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Abstract: In recent years, test-based automatic program repair has attracted widespread attention.
However, the test suites in practice are not perfect ways to guarantee the correctness of patches
generated by repair tools, and weak test suites lead to a large number of incorrect patches produced
by the existing repair tool. To reduce the number of incorrect patches generated by repair tools,
we propose a patch quality evaluation method based on syntax distance metrics, which measures
the syntax distance of patches through four evaluation features—variable, expression, structure,
and repair location. By fusing the distance values of the four features, the quality of a patch can
be evaluated. Our method evaluates 368 patches from multiple famous repair tools, such as jKali,
Nopol, SimFix, DynaMoth, and CapGen; 95% of the correct patches were ranked in the top one of the
plausible patches for each defect, which indicates our method can find high-quality patches.

Keywords: automatic program repair; program patch; quality evaluation; patch ranking; syntax
distance

1. Introduction

Repairing the defects in software is a time-consuming process. According to relevant
studies, the process of repairing the defects accounts for 50% of the overall development
cost of software products [1]. In particular, the complexity and scale of modern software
are increasing, making it harder to repair software defects. Therefore, automatic program
repair technology has received more attention, and relevant methods and tools have played
vital roles in ensuring software quality. The current automatic program repair methods are
classified into the following two families:

(1) Generation and verification methods: This method uses a series of mutation
operations to modify the buggy program and uses test cases as the standard to evaluate the
correctness of the patch [2]. Test cases cannot cover all paths and functions of the program,
which will lead to a large number of overfitting patches. Although the generated patches
can pass all test cases, they still contain a large number of incorrect patches.

(2) Semantically driven methods: The method finds the correct specification of the
program and generates constraints that can guide the process of repairing the buggy pro-
gram. Firstly, It uses symbol execution technology to obtain program execution information
and path constraints. Then it uses a constraint solver to convert path constraints into
constraint conditions, and finally uses conditional synthesis to repair the original buggy
program. A buggy program is turned into a constraint, and repair tools produce patches
that satisfy the constraint [3]. However, the patches produced by these repair tools contain
many incorrect patches.

Because test cases are not good specifications for evaluating the correctness of
patches [4], the accuracy of existing repair tools is quite low [5]. We call a patch a plausible
patch if it passes all test cases, and a patch is a correct patch if it only repairs the defect and
does not introduce new defects. The patch is known as the correct patch if it only repairs
the defect and does not introduce new defects. Existing studies [6,7] show that patches
generated by existing repair tools contain large numbers of incorrect patches, the number
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of incorrect patches is greater than the number of correct patches. When plausible patches
contain a large number of incorrect patches, the developer must verify the correctness of
many plausible patches to find the correct patches. The verification process takes more time
than it would take for a developer to directly repair the defects [8]. Although plausible
patches can pass all test cases, these patches may still contain semantic defects, such as null
pointer defects and array out-of-bounds defects, and contain program syntax defects, such
as irregular expressions and overly complex conditional expressions.

Test suites in practice are not perfect specifications to guarantee the correctness of
patches generated by repair tools, and weak test suites lead to a large number of incorrect
patches produced by the existing repair tool. Facing the challenge of low accuracy of
automatic repair tools, many researchers have proposed methods to judge the correctness
of a patch; it can be either static or dynamic method depending on whether the test cases
are executed. Dynamic methods generally need to generate new test cases. Xiong et al.
proposed a method to generate new test cases according to the similarity of test cases [4].
A static method can prioritize or filter out plausible patches according to the static char-
acteristics of patches. Tan et al. proposed anti-patterns to judge incorrect patches that
meet specific static structures [9]. Dong et al. proposed a static analysis method to identify
patches, including semantic defects, such as the null pointer reference [10]. SSDM uses
semantic features to prioritize plausible patches [11]. CapGen [12] sorts patches based on
genealogy structure, access variables, and semantic dependencies. Al-Batai et al. integrated
static bug detection techniques with automated program repair to strengthen specifications
and improve the quality of repairs [13]. Dong et al. proposed a static analysis method using
the data flow information of the program and special specifications [14]; it can effectively
detect semantic defects, such as the null pointer reference. Therefore, we integrated static
analysis techniques with test cases to strengthen specifications, and propose an evaluation
method, which analyzes the syntax distance of the patch to prioritize patches.

Symmetry and similarity before and after program repairs are mainly via three aspects:
variable symmetry, expression symmetry, and structural symmetry. Variable symmetry
means that the variables between fault statements and repair statements are similar. Ex-
pression symmetry means that the correct repair expression can be found in the buggy
program. Structure symmetry means that the structure between the fault statement and
the repair statement is similar. For the similarity and symmetry before and after program
repair, a program patch quality evaluation method is proposed using syntax distance
between the patch and buggy program; four features—variable, expression, structure,
and repair location—are proposed to measure the syntax distance. For each feature, we
propose a specific calculation formula to quantify the syntax distance between the repaired
program and the original buggy program, and give a patch recommendation based on the
syntax distance. The syntax distance mainly focuses on the text features of the programs,
which indicates the difference before and after the program repair. We integrate four text
features—variable, expression, structure, and repair location—to obtain the syntax distance
between the buggy program and the patch program. Then the patch quality is evaluated ac-
cording to the syntax distance and a patch with a higher syntax distance. Our method was
evaluated on 368 patches generated by multiple automatic program repair tools, including
Nopol [15], DynaMoth [16], CapGen, jKali [17], and so on. Most repair tools only generate
a patch for each defect, such as Nopol, DynaMoth, jKali, SimFix [18], jGenProg [17], and
ARJA [19], except CapGen. To verify the evaluation effect of our method, patches generated
by multiple repair tools are prioritized for a defect. The experimental results show that
the correct patches with higher rankings are recommended in priority and compared with
incorrect patches, the recommended value of most correct patches is higher. Finally, our
evaluation method is indeed advanced compared with other existing evaluation methods;
comparison results show that our method successfully obtains high-quality patches and
improves the repair accuracy.

The followings are the main contributions of this paper: (1) We found four heuristic
rules to effectively distinguish correct patches from incorrect patches, which are vari-
able similarity, expression similarity, structural similarity, and repair location; (2) A pro-
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gram patch quality evaluation method is proposed to prioritize patches, which uses four
features—variable similarity, expression similarity, structural similarity, and repair location;
(3) We integrate static analysis techniques with test suites to strengthen specifications.

This paper is organized as follows. The first section is the introduction. The second
section introduces the related work of our study. The third section presents the patch
recommendation method based on the syntax distance. The fourth section introduces the
experiment and analyzes the results of the experiment. The fifth section presents the threats
to validity. The sixth section presents the discussion and limitations. The seventh section
presents the conclusions of our work.

2. Related Work

Recently, many researchers have focused on automatic program repair technology
to reduce the time and effort of repairing defects [1], most of our earlier methods used
redundancy assumptions to reduce the number of incorrect patches [6,7]. Current repair
tools generally use test cases as the specifications to verify the correctness of patches.
Patches that pass all test cases are not necessarily correct [20,21]. These patches contain a
large number of incorrect patches, which increase the difficulty of manual judgment instead
of achieving the purpose of the repair defect.

The generation and verification methods apply a series of modification operations to
repair the original buggy program. jKali involves the Java versions of Kali [22]; it attempts
to repair defects by deleting statements in the original program. However, it will delete
the functional code and change the semantics of the original program, which can lead
to generate a large number of incorrect patches. jGenProg involves the Java versions of
GenProg [6]; it transforms the original buggy program into an abstract syntax tree, and the
nodes are randomly added, deleted, and replaced in the abstract syntax tree to generate
patches. However, the patch validation of jGenProg requires too much time, and the
accuracy of jGenProg is quite low. SimFix is a new automatic program tool; it mines
an abstract search space from existing patches and obtains a specific search space from
similar code fragments. CapGen is also one search-based tool, it not only mines code
modifications in historical repair operations to guide patch generations, but also considers
the context information of code modification. Moreover, it outperforms the existing
state-of-the-art approaches. jMutRepair [17] is a repair tool-based mutation operator; it
applies operators, such as relational operators, logical operators, and unary operators in
conditional statements, and repairs programs by modifying these operators. Tbar [23],
FixMiner [24], AVATAR [25], kPar [26], and Cardumen [27] are automatic program repair
tools that use templates to repair patches. However, they cannot repair defects that cannot
capture the patterns and their accuracies are also very low. Yang et al. [28] proposed an
automatic repair method by using similar fix information based on genetic programming;
it finds the fixing ingredient related to the most similar source to generate the patches. It
can reduce the time to repair a defect and improve the quality of the patch. DTSFix [14] can
precisely identify the data and control the dependencies of the buggy program to generate
candidate patches. However, DTSFix can repair special semantic defects, but cannot repair
non-semantic defects. DEAR [29] is an automated program repair model based on deep
learning. In Table 1, repair tools based on the generation and verification method use
different types of information to guide patch generation. In Table 2, we stated the version
number of the repair tool, creator of the repair tool and the location from where the repair
tool was sourced.

The semantically-driven method utilizes symbol execution technology to obtain ex-
ecution information and path constraints. Then it uses the constraint solver to convert
execution information and path constraints into constraint conditions; it finally uses con-
ditional synthesis to generate the patch. Nopol can repair defects of if-conditions; it uses
symbol execution technology to gather execution information and path constraints about
if-conditions. Then the information is transformed into a problem of satisfiability modulo
theories (SMT) [30], and correct if-conditions can be obtained by solving the SMT problem.
However, the accuracy of the Nopol is very low. DynaMoth is an automatic program
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repair tool based on Nopol; it can solve the problem of method calls but Nopol cannot, and
it gathers the dynamical runtime information, including parameters, variables, method
calls, etc. The DynaMoth outperforms the Nopol. The repair tool ACS [31] uses three
different kinds of information to sort the patches, including the conditional expressions,
the report of the defect program, and the structure of the defect program; specifically, the
patch is synthesized by the variable used in the conditional expression and the predicate
executed on the variable. The ACS outperforms the DynaMoth. In Table 1, repair tools
based on the semantically-driven method use different types of information to guide the
patch generation.

To solve the problem of low accuracy of the automatic repair tools, many methods
have been proposed. Tan et al. proposed anti-patterns [32] to judge incorrect patches that
meet specific static structures; it can exclude the correct patches that do not meet the special
pattern. SSDM [11] is a patch quality evaluation tool based on semantic distance, which
uses features of interval distance, output coverage, and path matching to evaluate patches.
SSDM can evaluate patches of defects involving multiple statements, but cannot evaluate
patches of defects within a single statement. Xiong et al. proposed a method to generate
new test cases according to the similarity of test cases. Because the generation of new test
cases is very difficult, it only generates test cases for a small number of defects. Al-Batai et al.
integrated static bug detection techniques with automated program repair to strengthen
specifications and improve the quality of repairs [13]. Dong et al. proposed a static analysis
method using the data flow information of the program and special specifications [14];
it can effectively detect semantic defects, such as null pointer reference, but it cannot
detect defects without complete specifications. SimFix uses the syntax similarity of error
codes and repair components to prioritize patches. Syntax similarity mainly focuses on
text similarity, such as variable name similarity. CapGen uses three models to estimate
the correct probability of patches and sort patches based on genealogy structure, access
variables, and semantic dependencies. CapGen and SimFix cannot effectively evaluate
patches of semantic defects.

There are some insurmountable problems with the above repair methods and tools,
resulting in some plausible but incorrect patches in the generated patches, which cannot be
detected by the test cases and need to be manually eliminated by the developer. Therefore,
we integrated static analysis techniques with test cases to strengthen specifications and
improve the quality of repairs, and propose an evaluation method that analyzes the distance
between the buggy program and the patch from the syntax point of view to evaluate the
quality of a patch.

Table 1. The main differences in the repair tools.

Available Information Generation and Verification Semantically-Driven
No Information jKali, jGenProg, jMutRepair, ARJA Nopol, DynaMoth
Syntax Information CapGen, GPSBFI -
Semantic Information CapGen, SimFix, DTSFix, DEAR ACS
Historical Information CapGen, SimFix -

Template Information Tbar, FixMiner, AVATAR, kPar, Cardumen -
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Table 2. The main information of repair tools.

