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Abstract: Aspects related to applications in the geometric function theory of q-calculus are presented
in this paper. The study concerns the investigation of certain q-analogue differential operators in
order to obtain their geometrical properties, which could be further developed in studies. Several
interesting properties of the q-analogue of the Sălăgean differential operator are obtained here by
using the differential subordination method.

Keywords: analytic functions; q-derivative; q-analogue of the Sălăgean differential operator; differential
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1. Introduction

q-calculus has become interesting to many researchers due to its various applications
in mathematics, engineering sciences, and physics. Jackson [1,2] initiated the application
of q-calculus by defining the q-derivative and q-integral. The idea of using the geometric
function theory of q-calculus was first employed for introducing and studying an extension
of the set of starlike functions in 1990 by Ismail et al. [3]. However, it was the book
chapter written by Srivastava in 1989 [4], which provided the basic context for applying
q-calculus in geometric function theory. It was also Srivastava who recently wrote a
comprehensive review article [5], where the applications in geometric function theory of
q-calculus are highlighted, and the numerous q-operators defined by many researchers
using convolutional and fractional calculus are mentioned.

The geometrical interpretation of q-analysis involves studies of different q-analogue
differential operators. The q-analogue of the well-known Ruscheweyh differential operator
was defined in [6], and following this idea, the q-analogue of the Sălăgean differential
operator was defined in [7]. Those operators provided interesting results when they were
used to introduce new sets of univalent functions as seen in [8–10].

The differential subordination theory initiated by Miller and Mocanu [11,12] is intro-
duced to obtain the main results of this article.

Following are the notations and definitions used in the investigations.
Let An be the set of analytic and univalent functions in the open unit disk U =

{z ∈ C : |z| < 1} written as

f (z) = z +
∞

∑
k=2

akzk, ak ∈ C,

and note that A1 := A.
The class of starlike functions is defined as:

S∗ =
{

f ∈ A : Re
z f ′(z)

f (z)
> 0

}
.
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For two functions f (z) = z + ∑∞
k=2 akzk and g(z) = z + ∑∞

k=2 bkzk analytic in the open
unit disc U, the Hadamard product (or convolution) of f and g, written as ( f ∗ g)(z) is
defined by

f (z) ∗ g(z) = ( f ∗ g)(z) = z +
∞

∑
k=2

akbkzk.

The analytic function f1 is subordinate to the analytic function f2, written f1 ≺ f2,
if there is an analytic Schwartz function w in U, with w(0) = 0 and |w(z)| < 1 such that
f1(z) = f2(w(z)), for z ∈ U.

When the function f2 is univalent in U, there is the equivalence relation: f1 ≺ f2 ⇔
f1(0) = f2(0) and f1(U) ⊂ f2(U).

Let ψ : C3 ×U → C and h be an univalent function in U. If p is analytic in U and
satisfies the second order differential subordination

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z), z ∈ U, (1)

then p is called a solution of the differential subordination. The univalent function q
is called a dominant of the solutions of the differential subordination, or more simply a
dominant, if p ≺ q for all p satisfying (1). A dominant q̃ that satisfies q̃ ≺ q for all dominants
q of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation
of U.

Following are the notions and notations of q-calculus.
For 0 < q < 1, n ∈ N, we denote

[n]q =
1− qn

1− q
,

and

[n]q! =


n
∏

k=1
[k]q, n ∈ N∗,

1, n = 0.

The q-derivative operator Dq is defined for a function f ∈ A by [2]

Dq( f (z)) =

{
f (z)− f (qz)
(1−q)z , z 6= 0,

f ′(0), z = 0.

It can be observed that

lim
q→1
Dq( f (z)) = lim

q→1

f (z)− f (qz)
(1− q)z

= f ′(z)

for f , a differentiable function.

For f (z) = zk, Dq( f (z)) = Dq

(
zk
)
= 1−qk

1−q zk−1 = [k]qzk−1.

The Sălăgean differential operator [13] can be written as Sm f (z) = z + ∑∞
k=2 kmakzk

when f (z) = z + ∑∞
k=2 akzk ∈ A, z ∈ U, ak ∈ C.

Definition 1 ([7]). We denote by Sm
q the q-analogue of the Sălăgean differential operator

Sm
q f (z) = z +

∞

∑
k=2

[k]mq akzk,

when f (z) = z + ∑∞
k=2 akzk ∈ A, z ∈ U.

We notice that lim
q→1
Sm

q f (z) = lim
q→1

(
z + ∑∞

k=2[k]
m
q akzk

)
= z + ∑∞

k=2 kmakzk = Sm f (z).
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We can write Dq

(
Sm

q f (z)
)
= 1 + ∑∞

k=2[k]
m+1
q akzk−1, and

zDq

(
Sm

q f (z)
)
= z + ∑∞

k=2[k]
m+1
q akzk; therefore, the following identity holds for the operator

Sm
q :

zDq

(
Sm

q f (z)
)
= z +

∞

∑
k=2

[k]m+1
q akzk = Sm+1

q f (z).

