, for instance, [15–17]). More recently, elaborate
proof-of-concept experimental demonstrations of novel and effective protocols applicable
to real world scenarios have been introduced by the researchers in [18–21]. Another line of
research attempted to extend the capabilities of the field by proposing non-binary protocols
that rely on the use of qudits rather than qubits [22,23].

With this rapid advancement of the field, one may also observe some notable efforts
towards the application of Grover’s algorithm [24], which is one of the most famous
algorithms of all time, as a QSS protocol [25–27]. In the same vein, it has also been shown
by multiple proposals that well-known quantum algorithms, such as the Deutsch-Josza, the
Bernstein-Vazirani and Simon’s algorithms can be utilized in implementing viable QKD
protocols [28–31]. This decade promises to be the Quantum Decade that will, hopefully,
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transform every aspect of the industry and the society for the better. Technologically, we are
fast approaching the era of the quantum-centric supercomputer [32]. The quantum-centric
supercomputer will combine quantum and classical processors, quantum and classical
communication networks into a harmonious quantum ecosystem that will elevate our
computing capabilities to new undreamed-of heights. Every quantum practitioner knows
that building a quantum computer capable of practical impact involves millions of qubits.
Hence, the problem of scaling the current, modest in terms of qubits, quantum processors
is of paramount importance. One way to cleverly bypassing the problem of scaling the
number of qubits of a single quantum processor is by linking multiple such processors
together into a modular quantum system capable of scaling without limitations. In view
of this current trend, we advocate the utility and efficiency of using quantum algorithms
as cryptographic protocols, either by modifying established quantum algorithms, or by
building new ones based on some fundamental concepts of other algorithms. We believe
that this approach will prove beneficial for achieving effective security between multiple
quantum computers, by simply exchanging information and processing it using gates,
without the need of extra equipment [33].

In this paper, we propose a new QSS protocol in the form of a quantum game, which
we hope will make its presentation simple and pedagogical, thanks to the inherent abil-
ity of game theory to present complex and challenging problems in a more innate and
comprehensive way. As a consequence, quantum games have gained prominence as a
useful paradigm of the quantum world and have been used to tackle important problems.
A typical example in this area is the quantum game of coin tossing and its application
to cryptographic protocols (see [3] and the more recent [34]). The beginning of this field
can be traced back to two landmark papers from 1999: Meyer’s PQ penny flip game [35]
and the Eisert–Wilkens–Lewenstein scheme [36]. Numerous works that were inspired
from the PQ penny flip game have appeared in the literature and some recent results are
given in [37–39]. The Eisert–Wilkens–Lewenstein scheme was successfully employed in the
study of quantum versions of well-known classical games, such as the famous Prisoners’
Dilemma, where the quantum strategies outperformed the classical strategy [36], and to
quantum extensions of the classical repeated Prisoners’ Dilemma strategies [40]. Winning
strategies for abstract quantum games can also be encoded as infinite words accepted by
quantum automata, as demonstrated in [41]. Quantum games have even been used in [42]
as a metaphor for the operation of a hypothetical quantum parliament.

1.1. Contribution

As a result of our approach, in this paper, we propose the novel Symmetric Extensible
Quantum Secret Sharing protocol, which we designate by SEQSSn, where n represents the
number of participating players. The final result is an entanglement-based protocol that
relies on the use of maximally entangled GHZ tuples, evenly distributed among the players,
in order to allow our spymaster Alice to securely share the secret message with her agents,
by implementing a unitary transform U f . As the name suggests, it exhibits symmetry,
since all agents are treated indiscriminately, utilizing identical quantum circuits. It offers
uncompromising security, making it virtually impossible for a malicious eavesdropper
or a rogue double agent to disrupt its successful execution, due to the fact that only the
spymaster performs all the steps in the protocol, while the rest of the agents will only
have to apply Hadamard gates and measure their registers, rendering them unable to
tamper with the protocol. Additionally, we provide a rigorous mathematical analysis of
what will happen, if Eve or a rogue agent decides to implement their own unitary function
U′f . After the completion of the quantum part of the protocol, it is mandatory for the
spymaster to publicly communicate her final measurement to her agents, since without this
information the agents will not be able to discover the secret message, even if they combine
together all their individual data. However, this can be considered as an added advantage,
which can be further illustrated as a clandestine mission with Alice as the spymaster and
the rest of her agents acting on her behalf. In this mission, Alice has created a detailed
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plan, outlining all possible scenarios of the mission, and she has broken down her plan
into multiple secret messages, i.e., s1, s2, . . . . At the beginning of the mission, Alice and her
agents complete the quantum part of the protocol multiple times, in order for everyone to
have a piece of every single secret message that might be used. At a later moment, Alice can
decide if, or when she wants to broadcast some of her measurements based on the real-time
feedback from her agents. For example, she will broadcast her piece of information s1 to
start the mission, and then, based on how the mission progresses, she will only broadcast in
real time only those secret messages that are relevant to unfolding scenario of the mission.
This strategy provides her with the ability to hide from her agents and the enemy possible
critical information. Furthermore, since she can broadcast her pieces of the secret message
on a public channel, after the completion of the quantum part, Alice and her agents can use
whatever communication method they deem suitable for the mission.