Repair Tools Version Number Creator Location
jKali 2016 Martinez et al. Orlando, FL, USA
jGenProg 2016 Martinez et al. Orlando, FL, USA
jMutRepair 2016 Martinez et al. Orlando, FL, USA
ARJA 2018 Yuan et al. East Lansing, MI, USA
Nopol 2017 Xuan et al. Wuhan, China
DynaMoth 2016 Durieux et al. INRIA, France
CapGen 2018 Wen et al. Hong Kong, China
SimFix 2018 Xiong et al. Beijing China
DTSFix 2022 Deng et al. Qingdao, China
ACS 2017 Xiong et al. Beijing, China
Tbar 2019 Liu et al. Luxembourg
FixMiner 2020 Koyuncu et al. Luxembourg
AVATAR 2019 Liu et al. Luxembourg
kPar 2019 Liu et al. Luxembourg
Cardumen 2016 Martinez et al. Orlando, FL, USA
DEAR 2022 Lietal New Jersey, USA

Version Number represents the version number of the repair tool, Creator represents the developer of the repair

tool, Location represents the location where the repair tool was sourced.

3. Patch Recommendation Based on Syntax Distance

Figure 1 shows the overview of automatic program repair and evaluation; it works
in four steps—fault localization, patch generation, patch quality evaluation, and patch
prioritization. This paper analyzes the impact of syntax similarities on patch prioritization.

—_——

[1]28 |
| _____ ] Similary Score Calculation | l
| (gs,vs,nl/ts) | 2 25 | similarity
| ) | score
= | | del l |
N — clete
= -—) | —) —) —) |3
replace 22 |
| | insert | |+'_> rank
S — | s |
Buggy Soure Code Candidate Patches Verify the patch’s correctness |
(Buggy Line shown using test cases and static | n 13
inred) analysis tools |
—_ —
Ranked List of Patches
based on Similarity Score
[ ) L ) L ) L J
Y Y Y
1. Fault Localization 2. Patch Generation 3. Patch Quality Evaluation 4. Patch Prioritization

Figure 1. Overview of automatic program repair and evaluation.

For a defect, fault localization will find the fault statement in the buggy program. In
the patch generation step, the repair tool replaces fault statements with repair ingredients to
generate patches; the syntax similarity between the fault statement and the repair statement
is calculated. The patch qualify evaluation evaluates the qualify of patches through patterns
obtained by the program defect detection tools. The patches are prioritized according to
this value of the syntax similarity. The details are as follows.

(1) Fault Localization:It finds the buggy node in the abstract syntax tree of the orig-
inal program. Similar to the research by Chen and Monperrus [33], we assume that the
fault location identifies the correct fault statement because the main concern is the patch
prioritization. For a given defect, the fault statement is determined based on the difference
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between the original buggy program and the correct patch. Next, the fault expression
is extracted from the fault statement. Figure 2 shows the defect Math#80 from project
Defects4]. So, line 1135 is the location of the fault statement, the fault expressions from the
fault statement, such as 4 * n — 1, are extracted.

(2) Patch Generation: It replaces the fault ingredient with repair ingredients in the
original buggy program to generate patches or insert repair ingredients to generate patches.
After identifying the fault statement, we use repair expressions obtained in the original
buggy program as repair ingredients. Next, the fault expression is replaced by the repair
ingredient to generate patches. For example, a patch replaces 4 * n — 1 with 4 * (n — 1) from
line 1132 in Figure 2.

(3) Patch Quality Evaluation: We apply the static analysis tool DTSJava [10] to detect
semantic and syntax defects of the repaired programs, to ensure semantic correctness of
the patch and maintainability of the repaired program. A patch with a semantic defect is
given in Figure 3. The code annotation indicates the value range of the variables in the
program, analyzed by DTS]Java. The value range of the variable 7 is from —2147483648 to
+2147483647, the upper bound of the array buff is 10. This patch still has an array out-of-
bounds defect because the value of expression i can be greater than 10. We recommend
patches that can meet the pattern obtained by DTSJava to developers and discard patches
that do not meet the pattern obtained by DTSJava.

(4) Patch Prioritization: This step of the patch generation generates a large number
of patches, which contain many incorrect patches. To early find the correct patch from
all patches, the patches generated by repair tools are prioritized. Both syntax similarities
and symmetry between the fault statement and repair ingredient are used to prioritize
patches. The four features—variable, expression, structure, and repair location—are used
to calculate the syntax distance, which can effectively distinguish between correct patches
and incorrect patches. Finally, the patches are prioritized according to the syntax distance.

1132 double d= work[4*(n-1)+pingPong];
1135 int j=4*n-1;
1135 int j=4x*(n-1);

Figure 2. Buggy statement, repaired statement, and repair ingredient of the defect Math#80 in
Defects4].

void example (){

int buffer [10];
int i = 0;
int y = input O);
while (i<y){
buffer[i]l=1i;

+ buffer[i-1]=1i;
i++;
}

0 }

= © 00 NO Ok Ww N -

Figure 3. A patch with a semantic defect.

3.1. Variable Similarity

Variables are the main components of an expression and the differences in statements
can be captured through variables and constants. Variables between the correct repaired
code and buggy code are very similar [12,34], and the variable similarity indicates the
difference of variables and constants between the repaired code and buggy code. When a
defect has multiple repair codes, the smaller the difference between the repaired code and
the buggy code, the more likely the repaired code will become the correct repaired code.
To calculate the variable similarity, we use e to represent the buggy expression and p to
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represent the repaired expression of a patch. We extract the variables and constants from the
original expression e and put them into the set V. At the same time, we obtain the variables
and constants in the repaired expression p and put them into the set V). For this feature,
the higher the variable similarity, the better the quality of the patch. Let L° represent
the syntax distance between the patch and the buggy program statement on the variable
similarity and let P*" indicate the recommended value of the patch in terms of variable
similarity. The calculations of the two are shown in Formulas (1) and (2), respectively.

