An Efficient Technique to Solve Time-Fractional Kawahara and Modified Kawahara Equations
Abstract
:1. Introduction
2. Basic Definitions
3. Basic Idea of NTDM
4. Convergence Analysis
5. Solutions for TFKE and TFMKE
6. Numerical Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaya, D.; Al-Khaled, K. A numerical comparison of a Kawahara equation. Phys. Lett. A 2007, 5–6, 433–439. [Google Scholar] [CrossRef]
- Lu, J. Analytical approach to Kawahara equation using variational iteration method and homotopy perturbation method. Topol. Methods Nonlinear Anal. 2008, 2, 287–293. [Google Scholar]
- Kudryashov, N.A. A note on new exact solutions for the Kawahara equation using Exp-function method. J. Comput. Appl. Math. 2010, 12, 3511–3512. [Google Scholar] [CrossRef]
- