
Citation: Fan, H.; Zhai, W. A

Symmetric Form of the Mean Value

Involving Non-Isomorphic Abelian

Groups. Symmetry 2022, 14, 1755.

https://doi.org/10.3390/sym14091755

Academic Editor: Calogero Vetro

Received: 23 July 2022

Accepted: 19 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Symmetric Form of the Mean Value Involving
Non-Isomorphic Abelian Groups
Haihong Fan * and Wenguang Zhai

Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
* Correspondence: fanhaihong1@hotmail.com

Abstract: Let a(n) be the number of non-isomorphic abelian groups of order n. In this paper, we
study a symmetric form of the average value with respect to a(n) and prove an asymptotic formula.
Furthermore, we study an analogue of the well-known Titchmarsh divisor problem involving a(n).

Keywords: finite abelian group; symmetric average value; asymptotic formula; Bombieri–Vinogradov
theorem; Titchmarsh divisor problem

1. Introduction

Let a(n) denote the number of non-isomorphic abelian groups of order n. The Dirichlet
series of a(n) is

∞

∑
n=1

a(n)n−s = ζ(s)ζ(2s)ζ(3s) · · · (Rs > 1),

where ζ(s) is the Riemann zeta function. It is well-known that the arithmetical function
a(n) is multiplicative and satisfies the equality a(pα) = P(α) for any prime p and integer
α ≥ 1, where P(α) is the number of partitions of α. Hence, for each prime number p, we
have a(p) = 1, a(p2) = 2, a(p3) = 3, a(p4) = 5, a(p5) = 7.

A vast amount of literature exists on the asymptotic properties of a(n). See, e.g.,
refs. [1,2] for historical surveys. The classical problem is to study the summatory function

A(x) := ∑
n≤x

a(n).

In 1935, Erdös and Szekeres [3] proved that

A(x) = A1 x + O(x1/2), (1)

where A1 = ∏∞
v=2 ζ(v). Schwarz [4] showed that

A(x) = A1 x + A2 x1/2 + A3 x1/3 + R(x),

with R(x) � x
3
10−

7
30·23 (log x)21/23 and Aj = ∏v 6=j ζ(v/j) (j = 1, 2, 3). Many authors have

investigated the upper bound of R(x). For later improvements, see [5–7]. The best result to
date is

R(x)� x1/4+ε (2)

for every ε > 0, proved by O. Robert and P. Sargos [8].
For an arithmetic function f : N→ N, and any integer r > 1, one can define

f (r)(n) = f ( f (· · · f (n) · · · ))

as the r-th iterate of f . If r ≥ 2 is fixed, then two among the most natural problems
concerning f (r)(n) are an evaluation of the sums of f (r)(n) and the determination of the
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maximal order of f (r)(n). In the case of f (n) = d(n), representing the Dirichlet divisor
function, these problems were investigated by Erdös and Kátai [9,10]. In [10] it was
shown that

∑
n≤x

d(r)(n) = (1 + o(1))Dr x logr x (Dr > 0, x → ∞)

holds for r = 4, which was proved earlier by I. Kátai to also be true for r = 2, 3. Additionally,
there has been work on the analogue of this problem for a(n). A. Ivić [11] considered the
2nd iterate of a(n) and proved that

∑
n≤x

a(a(n)) = Cx + O(x1/2 log4 x).

for a suitable C > 0.
In 1986, C. Spiro [12] studied a new iteration problem involving the divisor function

and obtained
∑

n≤x,d(n+d(n))=d(n)
1� x

(log x)7 . (3)

In view of the work of C. Spiro, one can conjecture that, for some D > 0,

∑
n≤x

d(n + d(n)) = Dx log x + O(x). (4)

However, it seems very difficult at present to determine the rationality of (4). A
result analogous to (4) is much less difficult if d(n) is replaced by a(n), or a suitable prime-
independent multiplicative function f (n) such that f (p) = 1. This is roughly due to the
fact that d(p) = 2 and a(p) = 1.