Ve NV,
Lwﬁ:l_ 4 1
V.0, .
1
var __ W 2)

Example 1. Figure 4a shows the program that was repaired by the correct patch generated manually;
the variable sets of the defect and the repair expression are Ve ={ x , prev, 0, '~" }and V,={ x ,
prev , negativeZero , 0, '-" |, respectively. The variable sets of the defect and the repair expression
in Figure 4bare Vo ={ x , prev, 0, "-" } and V,={ prev , '-" }, respectively. We can use the above
formula to calculate the patch recommendation values in Figure 4a,b, respectively:

Ly =02, Ly =0.5,

human ‘Nopol
var ~ var ~
Phuman ~ 0.83, Nopol 0.67,

We can see that the recommended value of the correct patch manually repaired is
significantly higher than the incorrect patch generated by Nopol.

char prev = getLastChar ();

boolean negativeZero = isNegativeZero(x);
+if ((x<0||negativeZero)&&prev=="-"){
-if (x<0 && prev=='-") {
add(” ”);
}

(a) Correct human patch

char prev = getLastChar ();

boolean negativeZero = isNegativeZero(x);
+if (prev=="-") {
-if (x<0 && prev=='-") {
add(" ");
}

(b) Incorrect patch generated by Nopol
Figure 4. Patches of Closure#38 in Defects4].

3.2. Expression Similarity

Expressions are the main components of a statement; the functional differences of
statements can be captured through expressions. For a program, the same function is
implemented in slightly different ways in multiple locations; defects can be repaired
by using repair ingredients obtained from the same project [20]. The repair ingredients
obtained in the source file are better than those synthesized by repair tools. We call
the expression containing the similar repair ingredient of the patch as the contribution
expression; the contribution expression is the expression obtained in the source file and
contains the repair ingredient of the patch. First, we search for a contribution expression
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similar to the given repaired expression by utilizing a clone detection technique [28] and
obtaining the contribution expression of the most similar repaired expression. To find
the contribution expression, we transformed each expression into token sequences and
compared token sequences between expressions and the given repaired expression using
the longest common subsequence (LCS). Then, we regarded the expression with the highest
LCS value as the contribution expression. The expression similarity indicates the function
difference between the repair expression and the contribution expression. For this feature,
it is obvious that the higher the expression similarity, the better the quality of the patch.
Let L?? represent the syntax distance between the repair expression of the patch and the
contribution expression on the expression similarity and P*? indicate the recommended
value of the patch in terms of expression similarity. We used ex to represent the repair
expression of the patch, and sc to represent the contribution expression. The calculations of
the two are shown in Formulas (3) and (4), respectively.

Lew _ |FCS(ex, sc)| 3)
min(|ex|, |sc|)

pexp — pexp (4)

where, LCS(ex,sc) represents the common sub-sequence of the maximum length between ex
and sc, min(lex!,|scl) represents the minimum length between ex and sc.

Example 2. Figure 5a shows the program that was generated by CapGen, the repair expression ex
is 4% (n — 1), and the contribution expression sc is 4 x (n — 1) + pingPong in the first line, so the
common sub-sequence of the maximum length between the repair expression ex and the contribution
expression sc is 7. Figure 5b shows the incorrect patch generated by CapGen, the repair expression
ex is 4 x pingPong — 1, and the contribution expression sc 4 x n — 3 — pingPong in the source
file, so the common sub-sequence of the maximum length between the repair expression ex and the
contribution expression sc is 8. We can use the above formula to calculate the patch recommendation
values in Figure 5a,b, respectively:
=Lt e =8 e,

correct 7 incorrect 12

PP =1, PP 0.67,

correct incorrect

1 double d = work[4#(n-1)+pingPong]; 1 - int j = 4*n-1;
2 - int j = 4sn-1; 2 + int j = 4xpingPong-1;
3 + int j = 4x(n-1); 3 ...
4 ... 4 work[4+n-3-pingPong] = d;
(a) Correct patch generated by CapGen. (b) Incorrect patch generated by CapGen.

Figure 5. Patches of math#80 in Defects4].

We can see that the recommended value for the correct patch generated by CapGen is
significantly higher than the incorrect patch generated by CapGen.

3.3. Structure Similarity

Structure similarity concerns the difference in the control structure between the re-
paired code and the buggy code. The statement containing the contribution expression
is the contribution statement; the contribution statement is the statement obtained in the
source file containing the repair ingredient. In practice, we found that the control struc-
ture between the contribution statement and buggy statement was very similar. For this
feature, it can be considered that the higher the structural similarity, the better the quality
of the patch. We extracted a vector V(ky, ky, k3) from the code, where k1, ky, k3 is the loop,
judgment, and return numbers, respectively. The vector of the buggy statement is V'(k],

’2, kg), and the vector of the contribution statement is V(ky, kp, k3); then we calculated
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the structural similarity between the two vectors by using Euclidean distance. Let L
represent the syntax distance between the contribution statement and the buggy statement
in the structural similarity and let P* indicate the recommended value of the patch in
terms of structural similarity. The calculations of the two are shown in Formulas (5) and (6),
respectively.

L= (K —kx)? ®)
1
stu __ 71 n ED (6)

Example 3. Figure 6a shows the correct patch generated by CapGen, the buggy statement is
if(dataset = null), containing an if, the vector of the buggy statement is (0, 1, 0), the contribution
statement is if(dataset == null) in the ninth line, containing an if, the vector of the contribution
statement is (0, 1, 0). Figure 6b shows the incorrect patch generated by jKali, the buggy statement
is if (dataset != null), the vector of the buggy statement is (0, 1, 0), the contribution statement is
“return false;” in the ninth line, containing a return, the vector of the contribution statement (0, 0, 1).

LsCthGen = \/(0 —0)2+(1-1)*+(0-0)2 =0, PsCthGen =1

L= 0-02 4+ (0124 (1-12=1, P, =05,

918 if (dataset == null) { 1794 CategoryDataset dataset =
this.plot.getDataset(index);
1794 CategoryDataset dataset = + if (false) {
this.plot.getDataset(index); 1795 - if (dataset != null) {
+ if (dataset == null) f{ return result;
1795 - if (dataset != null) { }
1796 return result;

} 1990 return false;

(a) Correct patch generated by CapGen. (b) Incorrect patch generated by jKali.
Figure 6. Patches of Chart#1 in Defects4].

