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Abstract: Complementarity plays a central role in the conceptual development of quantum mechanics,
and also provides practical applications in quantum information technologies. How to properly
quantify it is an important problem in quantum foundations, and there exists different types of
complementarity relations. In this paper, a complementarity relation is established with the robustness
of asymmetry. Specifically, the two complementary aspects are quantified by applying the robustness
of asymmetry corresponding to two cyclic groups whose generators are linked by the Fourier matrix.
This complementarity relation is compared with known results and considered in other perspectives,
especially its operational meaning regarding quantum state discrimination. We conclude that the
internal asymmetry of quantum states is closely related to other fundamental concepts, such as
complementarity and coherence, and it is possible to quantitatively investigate complementarity and
quantum state discrimination using the robustness of asymmetry.

Keywords: robustness of asymmetry; quantum coherence; complementarity relations; quantum state
discrimination

1. Introduction

Wave particle duality [1] is the most familiar manifestation of the Bohr’s principle of
complementarity [2]. By quantifying wave particle duality, it is possible to establish various
kinds of complementarity relations [3–16], where the two complementary aspects are
specified as particleness and waveness. The most well-known such relation is established
by Greenberger and Yasin [4], Jaeger et al. [5] and Englert [6] as

P2(ρ) + V2(ρ) ≤ 1, (1)

for any 2 × 2 density matrix ρ. The complementarity relation (1) refers exclusively to
the wave particle duality in two path interferometers, where the function P, which is
called Predictability, quantifies the particleness; while the other function V, which is called
Visibility, quantifies the waveness. There are many options to generalize relation (1) to
general n-path interferometers, and notably, we have the Dürr’s relation [8], the one-bet
relation [10] and relations based on quantum state discrimination [15]. The links between
such complementarity relations and fundamental concepts in quantum mechanics, such as
entanglement and coherence, have already been addressed in the literature [9,11–21]. In
particular, it is possible to add a third term that quantifies the entanglement in relation (1)
to make the inequality an equality [9,11,22].

In this paper, we would like to obtain a general complementarity relation by consider-
ing the robustness of asymmetry, which is a systematic way of quantifying the degree of
asymmetry of quantum states [23,24]. The robustness measure is an option of quantification
in any resource theory [25], e.g., we have the robustness of entanglement [26,27] that is
a proper measure of entanglement. Similarly, by considering asymmetry as a resource,
we have the robustness of asymmetry that automatically satisfies the axioms of being
a proper resource measure. In 2016, Napoli et al. employ it to quantify coherence by
considering the symmetric group U(1) of the phases [24]. Since coherence is naturally
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related to the wave-like behavior, what is lacking for a complementarity relation is the
quantifier of the particleness, i.e., the Predictability P, which is about the asymmetry of the
paths. Consequently, we will consider the robustness of path asymmetry as the measure of
Particleness in Section 4, and in this way establish a complementarity relation. For pure
states, this complementarity relation is nothing but the familiar one-bet relation [10], but
with a completely different physical meaning. For mixed states, this complementarity
relation is different from any known relations, and it would be interesting to relate it to
measures of entanglement as in [9,11,20,21]. By applying the robustness of asymmetry
to derive complementarity relations, we associate both Predictability and Visibility with
clear physical significance in terms of the internal symmetry of the quantum state, and
therefore add new insights into the problem of quantifying complementarity. Moreover,
minimum-error quantum state discrimination plays an important role in the derivation. In
particular, we will show in Corollary 1 that the computation of the robustness of asymmetry
can be converted to compute the success probability of minimum-error discrimination of
a certain equiprobable collection of quantum states, and vice versa. There are various
experimental demonstrations of minimum-error discrimination [28–31], so that it is pos-
sible to experimentally verify the complementarity relation in terms of the robustness of
asymmetry. Our work demonstrates that there are intimate links between the concepts of
complementarity and asymmetry, and as tools of quantifying, quantum state discrimination
and the robustness of asymmetry are also closely related. This connection employed in this
paper may provide further applications in other fields.