Inspired by (3), A. Ivić [13] pointed out an asymptotic formula for the symmetric sum

Q(x) := ∑
n≤x

a(n + a(n)),

and derived that the result
Q(x) = C1x + O(x11/12+ε) (5)

holds, for a positive constant C1. Recently, Fan and Zhai [14] improved Ivić’s result (5)
and got

Q(x) = C1x + O(x3/4+ε). (6)

In this paper, we shall use a different approach to improve (6).
Let

Dk(x) = ∑
p≤x

d(p− k), (7)

where p runs through all prime numbers greater than k, and k ≥ 1 is a fixed integer. The
Titchmarsh divisor problem is to understand the behavior of Dk(x) as x → ∞. So far we
know very little concerning the properties of p − k, such as whether p − 2 contains an
infinity of primes; therefore, a problem regarding p− k for which we can give some sort of
answer makes some sense.

Assuming the generalized Riemann hypothesis, Titchmarsh [15] showed that

Dk(x) ∼ E1x (8)

with

E1 =
ζ(2)ζ(3)

ζ(6) ∏
p|k

(
1− p

p2 − p + 1

)
.
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In 1963, Linik [16] proved (8) unconditionally. Subsequently, Fouvry [17] and
Bombieri et al. [18] gave a secondary term,

Dk(x) = E1x + E2Lix + O
(

x
(log x)c

)
, (9)

for all c > 1 and

E2 = E1

γ−∑
p

log p
p2 − p + 1

+ ∑
p|a

p2 log p
(p− 1)(p2 − p + 1)

,

where γ denotes the Euler–Mascheroni constant and Li(x) is the logarithmic integral
function. Motivated by the above results, we shall study an analogue of the Titchmarsh
divisor problem for the symmetric form with regard to a(n).

Our main plan is as follows. In Section 2, we state some important lemmas, and in
Section 3, we prove the symmetric form of the mean value concerning non-isomorphic
abelian groups. The analogue of the Titchmarsh divisor problem for a(n + a(n)) is given in
Section 4, with the help of the well-known Bombieri–Vinogradov theorem. We note that the
proofs of the two results are analogous; however, there are also differences in some details.

Notation. In this paper, P denotes the set of all prime numbers, ε always denotes a
small enough positive constant. µ(n) denotes the Möbius function, ϕ(n) denotes Euler’s
totient function, and d(n) denotes the Dirichlet divisor function.

2. Some Preliminary Lemmas

In this section, we quote some lemmas used in this paper.

Lemma 1. We have
lim sup

n→∞
log a(n) · log log n

log n
=

log 5
4

.

Proof. See, for example, Krätzel [2].

Lemma 2. For a positive number u > 0, let S(u) denote the number of square-full numbers not
exceeding u, then we have

S(u)� u1/2.

Proof. P. T. Bateman and E. Grosswald [19] proved that

S(u) =
ζ( 3

2 )

ζ(3)
u

1
2 +

ζ( 2
3 )

ζ(2)
u

1
3 + O(u

1
6 ), (10)

then Lemma 2 follows from (10) immediately.

Suppose m ≥ 1, (a, m) = 1, and 1 ≤ a < m. In the next Lemma, we care about the
average distribution of primes in arithmetic progressions. Define

π(x; m, a) = ∑
p≤x

p≡a (mod m)

1

and
E(x; m, a) = π(x; m, a)− Lix

ϕ(m)
. (11)
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Lemma 3. Suppose x ≥ 3. For any given positive number A > 1, we have the estimate

∑
m≤M

d4(m)a(m)max
y≤x

max
(a,m)=1

|E(y; m, a)| � x
(log x)A ,

where M = x1/2(log x)−B with B = 2A + 272, the implied constant depending on A.

Proof. Let λ = A + 257. We write

∑
m≤M

d4(m)a(m)max
y≤x

max
(a,m)=1

|E(y; m, a)| = S1 + S2, (12)

where

S1 := ∑
m≤M

d4(m)a(m)>(log x)λ

d4(m)a(m)max
y≤x

max
(a,m)=1

|E(y; m, a)|,

S2 := ∑
m≤M

d4(m)a(m)≤(log x)λ

d4(m)a(m)max
y≤x

max
(a,m)=1

|E(y; m, a)|.