1.2. Organization

This paper is organized as follows: Section 1 gives an introduction to the subject along
with some relevant references. Section 2 provides a brief introduction about the GHZ states
and the principle of entanglement, a vital tool used in the formulation of the proposed
protocol. Section 3 showcases the Symmetric Extensible QSS protocol twice, once in its
simplest form, which is restricted to only three players and once in its general form, which
is played by n players. Section 4 gives a brief security analysis on a certain number of
known attack strategies that Eve can employ in order to compromise the security of the
protocol and acquire confidential information about the secret message that Alice wants to
share. Finally, Section 5 discusses the operation and advantages of the proposed protocol.

2. Background on GHZ States

Quantum entanglement can be described mathematically as the linear combination
of two or more product states. This unique phenomenon is universally considered as
one of the fundamental principles of quantum mechanics and is the basis of many fasci-
nating proposals, one of which is the achievement of quantum teleportation. Moreover,
entanglement-based techniques have been proven indispensable in the field of quantum
secret sharing and quantum cryptography in general. In this paper, for the realization of
our QSS protocol, we will heavily rely on the utilization of maximally entangled pairs of
three or more qubits, which are commonly known as GHZ states. Therefore, we believe
that the following subsection, in which we give a brief explanation on the nature of GHZ
states, will facilitate the understanding of the proposed protocol.

From the perspective of quantum computing, a GHZ state can be produced by a circuit
with three or more qubits, upon which a Hadamard gate is applied to the first qubit, then
a CNOT gate is applied to the first and second qubits, and subsequently a CNOT to the
second and third qubits, and so on until we reach the last qubit. A possible quantum circuit
for preparing three qubits in the GHZ state is shown in Figure 1. Figure 2 gives the state
vector description of the corresponding GHZ state. These figures were also obtained from
the IBM Quantum Composer [43].

Generalizing the same reasoning as in the case of the 3 qubit GHZ state shown in
Figure 1, the mathematical representation of a composite system consisting of n single qubit
subsystems all entangled in the GHZ state, denoted by |GHZn〉, goes as follows:

|GHZn〉 =
1√
2

(
|0〉n−1 |0〉n−2 . . . |0〉0 + |1〉n−1 |1〉n−2 . . . |1〉0

)
. (1)

The above setting can be generalized to the case where a composite system consists of
n subsystems, say n quantum registers r0, r1 . . . , rn−1, each of them having m qubits, and the
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corresponding qubits of all the n registers are entangled in the |GHZn〉 state. The state of
the composite system, denoted by |GHZn〉⊗m, is described by the formula below:

|GHZn〉⊗m =
1√
2m ∑

x∈{0,1}m
|x〉n−1 . . . |x〉0 . (2)

Figure 1. This quantum circuit can be used in Qiskit to entangle three qubits in the |GHZ3〉 =
|0〉|0〉|0〉+|1〉|1〉|1〉√

2
state.

Figure 2. The state vector description of three qubits entangled in the |GHZ3〉 state.

The proof for this formula is rather straightforward. If we take the entangled state
|GHZn〉, as shown in (1) twice, the resulting tensor product can be portrayed as

|GHZn〉⊗2 =
1√
2

(
|0〉n−1 · · · |0〉0 + |1〉n−1 · · · |1〉0

) 1√
2

(
|0〉n−1 · · · |0〉0 + |1〉n−1 · · · |1〉0

)
=

1
2
(
|00〉n−1 · · · |00〉0 + |01〉n−1 · · · |01〉0 + |10〉n−1 · · · |10〉0 + |11〉n−1 · · · |11〉0

)
. (3)

Following this pattern, we can successfully derive the general Formula (2) with induc-
tion and thus complete the proof.

3. The Symmetric Extensible QSS Protocol

In this section, we thoroughly analyze the proposed Symmetric Extensible QSS (for
short SEQSS) protocol in great detail. All of Alice’s agents employ identical quantum
circuits, hence the term symmetric. Due to the nature of the game, the least number of agents
Alice can deploy is two, e.g., agents Bob and Charlie, but their number can seamlessly
increase to accommodate as many as necessary, which explains the term extensible. We
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begin our analysis with the simplest version, which is a demonstration of the protocol
restricted to only three players, designated by SEQSS3, while later on we transition to the
general version that consists of n agents and is aptly designated as SEQSSn.