The rest of this paper is organized as follows. A brief description of the robustness
of asymmetry, including its definition and main properties, is given in Section 2. As an
example, the robustness of coherence is also introduced in this section. The problem of
minimum-error discrimination and its link with the robustness of asymmetry is discussed
in Section 3. We summarize the main result as Corollary 1, and use it to give a new proof of
the fact that the robustness of coherence is the same as the l1-norm of coherence for pure
states. Examples of known complementarity relations are presented in Section 4, where we
also define the Visibility and Predictability in terms of the robustness of asymmetry, and
in this way construct the corresponding complementarity relation. We then conclude this
paper with a summary.

2. Robustness of Asymmetry

Robustness of asymmetry, which measures the asymmetry of quantum states with
respect to a unitary representation

{
Ug, g ∈ G

}
of a symmetric group G, is introduced

in [23]. By definition, for any quantum state ρ in a given Hilbert spaceH, the robustness of
asymmetry of ρ is

RG(ρ) = min
τ∈D(H)

{
s ≥ 0

∣∣∣ ρ + sτ

1 + s
∈ IG

}
, (2)

where D(H) denotes the set of all quantum states in H, and the invariance set IG is the
collection of all symmetric states with respect to

{
Ug, g ∈ G

}
, i.e., for any state σ ∈ D(H),

σ ∈ IG ⇐⇒
1
|G| ∑

g∈G
UgσU†

g = σ. (3)

Alternatively, it can also be defined as

RG(ρ) = min
σ∈IG

{
s ≥ 0

∣∣∣ ρ ≤ (1 + s)σ
}

, (4)

which is often useful in actual computations.
As proved in [23], the robustness of asymmetry satisfies the following desirable

properties:

(R1) RG is bounded, i.e., 0 ≤ RG(ρ) ≤ dim(H)− 1 for any ρ ∈ D(H);
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(R2) RG is faithful, i.e., RG(ρ) = 0 ⇐⇒ ρ ∈ IG;
(R3) RG is strongly monotone, i.e., for any measurement

{
Mi
}

such that MiIG M†
i ∈ IG,

RG(ρ) ≥ ∑i piRG(ρi) with pi = Tr(MiρM†
i ) and ρi = MiρM†

i /pi;
(R4) RG is convex, i.e., RG(∑i wiρi) ≤ ∑i RG(wiρi), for any collection of states

{
ρi
}

and
probability distribution

{
wi
}

.

These properties suggest that the robustness of asymmetry fits well into the framework
of resource theory, in particular, the requirements of vanishing for free states, monotonicity
and convexity for a valid quantifier of resources [25] are automatically satisfied with the
robustness of asymmetry. Furthermore, the computation of the robustness of asymmetry
can be achieved by semidefinite programming [32–34], so that an optimal asymmetry
witness W with respect to the symmetric group G such that

Tr(σW) ≥ 0 ⇐⇒ σ ∈ IG, and RG(ρ) = Tr(ρW) (5)

always exists, which is similar as the witness of entanglement [35–39].
An important application of the robustness of asymmetry is to quantify quantum

coherence [24]. Specifically, for a n-dimensional Hilbert spaceH = Cn, consider the cyclic
group GZ = 〈Z〉 generated by the unitary matrix

Z =


1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωn−1

, ω = e2πi/n, (6)

then RZ (by abusing the notation, we denote R〈Z〉 simply by RZ), which is called the
robustness of coherence, is a valid measure of quantum coherence satisfying the following
property [23]

cl1(ρ)

n− 1
≤ RZ(ρ) ≤ cl1(ρ) for any ρ ∈ D(Cn), (7)

where cl1 denotes the l1-norm of coherence [40], i.e.,

cl1(ρ) = ∑
k 6=j

∑
j
|ρjk|, (8)

and the upper bound in (7) is attained with any pure states. Properties (R2) to (R4) for
any robustness of asymmetry guarantee that the robustness of coherence satisfies the
requirement for a quantifier in the resource theory of coherence [40], and the maximum
n− 1 in property (R1) is reached by the pure states ρ = ∑j,k |j〉〈k|ei(φj−φk)/n with arbitrary
phase factors

{
φj, j = 0, . . . , n− 1

}
.