We estimate S1 first. Trivially we have (note y ≤ x)

|E(y; m, a)| � Lix
ϕ(m)

+ ∑
n≤x

n≡a(mod m)

1� x
ϕ(m) log x

+
x
m
� x

m
,

where we used the estimate ϕ(m) � m/ log m. Inserting the above bound into S1, we
see that

S1 �
x

(log x)λ−1 ∑
m≤M

d8(m)a2(m)

m
. (13)

Suppose s = σ + it with σ > 1. Since d8(m)a2(m) is multiplicative, we have the
following expression

∞

∑
m=1

d8(m)a2(m)

ms = ∏
p

(
1 +

256
ps +

38 · 22

p2s + · · ·
)
= ζ256(s)G(s), (14)

where G(s) can be written as an infinite product, which is absolutely convergent for σ > 1/2.
By the standard method of analytic number theory, we can obtain from (14) that

∑
m≤M

d8(m)a2(m)

m
� (log M)256 � (log x)256. (15)

From (13) and (15), we obtain

S1 �
x

(log x)λ−257 �
x

(log x)A . (16)

Now, we estimate S2. Let A1 > 1 be any fixed real number. Then we have the estimate

∑
m≤x1/2(log x)−B1

max
y≤x

max
(a,m)=1

|E(y; m, a)| � x
(log x)A1

, (17)

where B1 = A1 + 15. This is the well-known Bombieri–Vinogradov theorem. See Theorem 8.1
of [20].
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Take A1 = 2A + 257 and B1 = B = 2A + 272 in (17). We have

S2 � (log x)λ ∑
m≤M

max
y≤x

max
(a,m)=1

|E(y; m, a)| (18)

� x
(log x)A1−λ

� x
(log x)A .

Now, Lemma 3 follows from (12), (16) and (18).

3. A Symmetric Form of Mean Value Concerning a(n)

In this section, we propose a symmetric form of mean value concerning a(n). We have
the following theorem.

Theorem 1. For any ε > 0, we have the asymptotic formula

Q(x) = C1x + O(x2/3+ε), (19)

where the O-constant relies only on ε.

Proof. We begin by noting that each natural number n can be uniquely written as n = qs
such that (q, s) = 1. We use this fact to obtain

Q(x) = ∑
k1≤W(x)

∑
q1s1≤x, a(s1)=k1, (q1,s1)=1

a(q1s1 + k1), (20)

where q1 is square-free, s1 is square-full, and W(x) := maxn≤x a(n); the property that
a(n) = a(s(n)) is also utilized, where s(n) is the square-full part of n. Functions with this
property were named s-functions; one can see [21] for more details. Taking advantage of
the fact again, we have

Q(x) = ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2 ∑
q1s1≤x, a(s1)=k1, (q1,s1)=1

q1s1+k1=q2s2, a(s2)=k2, (q2,s2)=1

1 (21)

where q2 is square-free and s2 is square-full.
For convenience, we abbreviate the innermost sum of (21) as S(k1, k2). Therefore the

estimation of Q(x) can be reduced to estimate S(k1, k2).

3.1. Evaluation of the Sum S(k1, k2)

In this subsection, we shall study the sum S(k1, k2). From the elementary relations

µ2(n) = ∑
d2|n

µ(d), ∑
d|n

µ(d) =

{
1 n = 1
0 n > 1,

(22)

we have

S(k1, k2) = ∑
q1s1≤x, a(s1)=k1, (q1,s1)=1

1 ∑
q1s1+k1=q2s2, a(s2)=k2, (q2,s2)=1

1

= ∑
d2

1n1s1≤x, a(s1)=k1
(d1,s1)=(n1,s1)=1

µ(d1) ∑
d2

1n1s1+k1=d2
2n2s2, a(s2)=k2

(d2,s2)=(n2,s2)=1

µ(d2)

= ∑
d2

1d∗1 n∗1 s1≤x, a(s1)=k1
(d1,s1)=1, d∗1 |s1

µ(d1)µ(d∗1) ∑
d2

1d∗1 n∗1 s1+k1=d2
2d∗2 n∗2 s2, a(s2)=k2

(d2,s2)=1, d∗2 |s2

µ(d2)µ(d∗2).
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It follows that

S(k1, k2) = ∑
m1n∗1≤x

f1(m1) ∑
m1n∗1+k1=m2n∗2

f2(m2),

where
f1(m1) := ∑

m1=d2
1d∗1 s1

a(s1)=k1, (d1,s1)=1, d∗1 |s1

µ(d1) µ(d∗1), (23)

and
f2(m2) := ∑

m2=d2
2d∗2 s2

a(s2)=k2, (d2,s2)=1, d∗2 |s2

µ(d2) µ(d∗2). (24)

Suppose xε � y� x is a parameter to be determined later, we split the sum S(k1, k2)
into four parts:

S(k1, k2) = S1 + S2 + S3 + S4, (25)

where

S1 = ∑
m1≤y, m2≤y

m1n∗1≤x, m1n∗1+k1=m2n∗2

f1(m1) f2(m2),

S2 = ∑
y<m1≤

x
n∗1

, m2≤y

m1n∗1+k1=m2n∗2

f1(m1) f2(m2)

S3 = ∑
m1≤y, y<m2≤

x+k1
n∗2

m1n∗1≤x, m1n∗1+k1=m2n∗2

f1(m1) f2(m2),

S4 = ∑
y<m1≤

x
n∗1

, y<m2≤
x+k1

n∗2
m1n∗1+k1=m2n∗2

f1(m1) f2(m2).