3.1. The 3-Player SEQSS3 Protocol

Let us begin by showcasing the protocol as a game between three players divided into
two groups, exactly as we outlined in Section 1. Thus, we will have Alice being the first
group and playing the role of the spymaster, tasked with sharing the secret instructions
denoted by s to her agents, and Bob and Charlie comprising the second group and playing
the role of said secret agents, who are spatially separated form Alice, but they are both
located in the same region of space. The game will start by having all three players share
m triplets of maximally entangled qubits. Each triplet is in the |GHZ3〉 state and Alice,
Bob and Charlie possess the qubit |q2〉, |q1〉 and |q0〉, respectively, of the triplet. At this
point, it is important to state that there are no limitations on which player will create the
GHZ triplets in the first place. The states can be created and distributed accordingly by
either Alice, her agents, or even by a third party source, e.g., a satellite [44]. The goal of
the current game is for Alice to successfully share her secret message s with her agents
Bob and Charlie. However, the secret message s, should not be readable by her agents
individually. They must both combine their results in order to be able to read it. This task
can be successfully accomplished by performing the steps shown below visually in Figure 3
in the form of a quantum circuit.

Furthermore, we point out that each of our three protagonists has a private quantum
circuit and the three quantum circuits are similar, in the sense that they all contain an Input
Register consisting of m qubits. Bob and Charlie’s circuits are virtually identical, whereas
Alice’s circuit differs because it also contains an Output Register consisting of a single qubit,
a Hadamard gate acting on the Output Register and the unitary transform U fA , which acts
on both her Input and Output Registers. The corresponding qubits in Alice’s, Bob’s and
Charlie’s Input Registers constitute a triplet entangled in the GHZ3 state. Table 1 explains
the abbreviations that are used in the quantum circuit depicted in Figure 3.

Table 1. This table shows the abbreviations that are used in Figure 3.

Abbreviations Used in Figure 3

Abbreviations Full Name # of Qubits

AIR Alice’s Input Register m

AOR Alice’s Output Register 1

BIR Bob’s Input Register m

CIR Charlie’s Input Register m

To describe the resulting composite system, we invoke Formula (2) setting n = 3.
Following the steps of the circuit shown above, we can examine the phases of the algorithm
more closely, starting with the initial state |ψ0〉 of the system:

|ψ0〉 =
1√
2m ∑

x∈{0,1}m
|1〉A |x〉A |x〉B |x〉C . (4)

As expected, |x〉A, |x〉B and |x〉C correspond to Alice’s, Bob’s and Charlie’s Input
Registers, respectively, representing each player’s part of the GHZ states. Likewise, |1〉A
represents Alice’s Output Register. During our analysis, the subscripts A, B and C will be
consistently used to designate the registers belonging to Alice, Bob and Charlie, respectively.
We also emphasize that for consistency we use the Qiskit [45] convention of ordering qubits,
where the most significant qubit is the bottom qubit and the least significant qubit is the
top qubit.
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Continuing to the next phase, Alice effectively initiates the protocol by applying the
Hadamard transform to her Output Register. In view of the fact that H |1〉 = 1√

2
(|0〉 −

|1〉) = |−〉, this produces the ensuing state

|ψ1〉 =
1√
2m ∑

x∈{0,1}m
|−〉A |x〉A |x〉B |x〉C . (5)

This will allow Alice to apply her function fA on her registers by using the stan-
dard scheme:

U fA : |y, x〉 → |y⊕ fA(x), x〉 . (6)

Consequently, the next state becomes

|ψ2〉 =
1√
2m ∑

x∈{0,1}m
(−1) fA(x) |−〉A |x〉A |x〉B |x〉C . (7)

At this point, we emphasize that Alice’s function is

fA(x) = s · x mod 2 , (8)

where s is the secret message chosen by Alice. Refs. (7) and (8) can be written as



Symmetry 2022, 14, 1692 8 of 18

|ψ2〉 =
1√
2m ∑

x∈{0,1}m
(−1)s·x |−〉A |x〉A |x〉B |x〉C . (9)

Subsequently, Alice, Bob and Charlie apply the m-fold Hadamard transform to their
Input Registers, driving the system into the next state

|ψ3〉 =
1√
2m ∑

x∈{0,1}m

(−1)s·x |−〉A H⊗m |x〉A H⊗m |x〉B H⊗m |x〉C

=
1√
2m ∑

x∈{0,1}m

(−1)s·x |−〉A

 1√
2m ∑

a∈{0,1}m

(−1)a·x |a〉A

 1√
2m ∑

b∈{0,1}m

(−1)b·x |b〉B

 1√
2m ∑

c∈{0,1}m

(−1)c·x |c〉C

 (10)

=
1

(
√

2m)4 ∑
x∈{0,1}m

∑
a∈{0,1}m

∑
b∈{0,1}m

∑
c∈{0,1}m

(−1)(s⊕a⊕b⊕c)·x |−〉A |a〉A |b〉B |c〉C .

We can observe now that, when

a⊕ b⊕ c = s , (11)

then ∀x ∈ {0, 1}m, the expression (−1)(s⊕a⊕b⊕c)·x becomes (−1)0 = 1. As a result, the sum
∑x∈{0,1}m(−1)(s⊕a⊕b⊕c)·x = 2m. Whenever a⊕ b⊕ c 6= s, the sum is just 0 because, for
exactly half of the inputs x, the exponent will be 0 and, for the remaining half, the exponent
will be 1. Hence, one may write that

∑
x∈{0,1}m

(−1)(s⊕a⊕b⊕c)·x = 2mδs,a⊕b⊕c . (12)

Utilizing Equation (12), and ignoring for a moment Alice’s Output Register, which is
at state |−〉A, the following three equivalent and symmetric forms can be derived:

∑
a∈{0,1}m

∑
b∈{0,1}m

∑
c∈{0,1}m

∑
x∈{0,1}m

(−1)(s⊕a⊕b⊕c)·x |a〉A |b〉B |c〉C = 2m ∑
b∈{0,1}m

∑
c∈{0,1}m

|s⊕ b⊕ c〉A |b〉B |c〉C (13)

= 2m ∑
a∈{0,1}m

∑
c∈{0,1}m

|a〉A |s⊕ a⊕ c〉B |c〉C (14)

= 2m ∑
a∈{0,1}m

∑
b∈{0,1}m

|a〉A |b〉B |s⊕ a⊕ b〉C (15)

By combining (10) with (13)–(15), state |ψ3〉 can be more succinctly written as:

|ψ3〉 =
1

2m ∑
a∈{0,1}m

∑
b∈{0,1}m

∑
c∈{0,1}m

|−〉A |a〉A |b〉B |c〉C , (16)

where the states of the three players’ Input Registers are always correlated as expressed by
the following fundamental property:

a⊕ b⊕ c = s ⇔ a⊕ b⊕ c⊕ s = 0 . (17)

Finally, Alice, Bob and Charlie measure their GHZ states in their Input Registers ob-
taining

|ψ4〉 = |a〉A |b〉B |c〉C , for some a, b, c ∈ {0, 1}m , (18)

and thus successfully completing the quantum part of the protocol.
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We may easily observe that the contents of each of the three Input Registers appear
random to Alice, Bob and Charlie, but are, when viewed as a composite system, correlated
by the fundamental property (17) of the SEQSS3 protocol. We now recall that Bob and
Charlie are in the same region of space. This implies that they can securely exchange
information without using any classical or quantum communication channel. A critical
remark is that, even if Bob and Charlie combine their measurements b and c, they still
will not be able to retrieve Alice’s secret s, unless, of course, it happens that a = 0. This
last event can happen with probability 1

2m , which is virtually negligible for large values
of m. Bob and Charlie still need a crucial ingredient from Alice, namely the contents a
of Alice’s Input Register. Hence, we can conclude the protocol by having Alice share her
measurement a with anyone of her agents via a public channel. She can choose either Bob
or Charlie without affecting the protocol. Finally, Bob and Charlie, being in possession of a,
can combine their measurements and obtain the secret message s, according to (17).

The part where Alice must share her measurement with her agents after the quantum
part of the protocol, can be seen as an advantage, due to the fact that Alice and her agents
may perform the quantum part of the protocol at a given time and then have Alice, as the
spymaster, determine when will be the right time for her agents to unlock the secret
message, by deciding when to broadcast her measurement.

Figure 4 provides a mnemonic visualization of the spatial positions of Alice, Bob
and Charlie in the SEQSS3 protocol, as well as the operation of the quantum and the
classical channel.
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3.2. The n-Player SEQSSn Protocol

Now that we have presented the simplest version of the protocol, we can move on
to the general version, which can be described as an obvious extension of the SEQSS3
game, where now Alice’s agents are not only two but n− 1, namely Agent0, . . . , Agentn−2.
The quantum circuit implementing the SEQSSn protocol is depicted in the next Figure 5.
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As before, Alice is spatially separated from her n− 1 agents, which are all located in the
same region of space. Additionally, we point out that each of the n players has their own
quantum circuit and that the n quantum circuits are similar, since they all contain an Input
Register consisting of m qubits. All the n− 1 Alice’s secret agents have identical circuits.
Alice’s circuit differs because it also contains an Output Register, consisting of a single
qubit, upon which a Hadamard gate acts, and the unitary transform U fA acting on both
her Input and Output Registers. The corresponding qubits in the Input Registers used by
Alice and her n− 1 secret agents constitute an n-tuple entangled in the GHZn state. Table 2
explains the abbreviations that are used in the quantum circuit depicted in Figure 5.