3. Minimum-Error Discrimination

Given a collection of n quantum states
{

ρj, j = 0, . . . , n− 1
}

with the prior probability
distribution

{
wj, j = 0, . . . , n− 1

}
, the problem of minimum-error discrimination is finding

the optimal measurement M =
{

Mj, j = 0, . . . , n− 1
}

such that the success probability

ps =
n

∑
j=1

wjTr(Mjρj M†
j ) (9)

is maximized. It can be referred to in the following scenario: Alice sends Bob a quantum
state from a collection of states according to an a priori probability distribution. Bob knows
both the collection of the states and the probability distribution, and he would like to guess
the received state by performing quantum measurement, which is described by the Klaus
operators M =

{
Mj
}

. As shown in Figure 1, when the sending state is ρ?, the probability
pj for the j-th outcome is pj = Tr(Mjρ? M†

j ), and the state afterwards is ρ̃j = Mjρ? M†
j /pj.
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Such guessing is correct only when ? = j, consequently the success probability ps defined
in (9) is indeed the average probability of correct guessing. The problem of minimum-error
discrimination is unsolved except in very few situations [41–51]. For example, it is known
that the optimal measurement for discriminating arbitrary two states ρ1 and ρ2 with the
prior probabilities w1 and w2 is

M1 = (w1ρ1 − w2ρ2)
1/2
+ , M2 = (w1ρ1 − w2ρ2)

1/2
− , (10)

where the subscripts + and − denote the positive and negative part of the matrix, respec-
tively. The resulting success probability is then

ps =
1
2
+

1
2

Tr|w1ρ1 − w2ρ2|, (11)

which is known as the Helstrom bound [43]. On the other hand, if there are more than two
states to be discriminated, the problem of minimum-error discrimination is solved only
when the states satisfy certain symmetry properties [45–50].

...

ρ0, w0

ρ1, w1

ρn-1, wn-1

ρ?
M

...

ρ̃0, p0

ρ̃1, p1

ρ̃n-1, pn-1

Figure 1. Scheme diagram of minimum-error discrimination. Alice selects one quantum state ρ?

from a collection of quantum states {ρj} according to the prior probabilities {wj}, and sends it to Bob.
With the knowledge of the collection of states and prior probabilities, Bob performs a measurement
M = {Mj} on the receiving state ρ?, so that when the j-th outcome happens, he will guess that state
to be ρj. The objective of minimum-error discrimination is to find the optimal measurement M such
that the probability ps of correct guess, or the success probability, is maximized.

Minimum-error discrimination is closely related to the robustness of asymmetry
introduced in the last section. Specifically, we have the following theorem that bounded
the success probability ps of minimum-error discrimination for a specified collection of
quantum states with the corresponding robustness of asymmetry:

Theorem 1 ([23], Theorem 3). For any state ρ and unitary representation
{

Ug, g ∈ G
}

of an
arbitrary group G, the success probability ps of minimum-error discrimination of the collection of
states

{
UgρU†

g , g ∈ G
}

with the prior probability distribution
{

wg, g ∈ G
}

satisfies

max
{ 1
|G| (1 + RG(ρ)), max

g∈G
wg

}
≤ ps ≤ (1 + RG(ρ))max

g∈G
wg. (12)

If we further restrict the prior probabilities to be all equal, i.e., wg = 1/|G| for any
g ∈ G, then the computation of robustness of asymmetry is converted exactly to the com-
putation of the success probability of the minimum-error discrimination of the associated
collection of states, and vice versa. This fact is summarized in the following corollary,
which plays a central role in the following discussions.
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Corollary 1. The success probability ps of minimum-error quantum state discrimination of the
equiprobable collection of states

{
UgρU†

g , g ∈ G
}

is

ps =
1
|G| (1 + RG(ρ)), (13)

where RG(ρ) is the robustness of asymmetry of ρ with respect to the symmetric group
{

Ug, g ∈ G
}

.