Inspired by the results obtained in [14] using the q-analogue of Ruscheweyh operator,
in this investigation, the differential subordination theory is used to obtain results involving
the q-analogue of the Sălăgean differential operator. In the next section, we recall the results
established by other researchers involved in the proofs of the original results of this paper.
Then, in the main results section, the new subordination results involving the q-analogue
of the Sălăgean differential operator are contained in three theorems and a corollary.

2. Preliminaries

The following lemmas are used for the proof of the original results of this paper.

Lemma 1 ([12]). Let h be an analytic and convex univalent function in U with h(0) = 1 and
g(z) = 1 + b1z + b2z2 + . . . analytic in U. If

g(z) +
zDq(g(z))

c
≺ h(z), z ∈ U, c 6= 0,

then
g(z) ≺ c

zc

∫ z

0
tc−1h(t)dt,

for Re(c) ≥ 0.

Lemma 2 ([15]). Let u be an univalent function in U and θ, φ be analytic functions in a domain
D ⊃ q(U) with φ(w) 6= 0 for w ∈ q(U). Consider Q(z) = zDq(u(z))φ(u(z)) and h(z) =
θ(Q(z) + u(z)) supposing that Q(z) is a starlike univalent function in U and
Re
(

zDq(h(z))
Q(z)

)
=Re

(Dq(θ(u(z)))
φ(u(z))

)
+

zDq(Q(z))
Q(z) > 0, z ∈ U.

If p(z) is an analytic function in U such that p(U) ⊂ D, p(0) = q(0) and

zDq(p(z))φ(p(z)) + θ(p(z)) ≺ zDq(u(z))φ(u(z)) + θ(u(z)) = h(z),

then p ≺ u, and the best dominant is u.

Lemma 3 ([16]). The function (1− z)γ = eγ log(1−z), γ 6= 0, is univalent in U if and only if
|γ− 1| ≤ 1 or |γ + 1| ≤ 1.

Lemma 4 ([17]). Consider the analytic functions fi in U of the form 1 + b1z + b2z2 + . . . that
satisfy the inequality Re( fi) > βi, 0 ≤ βi < 1, i = 1, 2. Then, f1 ∗ f2 is an analytic function in U
of the form 1+ b1z + b2z2 + . . . that satisfies the inequality Re( f1 ∗ f2) > 1− 2(1− β1)(1− β2).

Lemma 5 ([18]). Consider the analytic function f (z) = 1 + b1z + b2z2 + . . . with the property
Re( f (z)) > β, 0 ≤ β < 1. Then,

Re( f (z)) > 2β− 1 +
2(1− β)

1 + |z| , z ∈ U.

3. Main Results

Theorem 1. If f ∈ A, and

(1− α)
Sm

q f (z)
z

+ α
Sm+1

q f (z)
z

≺ 1 + Az
1 + Bz

, (2)
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for α > 0, −1 ≤ B < A ≤ 1, z 6= 0, then

Re

(Sm
q f (z)

z

) 1
n
 >

(
1

αq

∫ 1

0
u

1
αq−1 1− Au

1− Bu
du
) 1

n
, n ≥ 1, (3)

and the result is sharp.

Proof. Denote p(z) =
Sm

q f (z)
z = 1 + b1z + . . . for f ∈ A, analytic in U. Applying the

logaritmic q-differentiation, we obtain

Dq(p(z)) = Dq

(
Sm

q f (z)
z

)
=

zDq

(
Sm

q f (z)
)
− Sm

q f (z)

z · qz
=
Sm+1

q f (z)− Sm
q f (z)

qz2

and
zDq(p(z))

p(z)
=

z
Sm

q f (z)
·
Sm+1

q f (z)− Sm
q f (z)

qz
=

1
q

(
Sm+1

q f (z)
Sm

q f (z)
− 1

)
.

We obtain
qzDq(p(z))

p(z)
+ 1 =

Sm+1
q f (z)
Sm

q f (z)
=

Sm+1
q f (z)

z
p(z)

;

so,
Sm+1

q f (z)
z

= qzDq(p(z)) + p(z),

and

(1− α)
Sm

q f (z)
z

+ α
Sm+1

q f (z)
z

= (1− α)p(z) + α
(
qzDq(p(z)) + p(z)

)
= p(z) + αqzDq(p(z)).

The differential subordination (2) can be written as

p(z) + αqzDq(p(z)) ≺ 1 + Az
1 + Bz

,

and applying Lemma 1, we find

p(z) ≺ 1
αq

z−
1

αq

∫ z

0
t

1
αq−1 1 + At

1 + Bt
dt,

or using the subordination concept

Sm
q f (z)

z
=

1
αq

∫ 1

0
u

1
αq−1 Auw(z) + 1

Buw(z) + 1
du.

Taking into account that −1 ≤ B < A ≤ 1, we obtain

Re

(
Sm

q f (z)
z

)
>

1
αq

∫ 1

0
u

1
αq−1 1− Au

1− Bu
du,

using the inequality Re
(

w
1
n

)
≥ (Rew)

1
n , for Rew > 0 and n ≥ 1.
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To prove the sharpness of (3), we define f ∈ A by

Sm
q f (z)

z
=

1
αq

∫ 1

0
u

1
αq−1 1 + Auz

1 + Buz
du.

For this function, we obtain

(1− α)
Sm

q f (z)
z

+ α
Sm+1

q f (z)
z

=
1 + Az
1 + Bz

and
Sm

q f (z)
z

→ 1
αq

∫ 1

0
u

1
αq−1 1− Au

1− Bu
du as z→ −1,

which completes the proof.

Corollary 1. If f ∈ A, and

(1− α)
Sm

q f (z)
z

+ α
Sm+1

q f (z)
z

≺ 1 + (2β− 1)z
1 + z

, (4)

for 0 ≤ β < 1, α > 0, then

Re

(Sm
q f (z)

z

) 1
n
 >

(2β− 1) +
2(1− β)

αq

∫ 1

0

u
1

αq−1

1 + u
du

 1
n

, n ≥ 1.

Proof. Using the same steps as the Theorem 1 proof for p(z) =
Sm

q f (z)
z , the differential

subordination (4) passes into

p(z) + αqzDq(p(z)) ≺ 1 + (2β− 1)z
1 + z

.

Therefore,

Re

(Sm
q f (z)

z

) 1
n
 >

(
1

αq

∫ 1

0
u

1
αq−1 1 + (2β− 1)u

1 + u
du
) 1

n
=

(
1

αq

∫ 1

0
u

1
αq−1

(
(2β− 1) +

2(1− β)

1 + u

)
du
) 1

n
=

(2β− 1) +
2(1− β)

αq

∫ 1

0

u
1

αq−1

1 + u
du

 1
n

.

Example 1. Let f (z) = z + z2, m = 1, α = 2, β = 1
2 , and n = 2. Then, S1

q f (z) = z + [2]qz2 =

z + (1 + q)z2, and S2
q f (z) = z + [2]2qz2 = z + (1 + q)2z2.

We have (1− α)
Sm

q f (z)
z + α

Sm+1
q f (z)

z = −S
1
q f (z)

z + 2
S2

q f (z)
z = 1 +

(
2q2 + 3q + 1

)
z.

Applying Corollary 1, we obtain

1 +
(

2q2 + 3q + 1
)

z ≺ 1
1 + z

, z ∈ U,
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which induces

Re
√

1 + (1 + q)z >

√√√√ 1
2q

∫ 1

0

u
1
2q−1

1 + u
du, z ∈ U.

Theorem 2. Let 0 ≤ ρ < 1 and γ ∈ C\{0} such that
∣∣∣ 2(1−ρ)γ

q − 1
∣∣∣ ≤ 1 or

∣∣∣ 2(1−ρ)γ
q + 1

∣∣∣ ≤ 1.
If f ∈ A satisfies the condition

Re

(
Sm+1

q f (z)
Sm

q f (z)

)
> ρ, z ∈ U,

then (
Sm

q f (z)
z

)γ

≺ 1

(1− z)
2γ(1−ρ)

q

, z ∈ U,

and the best dominant is 1

(1−z)
2γ(1−ρ)

q
.

Proof. Taking p(z) =
(
Sm

q f (z)
z

)γ

and applying logaritmic q-differentiation, we obtain

Dq(p(z)) = γ

(
Sm

q f (z)
z

)γ−1Sm+1
q f (z)− Sm

q f (z)
qz2

and
zDq(p(z))

p(z)
=

γ

q

(
Sm+1

q f (z)
Sm

q f (z)
− 1

)
.

We obtain
Sm+1

q f (z)
Sm

q f (z)
= 1 +

q
γ

zDq(p(z))
p(z)

.

Relation Re
(
Sm+1

q f (z)
Sm

q f (z)

)
> ρ can be written as

Sm+1
q f (z)
Sm

q f (z)
≺ 1 + (1− 2ρ)z

1− z
,

which is equivalent with

1 +
q
γ

zDq(p(z))
p(z)

≺ 1 + (1− 2ρ)z
1− z

, z ∈ U.