Consider first the sum S2. It is obviously seen that in the sum S(k1, k2) m1 and m2
are both square-full; by noting that if d∗1 and d∗2 are not square-full, then d∗i si (i = 1, 2) is
square-full due to d∗i |si (i = 1, 2) . Let d(a, b, c; n) denote the number of representations
of an integer n in the form n = na

1nb
2nc

3. We know from the property of the 3-dimensional
divisor problem

d(a, b, c; n)� nε. (26)

Using (26) and the the definition of fi(mi) (i = 1, 2), we obtain

fi(mi)� d(2, 1, 1; mi)� mε
i � xε (i = 1, 2). (27)

From (27), Lemma 2, and partial summation, the sum S2 can be estimated by

� xε ∑
y<m1≤

x
n∗1

, m2≤y

m1n∗1+k1=m2n∗2

1

� x1+ε

y1/2 . (28)

Similar to the sum S2, we can obtain

Si �
x1+ε

y1/2 (i = 3, 4). (29)
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Next, we evaluate the sum S1. Recalling the definition of S1, we have

S1 = ∑
m1≤y
m2≤y

f1(m1) f2(m2) ∑
m1n∗1≤x

m1n∗1+k1=m2n∗2

1. (30)

By observation, the innermost sum of (30) is equal to the solution of the following set
of congruent equations {

n ≡ 0 (mod m1)

n ≡ −k1 (mod m2)
(31)

for n ≤ x. The Chinese remainder theorem (for example, see [22]) reveals that (31) has
a solution

n ≡ l (mod [m1, m2]) (32)

for some l if and only if (m1, m2)|k1. Let

δ(k1; m1, m2) =

{
1, (m1, m2) | k1,
0, (m1, m2) - k1.

From (30) to (32),

S1 = ∑
m1≤y
m2≤y

f1(m1) f2(m2)δ(k1; m1, m2) ∑
n≤x

n≡l (mod [m1,m2])

1. (33)

As for the innermost sum of (33), obviously we obtain

∑
n≤x

n≡l (mod [m1,m2])

1 =
x

[m1, m2]
+ O(1). (34)

From (33) and (34), we have by applying the fact both m1 and m2 are square-full and
by using Lemma 2 that

S1 = x ∑
m1≤y
m2≤y

f1(m1) f2(m2)

[m1, m2]
δ(k1; m1, m2) + O(yxε). (35)

Substituting (28), (29) and (35) into (25), we obtain

S(k1, k2) = x ∑
m1≤y
m2≤y

f1(m1) f2(m2)

[m1, m2]
δ(k1; m1, m2) + O(yxε) + O(x1+εy−1/2)

:= xB(y) + O(x2/3+ε), (36)

for y = x2/3 with

B(y) = ∑
m1≤y
m2≤y

f1(m1) f2(m2)

[m1, m2]
δ(k1; m1, m2)
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Now, we treat the sum B(y). Unfolding variables, we obtain

B(y) = ∑
d2

1d∗1 s1≤y, a(s1)=k1
(d1,s1)=1, d∗1 |s1

∑
d2

2d∗2 s2≤y, a(s2)=k2
(d2,s2)=1, d∗2 |s2

µ(d1)µ(d∗1)µ(d2)µ(d∗2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)

[d2
1d∗1s1, d2

2d∗2s2]

= ∑
d2

1d∗1 s1≤y, a(s1)=k1
(d1,s1)=1, d∗1 |s1

∑
d2

2d∗2 s2≤y, a(s2)=k2
(d2,s2)=1, d∗2 |s2

(d2
1d∗1s1, d2

2d∗2s2)µ(d1)µ(d∗1)µ(d2)µ(d∗2)
d2

1d∗1s1d2
2d∗2s2

× δ(k1; d2
1d∗1s1, d2

2d∗2s2)