Proof. The states are equiprobable implies that wg = 1/|G|, ∀ g ∈ G. Substituting this{
wg, g ∈ G

}
into Theorem 1, and note that maxg∈G wg = 1/|G|, then both the lower bound

and upper bound of ps equal (1 + RG(ρ))/|G|, and therefore the conclusion holds.

As an example, we apply the Corollary 1 to show that for an arbitrary n-level pure
state ρ = |φ〉〈φ| ∈ D(Cn), with

|φ〉 =
n−1

∑
j=0
|j〉√pje

iθj , such that ∑
j

pj = 1, (14)

the robustness of coherence RZ(ρ) is the same as the l1-norm of coherence defined in (8), i.e.,

RZ(|φ〉〈φ|) = ∑
k 6=j

∑
j
|ρjk| = ∑

k 6=j
∑

j

√
pj pk. (15)

Corollary 1 implies that RZ(ρ) can be related to the success probability ps of minimum-
error discrimination of the equiprobable collection of states{

Zl |φ〉〈φ|Z−l , l = 0, . . . , n− 1
}

. (16)

Such a discrimination problem is one of the few exceptions that have been rigorously
solved; it is shown in [45,50] that the optimal measurement is the least squares measurement
(LSM) [52–54]. More precisely, we have the following theorem

Theorem 2 ([45], Proposition 1). The optimal measurement for minimum-error discrimination
of the equiprobable collection

{
|φj〉 = U j|φ〉, Un = 1

}
of n states generated by an arbitrary pure

state |φ〉 and a unitary matrix U of order n is the LSM given by the following Kraus measure-
ment operators {

Mj = Φ−1/2|φj〉〈φj|Φ−1/2, j = 0, . . . , n− 1
}

, (17)

with the Hermitian operator Φ defined as

Φ =
n−1

∑
j=0
|φj〉〈φj|, (18)

so that [Φ, U] = 0. The corresponding success probability is then

ps = 〈φ|Φ−1/2|φ〉2. (19)

Accordingly, the operator Φ defined in (18) for the ensemble (16) with the generator
|φ〉 of the form (14) and the unitary Z defined in (6) is

Φ =
n−1

∑
l=0

Zl |φ〉〈φ|Z−l =
n−1

∑
j,k=0
|j〉〈k|√pj pkei(θj−θk)

n−1

∑
l=0

ωl(j−k) (20)

= ∑
j,k
|j〉〈k|√pj pkei(θj−θk)nδjk = ∑

j
|j〉〈j|npj. (21)
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Substituting (14) and (21) back into (19), we obtain that

ps =
1
n

(
∑

j

√
pj

)2
=

1
n

(
1 + ∑

k 6=j
∑

j

√
pj pk

)
=

1
n
(1 + cl1(|φ〉〈φ|)) (22)

Comparing (13) and (22), we immediately have that RZ(|φ〉〈φ|) = cl1(|φ〉〈φ|), which
is the desired conclusion. Although this fact has already been proven, the above proof is
significantly simpler, and provides more physical insights: it suggests that there are deeper
connections between the robustness of asymmetry and minimum-error discrimination.
For example, since the robustness of asymmetry can often be easily computed through
semidefinite programming [23], Corollary 1 can also be applied to compute the success
probability ps of minimum-error discrimination of certain equiprobable collections of states.
Actually, there exists different ways to quantify asymmetry of quantum states, e.g., the rela-
tive entropy of asymmetry [55,56] or the asymmetry weight [57]. We choose the robustness
of asymmetry, which is exactly because of its link to minimum-error discrimination, which
provides it a clear operational meaning.