Assuming

u(z) =
1

(1− z)
2(1−ρ)γ

q

, φ(w) =
q

γw
, θ(w) = 1,

we find that u(z) is univalent from Lemma 3. It is easy to show that u, θ, and φ meet the
conditions from Lemma 2. The function Q(z) = zDq(u(z))φ(u(z)) = 2(1−ρ)z

1−z is starlike

univalent in U, and h(z) = θ(Q(z) + u(z)) = 1+(1−2ρ)z
1−z .

Applying Lemma 2, we finish the proof.
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Theorem 3. Let α < 1, −1 ≤ Bi < Ai ≤ 1, and i = 1, 2. If the functions fi ∈ A serve the
differential subordination

(1− α)
Sm

q fi(z)
z

+ α
Sm+1

q fi(z)
z

≺ 1 + Aiz
1 + Biz

, i = 1, 2, (5)

then

(1− α)
Sm

q ( f1 ∗ f2)(z)
z

+ α
Sm+1

q ( f1 ∗ f2)(z)
z

≺ 1 + (1− 2γ)z
1 + z

,

where ∗ means the convolution product of f1 and f2, and

γ = 1− 4(A1 − B1)(A2 − B2)

(1− B1)(1− B2)

1− 1
αq

∫ 1

0

u
1

αq−1

1 + u
du

.

Proof. Let hi(z) = (1− α)
Sm

q fi(z)
z + α

Sm+1
q fi(z)

z . The differential subordination (5) can be
written as Re(hi(z)) >

1−Ai
1−Bi

, i = 1, 2.
By Theorem 1’s proof, we obtain

Sm
q fi(z) =

1
αq

∫ 1

0
t

1
αq−1hi(t)dt, i = 1, 2,

and

Sm
q ( f1 ∗ f2)(z) =

1
αq

z1− 1
αq

∫ 1

0
t

1
αq−1h0(t)dt,

with

h0(z) = (1− α)
Sm

q ( f1 ∗ f2)(z)
z

+ α
Sm+1

q ( f1 ∗ f2)(z)
z

=

1
αq

z1− 1
αq

∫ 1

0
t

1
αq−1

(h1 ∗ h2)(t)dt.

Applying Lemma 4, we obtain that h1 ∗ h2 is a function analytic in U written as
1 + b1z + b2z2 + . . . that satisfies the inequality Re(h1 ∗ h2) > 1− 2(1− β1)(1− β2) = β.

By Lemma 5, we obtain

Re(h0(z)) =
1

αq

∫ 1

0
u

1
αq−1Re(h1 ∗ h2)(uz)du ≥

1
αq

∫ 1

0
u

1
αq−1

(
2β− 1 +

2(1− β)

1 + u|z|

)
du >

(since z ∈ U ⇒ |z| < 1 and 2(1−β)
1+u|z| >

2(1−β)
1+u )

1
αq

∫ 1

0
u

1
αq−1

(
2β− 1 +

2(1− β)

1 + u

)
du =

2β− 1
αq

u
1

αq

1
αq
|10 +

2(1− β)

αq

∫ 1

0

u
1

αq−1

1 + u
du =

2β− 1 +
2(1− β)

αq

∫ 1

0

u
1

αq−1

1 + u
du =
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(we have 2β − 1 = 2 − 4(1− β1)(1− β2) − 1 = 1 − 4
(

1− 1−A1
1−B1

)(
1− 1−A2

1−B2

)
= 1 −

4(A1−B1)(A2−B2)
(1−B1)(1−B2)

and 2(1− β) = 2(1− 1 + 2(1− β1)(1− β2)) =
4(A1−B1)(A2−B2)
(1−B1)(1−B2)

)

1− 4(A1 − B1)(A2 − B2)

(1− B1)(1− B2)
+

4(A1 − B1)(A2 − B2)

(1− B1)(1− B2)

1
αq

∫ 1

0

u
1

αq−1

1 + u
du =

1− 4(A1 − B1)(A2 − B2)

(1− B1)(1− B2)

1− 1
αq

∫ 1

0

u
1

αq−1

1 + u
du

 = γ,

and the assertion of Theorem 3 holds.

4. Conclusions

The investigation from this article followed the line of study set by introducing q-
calculus to the theory of complex analysis. The q-analogue of the Sălăgean differential
operator given in Definition 1 was previously introduced by Govindaraj and Sivasubra-
manian [7] and was used mainly for introducing new sets of univalent functions. In this
article, it was used to obtain some subordination results. A sharp subordination result was
presented in Theorem 1 followed by a corollary obtained using another particular function
with important geometric properties applied in the subordination. Theorem 2 was obtained
considering certain conditions on the real part of an expression involving the q-analogue
of the Sălăgean differential operator, and the last theorem involved a convex combination
using the q-analogue of the Sălăgean differential operator.

The results obtained during this research could be further used for writing sandwich-
type results if the dual theory of differential superordination is added to the study of the
q-analogue of the Sălăgean differential operator as calculated for other q-operators seen
in [19] or [20].
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