= ∑
d∗1 s1≤y, a(s1)=k1

d∗1 |s1

µ(d∗1)
d∗1s1

∑
d∗2 s2≤y, a(s2)=k2

d∗2 |s2

µ(d∗2)
d∗2s2

∑
d1≤

√ y
d∗1 s1

(d1,s1)=1

µ(d1)

d2
1

(37)

× ∑
d2≤

√ y
d∗2 s2

(d2,s2)=1

(d2
1d∗1s1, d2

2d∗2s2)µ(d2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)

d2
2

= B1 + O(B2xε) + O(B3xε),

where

B1 := ∑
d∗1 s1≤y, a(s1)=k1

d∗1 |s1

µ(d∗1)
d∗1s1

∑
d∗2 s2≤y, a(s2)=k2

d∗2 |s2

µ(d∗2)
d∗2s2

∞

∑
d1=1

(d1,s1)=1

µ(d1)

d2
1

×
∞

∑
d2=1

(d2,s2)=1

(d2
1d∗1s1, d2

2d∗2s2)µ(d2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)

d2
2

(38)

B2 := ∑
d∗1 s1≤y, a(s1)=k1

d∗1 |s1

|µ(d∗1)|
d∗1s1

∑
d∗2 s2≤y, a(s2)=k2

d∗2 |s2

|µ(d∗2)|
d∗2s2

∑
d1>

√
y

d∗1 s1

|µ(d1)|
d2

1

∞

∑
d2=1

|µ(d2)|
d2

2

B3 := ∑
d∗1 s1≤y, a(s1)=k1

d∗1 |s1

|µ(d∗1)|
d∗1s1

∑
d∗2 s2≤y, a(s2)=k2

d∗2 |s2

|µ(d∗2)|
d∗2s2

∞

∑
d1=1

|µ(d1)|
d2

1
∑

d2>
√

y
d∗2 s2

|µ(d2)|
d2

2
,

and where in the last sum in B2 and B3, we use the fact (d2
1d∗1s1, d2

2d∗2s2) < xε, which follows
from (d2

1d∗1s1, d2
2d∗2s2) | k1.

Consider the sum B2. From Lemma 2 and partial summation, we deduce that

B2 � ∑
d∗1 s1≤y

1√
d∗1s1
√

y ∑
d∗2 s2≤y

1
d∗2s2

� y−
1
2+ε. (39)

Consider B3. Following the same argument as (39), we obtain

B3 � y−
1
2+ε. (40)

We combine (37), (39) and (40), then

B(y) = B1 + O(y−
1
2−ε). (41)
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On substituting (41) into (36), the result is

S(k1, k2) = xB1 + O(xy−
1
2+ε) + O(x

2
3+ε)

= xB1 + O(x
2
3+ε). (42)

3.2. Proof of Theorem 1

It follows from (21) and (42) that

Q(x) = xQ1(x, y) + O(x2/3+εQ2(x, y)), (43)

where

Q1(x, y) := ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2B1 (44)

Q2(x, y) := ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2.

It is easy to prove
Q2(x, y)� xε. (45)

Hence, it remains to estimate Q1(x, y). Since d∗i si ≤ y (i = 1, 2), it holds that
si ≤ y (i = 1, 2) and ki ≤ W(y) (i = 1, 2), from which and also from (44), Q1(x, y) can be
rewritten as

Q1(x, y) := ∑
k1≤W(y)

∑
k2≤W(y)

k2B1. (46)

Lemma 4. Let y be a natural number, and W(y) = maxn≤y a(n). Denote by y0 the smallest
natural number not exceeding y such that W(y) = a(y0), then

y0 > y1−ε.

Proof. From Lemma 1, we know that for any small positive constant ε > 0, the inequality

(1− 0.1ε)
log 5

4
· log y

log log y
< log W(y) < (1 + 0.1ε)

log 5
4
· log y

log log y

holds for y0 > y1−ε. If y0 ≤ y1−ε, then

log W(y) < (1 + 0.1ε)
log 5

4
log y1−ε

log log y1−ε
= (1− 0.9ε− 0.1ε2)

log 5
4

log y
log log y + log(1− ε)

.

The above two formulas imply that

(1− 0.1ε)
log 5

4
· log y

log log y
< (1− 0.9ε− 0.1ε2)

log 5
4

log y
log log y

.

This is a contradiction if ε > 0 is small enough. So, we have y0 > y1−ε.