4. Quantifying Complementarity

In this section, we construct a complementarity relation using the robustness of asym-
metry by considering the well-known wave particle duality. In such a relation, one quanti-
fies the particleness and waveness using proper quantifiers, and establishes inequalities to
manifest the complementarity principle. Specifically, using the orthonormal basis{

|j〉, j = 0, . . . , n− 1
}

(23)

in the particle mode (the ket |j〉 is the state when the particle taking the j-th path) as
the computational basis, then the quantifier P of the particleness, which is named as
Predictability, is defined as a function of the diagonal entries

{
ρjj, j = 0, . . . , n− 1

}
of the

density matrix ρ; and the quantifier V of the waveness, which is named as Visibility, is
defined as a function of the off-diagonal entries

{
ρjk, j 6= k

}
of ρ in such basis. There exists

different ways to define those quantifiers in the n-path interferometers, e.g., in the one-bet
relation [10], the functions P and V are defined as

Pbet(ρ) =
n maxj ρjj − 1

n− 1
, (24)

Vbet(ρ) = max
H

Pbet(HρH†), (25)

where the maximum of Vbet is taken over all n× n Hadamard matrices, which directly
manifests the complementarity between P and V; while in Dürr’s relation [8]

Pdur(ρ) =

[
n

n− 1

(
∑

j
ρ2

jj −
1
n

)]1/2

, (26)

Vdur(ρ) =

(
n

n− 1 ∑
k 6=j

∑
j
|ρjk|2

)1/2

. (27)

Both the Predictability functions in (24) and (26) are defined by considering the path
information, and both the Visibility functions in (25) and (27) are about the interference
strength. The positivity of any quantum state ρ ∈ D(Cn) implies immediately that

Pbet(ρ)
2 + Vbet(ρ)

2 ≤ 1, (28)

Pdur(ρ)
2 + Vdur(ρ)

2 ≤ 1, (29)
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which are the complementarity relations corresponding to the pairs of quantifiers
Equations (24) and (25) and Equations (26) and (27) respectively. It is also possible to
establish complementarity relations in linear terms of P and V instead of the quadratic
terms, as in (28) and (29). For example, by considering quantum state discrimination [15],
one can define

Pqsd(ρ) = 1− 1
n− 1 ∑

k 6=j
∑

j

√
ρjjρkk, (30)

Vqsd(ρ) =
1

n− 1 ∑
k 6=j

∑
j
|ρjk|, (31)

then the positivity of ρ ∈ D(Cn) gives

Pqsd(ρ) + Vqsd(ρ) ≤ 1. (32)

Note that the Visibility defined in (31) is precisely the l1-norm of coherence discussed
in [40]

V(ρ) =
1

n− 1
cl1(ρ), ρ ∈ D(Cn), (33)

and it has been argued in previous works [12–16] that coherence is a valid measure of
Visibility, which invites us to define Visibility using the robustness of coherence RZ(ρ) [24].
In particular, the normalized function RZ(ρ)/(n− 1) satisfies the required properties of
Visibility listed in [8,10]:

(V1) V is normalized, and V(ρ) = 1 ⇐⇒ ρ = ∑j,k |j〉〈k|ei(θj−θk)/n;
(V2) V is faithful, i.e., V(ρ) = 0 ⇐⇒ ρ ∈ IZ;
(V3) V is invariant under relabeling of the paths;
(V4) V is convex.

We immediately notice that the similarities between the criteria of a valid function
of Visibility and the properties of robustness of asymmetry listed in Section 2. Actually,
properties (R2) and (R4) are exactly the same as (V2) and (V4), and (R1), which guarantees
that normalization is always possible. In order to demonstrate that (V3) also holds, it is
convenient to introduce the permutation matrix

X =
n−1

∑
j=0
|j⊕ 1〉〈j| =


0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

, (34)

where ⊕ denotes the addition modulo n. Using (34), the requirement (V3) can be expressed
equivalently as

V(XlρX−l) = V(ρ) for any l ∈ Z. (35)

Since ZlXm = ωlmXmZl with ω is defined in (6), i.e., the operators Z and X commute
up to a phase factor, discriminating the equiprobable collection of states{