Agent0

... ...

Agentn−2

Spatially Separated

Alice

So
ur

ce
of
G
H
Z
n
n
‑tu

pl
es

IR0

IRn−2

AIR

|1⟩
AOR

Phase 0

H

Phase 1

UfA

Phase 2

H⊗n

H⊗n

H⊗n

Phase 3 Phase 4

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|y0⟩

|yn−2⟩

|a⟩

Figure 5. A schematic representation of the quantum circuit implementing the SEQSSn protocol.

Table 2. This table shows the abbreviations that are used in Figure 5.

Abbreviations Used in Figure 5

Abbreviations Full Name # of Qubits

AIR Alice’s Input Register m

AOR Alice’s Output Register 1

IRi, 0 ≤ i ≤ n− 2 The Input Register of Agenti m
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Once again, following the steps of the circuit shown in Figure 5, we can examine the
steps of the algorithm more closely, by starting with the initial state of the system

|ψ0〉 =
1√
2m ∑

x∈{0,1}m
|1〉A |x〉A |x〉n−2 . . . |x〉0 . (19)

As before, |x〉A gives the state of Alice’s Input Register, |x〉i , 0 ≤ i ≤ n− 2, represent
the states of the Input Registers of the n− 1 agents, and |1〉A is the state of Alice’s Output
Register. In our subsequent analysis, the subscripts A, 0, 1, . . . , n− 2 are consistently used
to designate the registers belonging to Alice and Agent0, . . . , Agentn−2, respectively. Thus,
we may move on to the next phase, by having Alice initiate the protocol, via the application
of the Hadamard transform to her Output Register, which produces the ensuing state

|ψ1〉 =
1√
2m ∑

x∈{0,1}m
|−〉A |x〉A |x〉n−2 . . . |x〉0 . (20)

Akin to the previous version, this will allow Alice to apply her function given by (8)
on her registers and lead to the next state, which is

|ψ2〉 =
1√
2m ∑

x∈{0,1}m
(−1)s·x |−〉A |x〉A |x〉n−2 . . . |x〉0 . (21)

Afterwards, Alice and all her secret agents apply the m-fold Hadamard transformation
to their Input Registers, driving the system into the next state

|ψ3〉 =
1√
2m ∑

x∈{0,1}m
(−1)s·x |−〉A H⊗m |x〉A H⊗m |x〉n−2 . . . H⊗m |x〉0

=
1√
2m ∑

x∈{0,1}m
(−1)s·x |−〉A

 1√
2m ∑

a∈{0,1}m
(−1)a·x |a〉A

 (22)

 1√
2m ∑

yn−2∈{0,1}m
(−1)yn−2·x |yn−2〉n−2

 . . .

 1√
2m ∑

y0∈{0,1}m
(−1)y0·x |y0〉0


=

1
(
√

2m)n+1 ∑
x∈{0,1}m

∑
a∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

(−1)(s⊕a⊕yn−2⊕···⊕y0)·x |−〉A |a〉A |yn−2〉n−2 . . . |y0〉0 .

The crucial observation now is that, if

a⊕ yn−2 ⊕ · · · ⊕ y0 = s , (23)

then ∀x ∈ {0, 1}m, the expression (−1)(s⊕a⊕yn−2⊕···⊕y0)·x becomes (−1)0 = 1. As a result,
the sum ∑x∈{0,1}m(−1)(s⊕a⊕yn−2⊕···⊕y0)·x = 2m. Whenever a⊕ yn−2⊕ · · · ⊕ y0 6= s, the sum
is just 0 because for exactly half of the inputs x the exponent will be 0 and for the remaining
half the exponent will be 1. Therefore, we derive that

∑
x∈{0,1}m

(−1)(s⊕a⊕yn−2⊕···⊕y0)·x = 2mδs,a⊕yn−2⊕···⊕y0 . (24)

Equation (24) leads to the following n equivalent and symmetric formulations:
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∑
a∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

∑
x∈{0,1}m

(−1)(s⊕a⊕yn−2⊕···⊕y0)·x |−〉A |a〉A |yn−2〉n−2 . . . |y0〉0

= 2m ∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

|−〉A |s⊕ yn−2 ⊕ · · · ⊕ y0〉A |yn−2〉n−2 . . . |y0〉0 (25)

= 2m ∑
a∈{0,1}m

∑
yn−3∈{0,1}m

· · · ∑
y0∈{0,1}m

|−〉A |a〉A |s⊕ a⊕ yn−3 ⊕ · · · ⊕ y0〉n−2 |yn−3〉n−3 . . . |y0〉0 (26)

. . .