Inserting (38) into (44) and expanding the range of k1 and k2 to infinity, we obtain

Q1(x, y) = C1 + O(Σ1) + O(Σ2), (47)
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where

C1 =
∞

∑
k1=1

∞

∑
k2=1

k2

∞

∑
d∗1 s1=1, a(s1)=k1

d∗1 |s1

µ(d∗1)
d∗1s1

∞

∑
d∗2 s2=1, a(s2)=k2

d∗2 |s2

µ(d∗2)
d∗2s2

∞

∑
d1=1

(d1,s1)=1

µ(d1)

d2
1

×
∞

∑
d2=1

(d2,s2)=1

(d2
1d∗1s1, d2

2d∗2s2)µ(d2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)

d2
2

(48)

Σ1 = ∑
k1>W(y)

∞

∑
k2=1

k2 ∑
d∗1 s1>y0

|µ(d∗1)|
d∗1s1

∞

∑
d∗2 s2=1

|µ(d∗2)|
d∗2s2

∞

∑
d1=1

|µ(d1)|
d2

1

∞

∑
d2=1

|µ(d2)|
d2

2
,

Σ2 =
∞

∑
k1=1

∑
k2>W(y)

k2

∞

∑
d∗1 s1=1

|µ(d∗1)|
d∗1s1

∑
d∗2 s2>y0

|µ(d∗2)|
d∗2s2

∞

∑
d1=1

|µ(d1)|
d2

1

∞

∑
d2=1

|µ(d2)|
d2

2
.

We consider Σ1. By using Lemma 4, we have

Σ1 � ∑
k1>W(y)

∞

∑
k2=1

k2 ∑
d∗1 s1>y1−ε

1
d∗1s1

∞

∑
d∗2 s2=1

1
d∗2s2

= ∑
k1>W(y)

∑
d∗1 s1>y1−ε

1
d∗1s1

·
∞

∑
k2=1

k2

∞

∑
d∗2 s2=1

1
d∗2s2

(49)

= Σ11 · Σ12,

say. In view of the well-known upper bound a(n)� nε and recalling that d∗i si (i = 1, 2) is
square-full, by partial summation, we have

Σ12 �
∞

∑
d∗2 s2=1

sε
2

d∗2s2
� 1. (50)

However, we have by applying summation by parts and by using Lemma 2 that

Σ11 � y−
1
2+ε. (51)

Gathering the three estimates above, we arrive at

Σ1 � y−
1
2+ε. (52)

As for Σ2, we repeat the above argument to obtain

Σ2 � y−
1
2+ε. (53)

From (47), (52) and (53), we obtain

Q1(x, y) = C1 + O(y−
1
2+ε), (54)

and by combining (43) and (45), we obtain

Q(x) = C1x + O(xy−
1
2+ε) + O(x2/3+ε)

= C1x + O(x2/3+ε) (55)

on recalling y = x2/3. This completes the proof of Theorem 1.
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4. An Analogue of the Titchmarsh Divisor Problem

Let
P(x) := ∑

p≤x
a(p− 1 + a(p− 1)).

Motivated by the work of [18], we shall study the asymptotic behavior of P(x). As an
analogue of (9), we have the following.

Theorem 2. Let A > 1 be any fixed constant. We have

P(x) = C2 Lix + O
(

x
(log x)A

)
, (56)

where C2 is a constant defined by (75).

Proof. We start from the definition of P(x). Since p − 1 can be uniquely written as
p− 1 = q1s1 such that (q1, s1) = 1, we obtain

P(x) = ∑
k1≤W(x)

∑
q1s1≤x−1, a(s1)=k1, (q1,s1)=1

q1s1+1∈P

a(q1s1 + k1), (57)

where q1 is square-free, s1 is square-full, W(x) := maxp≤x a(p− 1), and P denotes the set
of all primes. Here, the important property that a(n) is an s-function is used. Using the fact
that q1s1 + k1 can be uniquely written as q1s1 + k1 = q2s2 such that (q2, s2) = 1, we obtain

P(x) = ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2 ∑
q1s1≤x−1, a(s1)=k1, (q1,s1)=1, q1s1+1∈P
q1s1+k1=q2s2, a(s2)=k2, (q2,s2)=1

1, (58)

where q2 is square-free and s2 is square-full.
It suffices to consider the innermost sum of (58). For convenience, we abbreviate it as