We can see that the recommended value of the correct patch generated by CapGen is
significantly higher than the incorrect patch generated by jKali.

3.4. Repair Location

Defects will be activated and program faults will occur only when certain conditions
are met. However, the continuous backward transmission of defects will cause program
failure. The repair location affects the quality of a patch to some extent; only the correct
repair location can eliminate program defects, while the error repair location leaves more
defects in the error propagation chain, which may lead to the generation of other defects.

The error propagation chain Z(/, f, N) of a program is obtained by dynamic slicing,
which represents the propagation chain of the sequence N from the defect location [ to the
failure location f. The patch quality is judged by the repair location d of the patch in the
error propagation chain, the higher the repair location is in the error propagation chain, the
larger the syntax distance between the original program and the repaired program. The
further you go, the more defects you can repair, and the greater the difference from the
original buggy program. For this feature, the earlier the patch is in the error propagation
chain, the better the quality of the patch is; otherwise, the worse the quality of the patch
is. In other words, the greater the syntax distance between the repaired program and the
original buggy program, the better the patch quality.
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Let [/, d] be the dynamic execution path from defect location I to repair location 4,
and |[/, d]| be the statement number of the execution path from the defect location / to
repair the location d; Let [], f] be the dynamic execution path from the defect location /
to the failure location f, and I[I, f]| be the statement number of execution paths from
defect locations ! to the failure location f. Let L' represent the syntax distance between the
patch and the original program in the feature of the repair location and P'* represent the
recommended value of the patch in the feature of the repair location. The calculations are
shown in Formulas (7) and (8).

N 0, ifd¢N
T ifden @

Ploc — Lloc (8)

Example 4. Figure 7a shows a buggy program, when index >= 0 && allowDuplicateXValues =
true and autoSort = true, the defect will activate in the second line of Figure 7a, and the array will
be out of bounds in the sixth line of Figure 7a. We can obtain the error propagation chain [1, 4, 5],
[ Il = [1, 5] = 2. Figure 7b shows the correct patch generated manually, the repair location d is
in the third line of Figure 7D, it is the correct repair location, |[I,d]1 = |[1,1]| = 0. Figure 7c shows
the incorrect patch generated by DynaMoth, the repair location d is the third line of Figure 7c, it is
the incorrect repair location, 1[I, d]1=1[1, 4]| = 1. Applying Formulas (7) and (8), we can obtain:

loc _ 0 _ loc _ 1 —
human = 1 — 2 L, PDyszoth =1- 2 0.5,
if (index >= 0O&&!allowDuplicateXValues) {
}else {
if (autoSort) {
data.add(-index — 1, new XYDataltem(x, y));
}
}
(a) The buggy program.
—-if (index>=0&&!allowDuplicateXValues){ -if (autoSort) {
+if (index >= 0) { +if (equals ((Object) x)) {
(b) Correct human patch. (c) Incorrect patch generated by DynaMoth.

Figure 7. Patches of Chart#5 in Defects4].

We can see that the recommended values of the manual patches are significantly
higher than the incorrect patch generations by DynaMoth; DynaMoth generates patches
but introduces new functional defects.

3.5. The Recommendation Value of the Joint Feature

We integrated four syntax features—variable, expression, structure, and repair
location—to obtain the syntax distance between the buggy program and the patch program.
Then the patch quality was evaluated according to the syntax distance. Four features made
similar contributions to the joint feature evaluation, and a patch with higher syntax distance
was ranked higher. For the three operations of modification, insertion, and deletion, we
treated them differently according to their different changes to the program.

For modification, we combined all four features; thus, the recommendation value of
the patch P is specifically defined as:

P — PV PP s psti o Ploc (9)
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However, for insertion, the patch is inserted into the program, and there are no buggy
statements, so there is no need to consider the variable feathers. Therefore, for insertion,
the recommendation value of the patch P is defined as follows:

P = P x Pt x ploe (10)

For deletion, the case is more complicated since we are only going to delete the
statement in the buggy program. In this case, we first locate the buggy line and compute
the recommendation value of the repair location. Then we compute the variable similarities
between the deleted statement and the defect statement. It makes no sense to include
the expression model and structure model in this case since the statement is only deleted.
Therefore, for deletion, the recommendation value of the patch P is defined as follows:

P — PZJ!ZV X plOC (11)

Example 5. Figure 5a shows the correct patch that is generated by CapGen. The variable sets of
the defect and the repair expression are both V, ={ n, 1, 4 }, so the syntax distance of the variable
similarity is 1. Example 2 shows that the syntax distance of the expression similarity is 1. In
Figure 5a, the buggy statement is in line 2 and the contribution statement is in line 1. The buggy
statement and the contribution statement do not contain any control structures, so the vectors of
the buggy statement are both (0, 0, 0). Therefore, the syntax distance of the structural similarity is
1. The defect is activated in line 2 and the repair location is in line 3, so the syntax distance of the
repair location is 1. Figure 5b shows the incorrect patch generated by CapGen. The variable sets of
the defect and the repair expression are Vo, ={ n, 1,4 }and V), = { pingPong, 1, 4, } respectively,
so the syntax distance of the variable similarity is 0.67. Example 2 shows the syntax distance of
expression similarity is 0.67. In Figure 5b, the bugqy statement is in line 1 and the contribution
statement is in line 4. The buggy statement and the contribution statement do not contain any
control structures, so the syntax distance of the structural similarity is 1. The defect is activated in
line 1 and the repair location is in line 2, so the syntax distance of the repair location is 1. We can
use the above Formula (9) to calculate the patch recommendation values in Figure 5a,b, respectively:

Pcorrect = PUar ¢ pexp . pstu Ploc =1 (12)

Prncorrect = P x PO x Pt x Ploc ~ 0.45 (13)

We can see that the syntax distance value of the correct patch generated by CapGen is
significantly higher than the incorrect patch generated by CapGen.