ZlXmρX−mZ−l , l = 0, . . . , n− 1
}

(36)

is the same as discriminating the equiprobable collection
{

ZlρZ−l , l = 0, . . . , n− 1
}

. It
is then obvious from the Corollary 1 that the robustness of coherence satisfies (35), or
equivalently (V3). In conclusion, it is justified to define Visibility by the normalized
robustness of coherence as

Vroa(ρ) =
1

n− 1
RZ(ρ), ρ ∈ D(Cn). (37)
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In order to define Predictability also with the robustness of asymmetry, one needs first
a proper symmetric group. A natural choice is the cyclic group generated by X and defined
in (34), since it is the generator obtained from Z through the Fourier transform

X = F†ZF, (38)

where F is the matrix for the Fourier transform

F =
1√
n

n−1

∑
j,k=0
|j〉〈k|ω jk =

1√
n


1 1 · · · 1
1 ω · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2

 (39)

with ω defined in (6). The corresponding invariant set is then

IX =

{
ρ ∈ D(Cn)

∣∣∣ 1
n ∑

l
Xlρ(Xl)† = ρ

}
. (40)

Explicitly, the matrix element ρjk of ρ ∈ IX satisfies that

ρjk = ρj⊕l,k⊕l with l = 0, . . . , n− 1, (41)

or in other words, any matrix ρ ∈ IX is circulant [58]. In particular, all the diagonal entries
of ρ ∈ IX are the same, i.e.,

ρjj =
1
n

for any index j. (42)

Besides this formal consideration, we note that the symmetric group 〈X〉 also bears
a clear physical significance: it represents all possible relabeling of the paths, and states
that IX are invariant under any permutations of the path labels, or in other words, those
states are path symmetric. With that symmetric group, we similarly define Predictability as
in (37)

Proa(ρ) =
1

n− 1
RX(ρdiag), ρ ∈ D(Cn), (43)

where ρdiag denotes the matrix obtained from ρ by setting all its off-diagonal entries to
zero, i.e.,

ρdiag = ∑
j
|j〉〈j|ρ|j〉〈j|. (44)

We consider ρdiag instead of the original ρ because by setting the particle mode basis as
the computational basis, the particle-like behavior depends solely on the diagonal entries
of the density matrix ρ. It is then straightforward to verify that the function Proa defined
in (43) satisfies the requirements for Predictability [8,10]:

(P1) P is normalized, and P(ρ) = 1 ⇐⇒ ρjj = 1 for one j;
(P2) P is faithful, i.e., P(ρ) = 0 ⇐⇒ ρdiag ∈ IX ;
(P3) P is invariant under relabeling of the paths;
(P4) P is convex.

Again, properties (P2) and (P4) hold for any robustness of asymmetry, and (P3) holds
trivially. Actually, the fact that Proa defined in (43) satisfies all the above requirements from
(P1) to (P4) can also be observed directly by relation (38) and Vroa, which satisfies (V1) to
(V4). In order to obtain an explicit expression of Proa, we apply the Corollary 1 that links
the value of RX(ρ) to the success probability for discriminating the equiprobable collection
of states

{
XlρdiagX−l , l = 0, . . . , n− 1

}
. Such a problem has already been solved in [15],

and we have the following answer of its success probability

ps = max
j

ρjj. (45)
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The Corollary 1 then implies that RX(ρdiag) = n maxj ρjj − 1, or by definition (43)

Proa(ρ) =
n maxj ρjj − 1

n− 1
, (46)

so that it coincides with the Predictability Pbet (24) in the one-bet relation.
As a result, we now have the pair (Vroa, Proa) of Visibility and Predictability defined

with the robustness of asymmetry as in (37) and (43), respectively. The Predictability Proa
defined in (43) is exactly the same as the Predictability Pbet in the one-bet relation discussed
in various contexts [4,5,13–15]. Consequently, we have associated Pbet another physical
significance in terms of the path asymmetry. As discussed before, the Visibility Vroa defined
in (37) reduces to the l1-norm of coherence (8) for pure states, so that for ρ = |φ〉〈φ|