T(k1, k2). By (22), we have

T(k1, k2) = ∑
q1s1≤x−1, a(s1)=k1, (q1,s1)=1

q1s1+1∈P

1 ∑
q1s1+k1=q2s2, a(s2)=k2, (q2,s2)=1

1

= ∑
d2

1n1s1≤x−1, a(s1)=k1
(d1,s1)=(n1,s1)=1, d2

1n1s1+1∈P

µ(d1) ∑
d2

1n1s1+k1=d2
2n2s2, a(s2)=k2

(d2,s2)=(n2,s2)=1

µ(d2) (59)

= ∑
d2

1d∗1 n∗1 s1≤x−1, a(s1)=k1
(d1,s1)=1, d∗1 |s1, d2

1d∗1 n∗1 s1+1∈P

µ(d1) µ(d∗1) ∑
d2

1d∗1 n∗1 s1+k1=d2
2d∗2 n∗2 s2, a(s2)=k2

(d2,s2)=1, d∗2 |s2

µ(d2) µ(d∗2).

There holds that

T(k1, k2) = ∑
m1n∗1≤x−1

m1n∗1+1∈P

f1(m1) ∑
m1n∗1+k1=m2n∗2

f2(m2). (60)

where f1(m1) and f2(m2) were defined by (23) and (24), respectively.
Suppose xε � z� x is a parameter to be determined later. We can write T(k1, k2) as

T(k1, k2) = T1 + T2 + T3 + T4, (61)
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where

T1 = ∑
m1≤z, m2≤z, m1n∗1≤x−1

m1n∗1+1∈P , m1n∗1+k1=m2n∗2

f1(m1) f2(m2),

T2 = ∑
z<m1≤

x−1
n∗1

, m2≤z

m1n∗1+1∈P , m1n∗1+k1=m2n∗2

f1(m1) f2(m2),

T3 = ∑
m1≤z, z<m2≤

x−1+k1
n∗2

, m1n∗1≤x−1

m1n∗1+1∈P , m1n∗1+k1=m2n∗2

f1(m1) f2(m2),

T4 = ∑
z<m1≤

x−1
n∗1

, z<m2≤
x−1+k1

n∗2
m1n∗1+1∈P , m1n∗1+k1=m2n∗2

f1(m1) f2(m2).

By the same arguments as (28), we have

Ti �
x1+ε

z1/2 (i = 2, 3, 4). (62)

From (61) and (62), we obtain

T(k1, k2) = T1 + O
(

x1+ε

z1/2

)
. (63)

Now, we evaluate the sum T1. We have

T1 = ∑
m1≤z
m2≤z

f1(m1) f2(m2) ∑
m1n∗1≤x−1, m1n∗1+1∈P

m1n∗1+k1=m2n∗2

1. (64)

Note that the innermost sum in (64) is equal to the number of solutions of the following
congruence equations {

p− 1 ≡ 0 (mod m1)

p− 1 ≡ −k1 (mod m2)
(65)

for p ≤ x. By the Chinese remainder theorem, (65) has a solution

p ≡ t (mod [m1, m2]) (66)

for some t satisfying (t, [m1, m2]) = 1 if and only if (m1, m2)|k1. Let

δ(k1; m1, m2) =

{
1, (m1, m2) | k1

0, (m1, m2) - k1.

and

λ(t; m1, m2) =

{
1, (t, [m1, m2]) = 1
0, (t, [m1, m2]) 6= 1.
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Whence by (64)–(66) and (11), we have

T1 = ∑
m1≤z
m2≤z

f1(m1) f2(m2)δ(k1; m1, m2)λ(t; m1, m2) ∑
p≤x

p≡t (mod [m1,m2])

1

= ∑
m1≤z
m2≤z

f1(m1) f2(m2)δ(k1; m1, m2)λ(t; m1, m2)π(x; [m1, m2], t)

= ∑
m1≤z
m2≤z

f1(m1) f2(m2)δ(k1; m1, m2)λ(t; m1, m2)
Lix

ϕ([m1, m2])
(67)

+ ∑
m1≤z
m2≤z

f1(m1) f2(m2)δ(k1; m1, m2) λ(t; m1, m2) E(x; [m1, m2], t)

:= T11 + T12,

say.
First, we consider the contribution of T11. We can write

T11 = Lix× G(z), (68)

where

G(z) = ∑
m1≤z
m2≤z

f1(m1) f2(m2)

ϕ([m1, m2])
δ(k1; m1, m2)λ(t; m1, m2). (69)