4. Results

To verify the effectiveness of our evaluation method, Nopol, DynaMoth, SimFix,
jKali, ACS, jGenProg, kPar, TBar, ARJA, AVARTAR, jMutRepair, Cardumen, FixMiner,
and CapGen were selected as the analysis objects, and Defects4] [10] was chosen as the
benchmark. Among these tools, Nopol is a repair tool that synthesizes constraints based on
semantic information and generates conditions and loop statements, DynaMoth is a repair
tool that can further synthesize method call conditions on the basis of Nopol. SimFix is a
repair tool for generating patches by searching similar codes in the same project through
code structure and semantic features. jKali is a Java language implementation of Kali that
only deletes functionalities. CapGen is a context-aware repair tool at the level of fine-
grained abstract syntax tree nodes. In this paper, the repair tools selected cover two patch
synthesis methods: ACS, Nopol, and DynaMoth cover semantic-based patch synthesis
methods; TBar, FixMiner, kPar, jGenProg, ARJA, AVARTAR, jMutRepair, Cardumen, jKali,
SimFix, and CapGen cover patch synthesis methods based on generation and verification.
The plausible and correct patch numbers of the multiple tools on Defects4] are shown in
Table 3.
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Table 3. The plausible and correct patch numbers in the multiple tools.

Project NO DY SI JK CA JG TB KP AC AR AV FI CR M

Chart 1/6 1/6 4/9 0/6 5/66 0/5 7/17 3/13 2/2 1/10 5/12 5/12 2/4 1/4
Lang 3/7 1/6 5/16 0/0 9/29 0/2 6/21 1/18 3/3 0/2 4/13 0/2 0/0 0/2
Math  1/211/28 12/28 1/10 14/152 3/11 8/22 4/21 12/173/13 3/17 7/14 1/6 2/11
Time 0/1 0/5 1/2 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0
Total  5/352/50 22/55 1/18 28/247 3/18 21/60 8/52 17/22 4/25 12/42 12/29 3/10 3/17
Precision 14% 4% 40% 5% 11% 17% 35% 15% 77% 16% 29% 41% 30% 18%
A/B: A represents the number of correct patches, B represents the number of plausible patches. AC represents
ACS, AR presents ARJA, AV presents AVATAR, KP presents kPar, TB represents TBar, DY presents DynaMoth, JK
presents jKali, NO presents Nopol, SI presents SimFix, JG presents jGenProg, CA represents CapGen, FI presents
FixMiner, CR presents Cardumem, JM represents jMutRepair.

4.1. Ability to Evaluate Real Patches

Since a repair tool does not generate plausible patches for all defects or only generates
a single plausible patch, we only selected the defects with multiple plausible patches as the
dataset. Then, we used multiple repair tools to repair defects separately and obtained all
plausible patches that could repair the defect. We evaluated them through our evaluation
method and obtained the result shown in Table 4. In Table 4, 95% of the correct patches
were ranked in the top one and all of the correct patches were ranked in the top two by
our evaluation method, which means that our evaluation method does have an obvious
evaluation effect.

4.2. Ability to Evaluate Patch Quality by Different Features

To judge the contribution of each individual evaluation feature, we separately studied
the evaluation ability of each feature for the same patches. Here, the patches we evaluated
were the plausible patches in Table 4, and the recommended values of the patches were
obtained by evaluating the 103 correct patches and 265 incorrect patches, respectively, with
four evaluation features. If a feature had a better evaluation ability for the patches, it had
a higher recommendation for correct patches and a lower recommendation for incorrect
patches. Moreover, if the recommended value of this feature for the correct patch was
higher than other features, it means that this feature made a greater contribution to the
joint feature evaluation.

Figure 8 shows the effectiveness evaluations of the variable, expression, structure, and
repair locations, respectively, and with average values 0.82, 0.75, 0.96, and 0.96. Similarly,
we can find that the recommended values of the correct patch and the incorrect patch under
these features are quite different, which means that the four features can well distinguish
the correct patches. The recommended values of the four features for the correct patches
are similar, which means that the four features made similar contributions to the joint
feature evaluation.
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Table 4. Effectiveness evaluations of the patches generated by multiple repair tools.

BugID Rank Rv. AC AR AV KP TB DY JK NO SI JG CA FI CR M
Chart1 1 038 - o0/1 1/1 1/1 1/1 0/1 0/1 - 1/1 - 1/1 1/1 - 1/1
Chart4 1 1.0 - - 1/1 1/1 1/1 - - - - - - 1/1 - -
Chart7 2 033 - 0/1 0/1 0/1 0/1 - - - 1/1 o/1 - 0/1 - 0/1
Chart8 1 075 - - - - - - - - - - 1/62 - - -
Chart9 1 0.67 - - - - 1/1 - - 0/1 - - - - - -
Chart1l 1 0.67 - - 11 - 1/1 - - - - - /1 1/1 1/1 -
Chart12 1 10 - 1/1 - o0/10/1 - - - 0/1 - - 0/1 - -
Chart14 1 1.0 1/1 o/1 0/1 0/1 0/1 0/1 - - - - - 0/1 - -
Chart19 1 1.0 1/1 0o/1 1/1 - 1/1 - - - - - - 1/1 - -
Chart20 1 042 - - - - 1/1 - - - 1/1 - - - - -
Chart24 1 071 - - 1/1 - 1/1 - - - - - /1 1/1 1/1 -
Math4 1 1.0 1/1 - 1/1 - - - - 0/1 - - - - - -
Math5 1 05 1/1 - - - 1/1 - - - - - 1/4 - - -
Math30 1 033 - - - - - - - - - - 1/1  1/1 - -
Math33 1 08 - - - - - - - 01 - - 1/21 - - -
Math35 1 1.0 1/1 1/1 - - - - - - - - - - - -
Math41 1 1.0 - - - - - - 0/1 0/1 1/1 - - - - -
Math50 2 05 - 0/1 0/1 0/1 0/1 1/1 1/1 - - 0/1 - 0/1 - 0/1
Math53 1 1.0 - - - - - - - - 1/1 1/1 2/2 - - -
Math57 1 1.0 - - 0/1 - 1/1 - - - 1/1 - 1/1  1/1 - 0/1
Math58 1 0 - 1/1 - 1/1 - 0/1 - - - - /1 1/1 1/1 -
Math59 1 10 - - 1/1 - - - - - 1/1 - 1/1 - - -
Math63 1 0.67 - - - 0/1 0/1 - - - 0/1 - 1/9 0/1 0/1 -
Math65 1 1.0 - - - - 1/1 - - - - - 1/1 - - -
Math70 1 0.67 - - - 1/1 1/1 - - - 1/1 1/1 11 - - -
Math71 1 0.67 - - - - - 0/1 - - 1/1 - - - - -
Math75 1 1.0 - - - 1/1 1/1 - - 1/t 1/t 1/1 1/ 1/1 -
Math79 1 1.0 - - 1/ - 1/1 - - - - - /1 1/1 1/1 -
Math80 1 10 - o0/1 0/1 0/1 0/1 0/1 - 0/1 0/1 0/1 1/125 0/1 - 11
Math85 1 041 1/1 0/1 - - 0/1 0/1 - - 0/1 0/1 1/4 0/1 0/1 1/1
Math89 1 015 1/1 - 1/1 1/1 1/1 - - - - - - - - -
Lang6 1 038 - - 1/1 - - - - - - - 1/1 - - -
Lang7 1 1.0 - - 11 - 1/1 - - - - - /1 1/1 1/1 -
Langl0 1 05 - - o0/1 0/1 1/1 - 1/1 - 0/1 - - - - -
Lang24 1 1.0 1/1 - - 0/1 0/1 - - - - - - - - -
Lang33 1 1.0 - - - - 1/1 - - - 1/1 - - - - -
Lang39 1 1.0 - - 0/1 - 0/1 - - - 1/1 - - - - -
Lang43 1 1.0 - - - 0/1 0/1 - - - - 1/1 - - - -
Lang57 1 033 - - 1/1 0/1 1/1 - - - - - 3/3 - - 1/1
Lang8¢ 1 05 - - o0/10/10/1 - - - - - 0/1 1/1 - -
Lang59 1 08 - - 0/1 0/1 1/1 - - - - - 1/20 - - 1/1
Lang60 1 075 - - - - 0/1 - - - 1/1 - - - 1/1 -