Proa(ρ)
2 + Vroa(ρ)

2 =
1

(n− 1)2 RX(ρdiag)
2 +

1
(n− 1)2 RZ(ρ)

2 (47)

=
1

(n− 1)2

(
n max

j
ρjj − 1

)2
+

1
(n− 1)2

(
∑
k 6=j

∑
j
|ρjk|

)2
(48)

≤ 1, (49)

where the maximal value of (48) happens with the following state (without loss of generality,
it is assumed that the first diagonal entry p00 is the greatest, i.e., maxj ρjj = ρ00)

|φ〉 = |0〉p00 + ∑
j 6=0
|j〉
√

1− p00

n− 1
. (50)

An explicit calculation then demonstrates that (48) is upper bounded by 1, so that
inequality (49) holds for any pure states. Moreover, the convexity properties (V4) and (P4)
imply that for any mixed states ρ = ∑j wj|φj〉〈φj| with some probability distribution

{
wj
}

,

Proa(ρ)
2 + Vroa(ρ)

2 ≤
(

∑
j

wjProa(|φj〉〈φj|)
)2

+
(

∑
j

wjVroa(|φj〉〈φj|)
)2

(51)

≤∑
j,k

wjwk = 1, (52)

where inequality (52) is implied by applying the Cauchy–Schwartz inequality to the follow-
ing pairs of vectors (

Proa(|φj〉〈φj|)
Vroa(|φj〉〈φj|)

)
and

(
Proa(|φk〉〈φk|)
Vroa(|φk〉〈φk|)

)
, (53)

and evoking the inequality (49) for pure states
{
|φj〉〈φj|

}
. Accordingly, the inequality

Proa(ρ)2 + Vroa(ρ)2 ≤ 1 with the quantifiers Proa and Vroa defined in (43) and (37), respec-
tively, holds for any states, and therefore is a proper complementarity relation. Although
the physical motivation is completely different, this complementarity relation is very sim-
ilar to the one-bet relation [10]; actually, it can be proved that they are exactly the same
for pure states. For mixed states, the computation of the Visibility Vbet (33) has to consider
Hadamard matrices, whose full parametrization is unknown in most dimensions, which
makes this computation a notoriously difficult task. On the other hand, the computation of
Vroa (37) can be easily carried out by semidefinite programming [23], which is the practical
advantage of the new complementarity relation. It is hardly a surprise that the framework
of the robustness of asymmetry can be applied to quantify wave-particle duality, since any
knowledge of the particle aspect comes from the asymmetry of the paths, and the ability to
interfere relies on the asymmetry of phases.
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5. Conclusions

We have derived the following complementarity relation expressed by the robustness
of asymmetry discussed in [23]

RX(ρdiag)
2 + RZ(ρ)

2 ≤ (d− 1)2. (54)

The fact that X and Z are linked by Fourier transform (38) suggests the comple-
mentarity between the two cyclic symmetric groups generated by these two generators.
Consequently, although in deriving (54), we focused exclusively on the wave-particle dual-
ity as a concrete example; it holds for any pair of complementary observables that can be
linked by the Fourier transform. It would be interesting if such relation can be generalized
to a complete set of mutually unbiased bases. We have also proved the Corollary 1, which
links minimum-error discrimination and the robustness of asymmetry; the usefulness of
this Corollary is demonstrated by proving, for pure states, that the robustness of coherence
coincides with the l1-norm of coherence. As a tool of relating minimum-error discrimina-
tion and the robustness of asymmetry, we note that the Corollary 1 provides new methods
of computing the success probability ps of discriminating any equiprobable collection of
states

{
UgρU†

g , g ∈ G
}

for some group G without explicitly constructing the optimal mea-
surement, and makes it possible to consider the concept of robustness of asymmetry from
the perspective of minimum-error discrimination. Our results suggest that it is possible
to quantify complementarity by considering the internal asymmetry of quantum states,
and that there exists deeper connections between minimum-error discrimination and the
robustness of asymmetry.
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