Using the familiar bound ϕ(q) � q
log q for any q > 0, we compare (69) and (37)

to obtain
G(z) = G1 + O(G2xε) + O(G3xε), (70)

where

G1 := ∑
d∗1 s1≤z, a(s1)=k1

d∗1 |s1,d2
1d∗1 s1n∗1+1∈P

µ(d∗1) ∑
d∗2 s2≤z, a(s2)=k2

d∗2 |s2

µ(d∗2)
∞

∑
d1=1

(d1,s1)=1

µ(d1)
∞

∑
d2=1

(d2,s2)=1

µ(d2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)

ϕ([d2
1d∗1s1, d2

2d∗2s2])

G2 := ∑
d∗1 s1≤z, a(s1)=k1

d∗1 |s1,d2
1d∗1 s1n∗1+1∈P

|µ(d∗1)|
d∗1s1

∑
d∗2 s2≤z, a(s2)=k2

d∗2 |s2

|µ(d∗2)|
d∗2s2

∑
d1>

√ z
d∗1 s1

|µ(d1)|
d2

1

∞

∑
d2=1

|µ(d2)|
d2

2
, (71)

G3 := ∑
d∗1 s1≤z, a(s1)=k1

d∗1 |s1,d2
1d∗1 s1n∗1+1∈P

|µ(d∗1)|
d∗1s1

∑
d∗2 s2≤z, a(s2)=k2

d∗2 |s2

|µ(d∗2)|
d∗2s2

∞

∑
d1=1

|µ(d1)|
d2

1
∑

d2>
√ z

d∗2 s2

|µ(d2)|
d2

2
.

We now have the following result by applying the same arguments as (39) and (40)

Gi � z−1/2+ε (i = 2, 3). (72)

Combining (68), (70) and (72),

T11 = Lix× G1 + O(xz−1/2+ε). (73)

From (58), (63), (67) and (73), we see that the contribution of T11 to P(x) is

= Lix ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2 G1 + O(xz−1/2+ε).
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Note that the sum ∑k1≤W(x) ∑k2≤W(x+W(x)) k2 G1 can be treated similarly to xQ1(x, y)
in Section 3 (see (47)–(54)). So, we obtain that the contribution of T11 to P(x) is

= C2Lix + O(xz−1/2+ε), (74)

which absorbed the effects of Ti (i = 2, 3, 4) and

C2 =
∞

∑
k1=1

∞

∑
k2=1

k2

∞

∑
d∗1 s1=1, a(s1)=k1

d∗1 |s1,d2
1d∗1 s1n∗1+1∈P

µ(d∗1)
∞

∑
d∗2 s2=1, a(s2)=k2

d∗2 |s2

µ(d∗2)
∞

∑
d1=1

(d1,s1)=1

µ(d1) (75)

×
∞

∑
d2=1

(d2,s2)=1

µ(d2)δ(k1; d2
1d∗1s1, d2

2d∗2s2)λ(t; d2
1d∗1s1, d2

2d∗2s2)

ϕ([d2
1d∗1s1, d2

2d∗2s2])
.

Now, we study the contribution of T12. Let z = x1/5 and let m = [m1, m2]. It is easy to
see that m ≤ z2 = x2/5 and

| f1(m1)| ≤ d3(m1) ≤ d2(m1) ≤ d2(m), | f2(m2)| ≤ d3(m2) ≤ d2(m2) ≤ d2(m).

So, by Lemma 3, we have

| ∑
k1≤W(x)

∑
k2≤W(x+W(x))

k2T12|

≤ ∑
[m1,m2]≤z2

d3(m1)d3(m2)a(m2)max
y≤x

max
(t,[m1,m2])=1

|E(y; [m1, m2], t)| (76)

≤ ∑
m≤x2/5

d4(m)a(m)max
y≤x

max
(t,m)=1

|E(y; m, t)|

≤ x(log x)−A,

where A > 1 is any fixed number. Now, Theorem 2 follows from (61), (67), (74) and (76).

5. Conclusions

In this paper, we established a symmetric form of the average value with regard to
the non-isomorphic abelian groups based on the arithmetic structure of natural numbers.
In addition, we studied an analogue of the Titchmarsh divisor problem for the symmetric
form of a(n) with the help of the modified Bombieri–Vinogradov theorem. We can easily
generalize the results obtained for a(n) to a class of functions that are “prime-independent”.
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