A/B: A represents the number of correct patches, B represents the number of plausible patches, RV represents the
recommendation value of the correct patch, “-” indicates that there is no plausible or correct patch for the defect
and it cannot be sorted. AC represents ACS, AR presents ARJA, AV presents AVATAR, KP presents kPar, TB
represents TBar, DY presents DynaMoth, JK presents jKali, NO presents Nopol, SI presents SimFix, JG presents
jGenProg, CA represents CapGen, FI presents FixMiner, CR presents Cardumem, JM represents jMutRepair.
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Figure 8. Effectiveness evaluations of different features on the patches.

4.3. Comparison with Existing Methods

At present, only CapGen can generate multiple patches for defects with a patch-sorting
mechanism. SSDM is the patch quality evaluation tool that uses path matching, output
coverage, and internal distance to evaluate the patches. We selected CapGen and SSDM to
compare with our evaluation method (PPSD); the evaluation data are plausible patches in
Table 4. There were 43 defects in the dataset in Table 4. CapGen ranked the correct patches
of the 36 defects first. PPSD ranked the correct patches of the 41 defects first. SSDM ranked
the correct patches of the 36 defects first. In the PPSD, the number of defects with correct
patches ranked first was more than that of CapGen and SSDM. The comparison results of
CanGen, SSDM, and PPSD are shown in Table 5. In Table 5, we only show that the defects
of CapGen, SSDM, and PPSD cannot rank the correct patch first. To save space in Table 5,
we do not show that the defects of CapGen, SSDM, and PPSD can rank the correct patches
first. There are 36 defects not shown in Table 5.

We used the CapGen to evaluate the plausible patches in Table 4. Most of the correct
patches were evenly ranked in the top one. At the same time, it can be seen that the correct
patch for Math 80 was ranked in third place. The incorrect expression is 4 *n —1 in
Figure 5, which affects the correctness of the program. CapGen applies frequency and
context similarity of the variable and the expression to prioritize patches. The frequency
of the variable pingPong is much higher than that of the expression 4 % (n — 1) in the
buggy file and there is little difference in context similarity between variables pingPong
and expressions 4 * (n — 1), so the correct patch for Math 80 is ranked in third place.
CapGen does not consider the impact of expression similarity and structural similarity on
patch quality. Many repairing expressions can be synthesized by CapGen, which does not
contain the functionality that the developer wants; 4 * n — 1 is replaced by 4 * pingPong —
1 that does not appear in the program, which does not contain the functionality that
the developer wants; the expression similarity is 1. The expression similarity, structural
similarity, variable similarity, and recommendations of the repair locations are 0.67, 1.0,
0.67, and 1.0 respectively, so the recommendation value of the incorrect patch is 0.45.
Moreover, 4 * n — 1 is replaced by 4 * (n — 1), which appears in the program and contains
the functionality that the developer wants; the expression similarity of the patch is 1.0. The
expression similarity, structural similarity, variable similarity, and recommendation values
of the repair locations are 1.0, 1.0, 1.0, and 1.0, so the recommendation value of the correct
patch is 1.0. Therefore, our method ranks the patch first, but this correct patch cannot be
judged as a high-quality patch by CapGen.

We used the SSDM to evaluate the plausible patches in Table 4, it can be seen that
most of the correct patches were evenly ranked in the top one. At the same time, it can
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be seen that the correct patch for Math 63 was ranked in third place. In Figure 9, there
is only one return statement in the “equals” function, which affects the correctness of the
program. Since the patch does not affect the number of method calls, the execution path in
the “equals” method is the only one that needs to be judged, and the method contains only a
return statement, which makes it unable to reflect obvious differences in the path-matching
feature. SSDM does not consider the impact of expression similarity, structural similarity,
variable similarity, and recommendation of the repair location on the patch quality. The
expression (Double.isNaN(x) && Double.isNaN(y)) | | x ==y is replaced by the expression
equaling (x, y, 1), which appears in the program and contains the functionality that the
developer wants; the expression similarity of the patch is 1.0, the structural similarity is 1.0,
the variable similarity is 0.75, and the recommendation value of the repair location is 1, so
the recommendation value of the correct patch is 0.75. The expression (Double.isNaN(x)
&& Double.isNaN(y)) is replaced by the expression x ==y | | x == y that does not appear in
other locations of the buggy file, which does not contain the functionality that the developer
wants; the expression similarity is 0.3, the structural similarity is 1.0, the variable similarity
is 1.0, and the recommendation value of the repair location is 1.0. The recommendation
value of the incorrect correct patch is 0.3. Therefore, our method ranks the patch first; the
correct patch cannot be judged as a high-quality patch by the SSDM. We combine SSDM
with our proposed method to achieve a better effect of the patch quality evaluation.