= 2m ∑
a∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y1∈{0,1}m

|−〉A |a〉A |yn−2〉n−2 . . . |y1〉1 |s⊕ a⊕ yn−2 ⊕ · · · ⊕ y1〉0 (27)

By combining (22) with (25)–(27), we can write state |ψ3〉 in a compact way as

|ψ3〉 =
1

(
√

2m)n−1 ∑
a∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

|−〉A |a〉A |yn−2〉n−2 . . . |y0〉0 , (28)

where the states of all the n players’ Input Registers are always correlated as dictated by
the fundamental property

a⊕ yn−2 ⊕ · · · ⊕ y0 = s ⇔ a⊕ yn−2 ⊕ · · · ⊕ y0 ⊕ s = 0 . (29)

Finally, Alice and her secret agents Agent0, . . . , Agentn−2 measure their GHZ states in
their Input Registers obtaining

|ψ4〉 = |a〉A |yn−2〉n−2 . . . |y0〉0 , for some a, y0, . . . , yn−2 ∈ {0, 1}m , (30)

which completes the quantum part of the SEQSSn protocol.
In this most general case, we encounter the same motif we saw in the case of the three

players. In particular, although the contents of each of the n Input Registers appear random
to Alice and her secret agents, when viewed as a composite system, they are correlated by
the fundamental property (29) of the SEQSSn protocol. The fact that all of Alice’s agents
are in the same geographical region implies that they can securely exchange information
without using any classical or quantum communication channel. However, even if all the
n− 1 secret agents combine their measurements y0, . . . , yn−2, they will still not be able
to retrieve Alice’s secret s, unless, of course, it happens that a = 0. This last event can
happen with probability 1

2m , which tends to zero as m increases. Alice’s agents lack a
crucial ingredient from Alice, namely the contents a of Alice’s Input Register. Hence, we
can conclude the protocol by having Alice share her measurement a with anyone of her
n− 1 agents via a public channel. She can choose either one of them without affecting
the protocol. Finally, the n− 1 secret agents, being in possession of a, can combine their
measurements and obtain the secret message s, according to (29).

Let us again stress that Alice may share her measurement with anyone of her agents.
This is undoubtedly an important advantage of the protocol, due to the fact that Alice
and her agents may perform the quantum part of the protocol at a given time and then
have Alice, as the spymaster, determine when will be the right time for her agents to
unlock the secret message, by deciding when to broadcast her measurement. Furthermore,
the broadcast of Alice’s measurement via a public channel, will not hinder the security of
the protocol because, even if Eve is present, she will still need the rest of the measurements,
in order to retrieve the secret message s.

Figure 6 presents a mnemonic representation of the SEQSSn protocol, together with
the operation of the quantum and classical channels.
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n-tuple to Alice and her n − 1 secret agents.
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4. Security Analysis of the Protocol

In this section, we provide a brief security analysis of the SEQSS protocol, against cer-
tain known types of attacks that Eve can employ, in an attempt to acquire vital information
and break the confidentiality of the protocol. The SEQSS protocol is an entanglement-based
protocol, which allows Alice to secretly transmit information to her agents with the use
of entangled GHZ qubits. Therefore, the security of our protocol can be assured by a
plethora of well-established phenomena, namely, the monogamy of entangled particles,
the no cloning theorem and non-locality. Furthermore, it is important to state that Eve’s
goal here is only to acquire the measurements of the secret agents. This is because, during
the final stage of the protocol, Alice will publicly share her measurement with her secret
agents, in order for them to unlock the secret message. Now, in order to further establish
the security of the protocol, we will consider the following attack strategies.

4.1. Measure and Resend Attack

In this attack, Eve’s strategy is to intercept the GHZ tuples during their transmission
from the source to the players, measure them and then resend them back to the players.
In this attack, Eve will not acquire any information, due to the fact that the GHZ tuples
during the transmission phase will not be carrying any information—thus rendering this strategy
ineffective against the protocol.
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4.2. Intercept and Resend Attack

This is one of the oldest strategies for Eve to gain any valuable information from
the protocol and the way this strategy works is by having Eve intercept the transmitted
GHZ tuples, then measure them in the computational basis with the goal of gaining
valuable information and, finally, send the new cloned GHZ qubits to the players. As we
mentioned above, Eve will not gain any information, simply because the GHZ tuples at the
transmission phase do not contain any information about the secret message. Additionally,
the no cloning theorem prohibits the ability to create clones of the intercepted qubits
without destroying them.

4.3. Entangle and Measure Attack

In this attack, Eve’s strategy is to intercept the transmitted GHZ qubits that are
heading to the secret agents. Only now, instead of measuring them, as we saw above,
she will entangle them with her ancilla state, prepared in some state |E〉 determined by
Eve, by performing a unitary operation U on the composite system and then send the
GHZ qubits to the secret agents. Finally, Eve will wait for the protocol to complete and
then measure her qubits in order to acquire useful information about the secret message.
In order to analyze this attack, we consider the worst case scenario, wherein Eve is already
in an advantageous position, by assuming that, instead of intercepting the GHZ states, she
will be the one who will create them, along with an extra tuple for herself and distribute
them to the rest of the players. Therefore, rather than having |GHZn〉⊗m states for the n
players, we will have |GHZn+1〉⊗m states for the n players plus Eve. Furthermore, we will
assume that, in this scenario, Eve can also perform her own unitary transform U′f just like
Alice. Thus, we begin our scenario in the initial state ψ0 of the system:

|ψ0〉 =
1√
2m ∑

x∈{0,1}m
|1〉A |1〉E |x〉A |x〉E |x〉n−2 . . . |x〉0 . (31)

Starting in a similar fashion as the SEQSSn protocol presented in the previous section,
|x〉A and |1〉A represent Alice’s Input and Output Registers, respectively, |x〉i , 0 ≤ i ≤ n− 2,
represent the states of the Input Registers of the n− 1 agents, and |x〉E and |1〉E represent
Eve’s Input and Output Registers respectively. As before, the subscripts A, 0, 1, . . . , n− 2, E
will consistently be used to designate the registers belonging to Alice, her Agents, and
Eve respectively. Thus, we proceed to the next phase, by having Alice and Eve initiate the
protocol by having both apply the Hadamard transform to their Output Registers, which
will produce the following state:

|ψ1〉 =
1√
2m ∑

x∈{0,1}m
|−〉A |−〉E |x〉A |x〉E |x〉n−2 . . . |x〉0 . (32)

Next, Alice and Eve will have the ability to apply their functions given by (8) on their
registers. In this scenario, s and sE represent Alice’s secret message and Eve’s input string,
respectively, that leads to the next state, which is

|ψ2〉 =
1√
2m ∑

x∈{0,1}m
(−1)s·x(−1)sE ·x |−〉A |−〉E |x〉A |x〉E |x〉n−2 . . . |x〉0 . (33)

Afterwards, everyone can apply the m-fold Hadamard transformation to their Input
Registers, driving the system into the next state
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|ψ3〉 =
1√
2m ∑

x∈{0,1}m
(−1)s·x(−1)sE ·x |−〉A |−〉E H⊗m |x〉A H⊗m |x〉E H⊗m |x〉n−2 . . . H⊗m |x〉0

=
1√
2m ∑

x∈{0,1}m
(−1)(s⊕sE)·x |−〉A |−〉E

 1√
2m ∑

a∈{0,1}m
(−1)a·x |a〉A

 1√
2m ∑

e∈{0,1}m
(−1)e·x |e〉E


 1√

2m ∑
yn−2∈{0,1}m

(−1)yn−2·x |yn−2〉n−2

 . . .

 1√
2m ∑

y0∈{0,1}m
(−1)y0·x |y0〉0

 (34)

=
1

(
√

2m)n+1 ∑
x∈{0,1}m

∑
a∈{0,1}m

∑
e∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

(−1)(s⊕sE⊕a⊕e⊕yn−2⊕···⊕y0)·x |−〉A |−〉E |a〉A |e〉E |yn−2〉n−2 . . . |y0〉0 .

Again, the crucial observation now is that, if

a⊕ e⊕ yn−2 ⊕ · · · ⊕ y0 = s⊕ sE , (35)

then ∀x ∈ {0, 1}m, the expression (−1)(s⊕sE⊕a⊕e⊕yn−2⊕···⊕y0)·x becomes (−1)0 = 1. As a
result, the sum ∑x∈{0,1}m(−1)(s⊕sE⊕a⊕e⊕yn−2⊕···⊕y0)·x = 2m. Whenever a ⊕ e ⊕ yn−2 ⊕
· · · ⊕ y0 6= s⊕ sE, the sum is just 0 because, for exactly half of the inputs x, the exponent
will be 0 and for the remaining half the exponent will be 1. Therefore, we derive that

∑
x∈{0,1}m

(−1)(s⊕sE⊕a⊕e⊕yn−2⊕···⊕y0)·x = 2mδs⊕sE ,a⊕e⊕yn−2⊕···⊕y0 . (36)

Equation (36) leads to the following n equivalent and symmetric formulations.

∑
a∈{0,1}m

∑
e∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

∑
x∈{0,1}m

(−1)(s⊕sE⊕a⊕e⊕yn−2⊕···⊕y0)·x |−〉A |−〉E |a〉A |e〉E |yn−2〉n−2 . . . |y0〉0
= 2m ∑

e∈{0,1}m
∑

yn−2∈{0,1}m
· · · ∑

y0∈{0,1}m
|−〉A |−〉E

|s⊕ sE ⊕ e⊕ yn−2 ⊕ · · · ⊕ y0〉A |e〉E |yn−2〉n−2 . . . |y0〉0 (37)

= 2m ∑
a∈{0,1}m

∑
yn−3∈{0,1}m

· · · ∑
y0∈{0,1}m

|−〉A |−〉E

|a〉A |s⊕ sE ⊕ a⊕ yn−2 ⊕ · · · ⊕ y0〉E |yn−2〉n−2 . . . |y0〉0 (38)

. . .

= 2m ∑
a∈{0,1}m

∑
e∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y1∈{0,1}m

|−〉A |−〉E

|a〉A |e〉E |yn−2〉n−2 . . . |y1〉1 |s⊕ sE ⊕ a⊕ e⊕ yn−2 ⊕ · · · ⊕ y1〉0 (39)

By combining (34) with (37)–(39), we can write state |ψ3〉 in a compact way as

|ψ3〉 =
1

(
√

2m)n ∑
a∈{0,1}m

∑
e∈{0,1}m

∑
yn−2∈{0,1}m

· · · ∑
y0∈{0,1}m

|−〉A |−〉E |a〉A |e〉E |yn−2〉n−2 . . . |y0〉0 , (40)

where the states of all the n players’ plus Eve’s Input Registers are always correlated as
dictated by the fundamental property

a⊕ e⊕ yn−2 ⊕ · · · ⊕ y0 = s⊕ sE ⇔ a⊕ e⊕ yn−2 ⊕ · · · ⊕ y0 ⊕ s⊕ sE = 0 . (41)
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Finally, Alice, her secret agents Agent0, . . . , Agentn−2 and Eve can measure their GHZ
states in their Input Registers obtaining

|ψ4〉 = |a〉A |e〉E |yn−2〉n−2 . . . |y0〉0 , for some a, e, y0, . . . , yn−2 ∈ {0, 1}m . (42)

From the above procedure, we can make several important observations about Eve’s
measurement. Starting with (37)–(39), from which it is easy to see that Eve will measure e,
which in fact is Alice’s message XORed with Eve’s input string and the random variables
measured by the n− 1 agents. Therefore, even if Eve manages to take part in the procedure,
she will not be able to acquire any useful information about the secret message s. Addi-
tionally, after the completion of the quantum part of the protocol, when the players will
try to combine their measurements, in order to unlock the secret message, they will realize
that they are not able to unlock the secret message s because they will still need Eve’s
measurement. Hence, in that case, they will be alerted about the fact that Eve tempered
with the procedure.

4.4. Blinding Attack

In this attack, Eve’s strategy is not to intercept the transmitted GHZ qubits, but actually
block them entirely from ever reaching the intended players and then create her own GHZ
qubits and transmit these to the players. Of course, it is clear that this strategy only works
if the players rely on a third party for the creating and distribution of the GHZ states.
However, even if that is the case, Eve will not be able to acquire any information by having
her own qubits entangled in the system, due to the fact that, in our protocol, she will be
considered as an extra player and she will still need the measurements of the other players,
in order to unlock the secret message.

5. Discussion and Conclusions

In this paper, we proposed a new entanglement-based QSS protocol, called SEQSSn,
that relies on the use of maximally entangled GHZ tuples, evenly distributed among the
players, giving the spymaster Alice the ability to securely share a secret message with her
agents, in a simple and symmetric way, since all her agents are treated similarly, utilizing
identical quantum circuits. We presented in great detail the simplest version of the protocol
and afterwards we continued our analysis with the general version involving n players,
thus proving its scalability to as many players as necessary. Moreover, we showed that our
proposal can give a rather useful advantage to Alice that plays the role of the spymaster and
is responsible for the transmission of the secret message s, by giving her the ability to decide
when the rest of the players will have access to the message, even at a time instant after the
completion of the quantum part of the protocol. Next, we presented a brief security analysis
against a number of known attack strategies, in order to further establish the reliability of
our protocol. However, we believe that, as a future work, a more exhaustive and detailed
security analysis of the protocol, along with its performance analysis, will prove beneficial
to further test and guarantee its reliability.
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