Table 5. Comparison of the evaluation effect of CapGen, SSDM, and PPSD in the patches generated
by multiple repair tools.

Bug ID Plausible CapGen Rank PPSD Rank SSDM Rank
Chartl 10 1 1 2
Chart7 8 2 2 2
Chart14 7 4 1 7
Chart19 5 2 1 2
Math50 9 2 2 3
Math63 14 1 1 3
Math73 3 3 1 2
Math80 135 3 1 1
Math82 4 2 1 1

Plausible represents the correct and incorrect patch numbers for the defect, CapGen Rank presents the rank of the
correct patch given by CapGen, SSDM Rank presents the rank of the correct patch given by SSDM, and PPSD
Rank represents the rank of the correct patch given by our method.

To prove that our method is superior to similar methods, the following evaluation
metrics were inspected:

(1) Average Space Reduction: It presents how much patches can be reduced to find
the correct patch from all patches [33].

B Mean_Correct

Avg Space Reduction = (1 Mean_Total

) % 100% (14)
where Mean_Correct presents the mean of the correct patch rank, and Mean_Total represents
the mean number of all patches generated by the repair tools.

(2) Perfect Repair: It represents the percentage of defects that the correct patch ranks
first [33].

The SSDM uses four semantic features, including interval distance, output coverage,
and path matching to evaluate the patches. SSDM can evaluate patches that modify the
execution path of the original program. However, SSDM cannot evaluate patches that do
not modify the execution path of the original program and modify the expression in a
single statement. Our method uses four syntax features (variable, expression, structure, and
repair location) to evaluate the patches, so it can evaluate patches at the fine-grained level.
Our method can evaluate patches that SSDM cannot evaluate. The CapGen sorts patches
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based on genealogy structure, access variables, and semantic dependencies. However,
CapGen cannot evaluate patches of semantic defects. Our method integrates static analysis
techniques with test suites to strengthen specifications, so it can effectively evaluate the
quality of patches of semantic defects. Figure 10 shows that our method is effective in
average space reduction, compared to CapGen and SSDM. For our method, the search
space can be reduced, while for the average space reduction of our method, SSDM and
CapGen were 87.7%, 84.0%, and 85.0%, respectively. In terms of perfect repair, our method
outperformed CapGen and SSDM, the values were 95.3%, 83.7%, and 83.7%, respectively.
The comparisons reveal that our method is better than SSDM and CapGen.

public static boolean equals(double x, double y) {
-return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
+return equals(x, y, 1);

}

return equals(x, y, 1);

(a) Correct Patch

public static boolean equals(double x, double y) {

-return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
+return x ==y || x == y;
}
return !((x == null) && (y == null));
(b) Plausible Patch

Figure 9. Patches for Math #63 in Defects4j generated by CapGen.

96%
94%
92%
90%
88%

86%

84%
82%
80%
78%
76%

SSDM CapGen PPSD
B Average Space Reduction B Perfect Repair

Figure 10. Comparison of SSDM, CapGen, and PPSD.

5. Threats to Validity

Threats to External Validity. The external threat is that the tools we use are all
repaired in the Defect4j benchmark pool to generate patches, which leads us to only
evaluate the quality of the patches generated by defects in Defect4j. This implies that
our evaluation method may not be extended to other datasets. Therefore, we attempted
to use the IntroClassJava [35] as the benchmark pool, which is the Java version of the
IntroClass [36]. First, we used the above multiple repair tools to generate patches for
the defects in the IntroClassJava benchmark pool. Then, we used these patches to prove
whether our evaluation method could be extended to other datasets.

Threats to Internal Validity. This paper assumes that the fault location identifies
the correct fault statement, but this assumption may not always be true [26]. However,
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the main concern is the patch prioritization. The study of fault localization technology is
beyond the scope of our study. Similarly, verifying the correctness of the patch is a study in
itself, which was explored by Xin et al. [24].

6. Discussion and Limitations

According to the existing automatic repair research, the test suites are not perfect
ways to guarantee the correctness of patches generated by repair tools and weak test suites
lead to a large number of incorrect patches. We integrated static analysis techniques with
test suites to strengthen specifications, which can effectively find the correct patches of
semantic defects. For non-semantic defects, we propose a patch quality evaluation method,
which measures the syntax distances of patches through four evaluation features—variable,
expression, structure, and repair location. It evaluates all patches of defects and gives the
sorted patch set to developers. Our method can reduce the time for developers to find the
correct patch. It improves the efficiency of developers. Our method can be incorporated
into the field of continuous integration [37,38]. In the continuous integration phase, our
method can be used as the last step of code quality verification. Our method can verify the
quality of the code after the repaired defects. Our method can reduce the risk of introducing
semantic defects. At the same time, our method can help developers quickly find the correct
repaired code to achieve rapid continuous integration.

However, our method has some shortcomings. It evaluates the patch quality at the fine-
grained level, such as the expression control structure and variables, without considering
the dependence between statements, so our method can effectively evaluate patches of the
defect involving the single statement but it cannot effectively evaluate patches of defects
involving multiple statements.

7. Conclusions

This paper proposes a patch quality evaluation method based on syntax distance
metrics. Variable, expression, structure, and repair location features are used to measure the
syntax distances of patches. Meanwhile, this method integrates static analysis techniques
with test suites to strengthen specifications. This method was verified on 368 patches
generated by existing repair tools, and it successfully ranked 95% of the correct patches in
the top one. This shows that it is very effective for judging the quality of the patch generated
by the repair tool. Our method does not consider the dependence between statements, so it
cannot effectively evaluate patches of defects involving multiple statements. In the future,
we hope that our method can be combined with the dynamic test method, as well as further
expand the existing work.
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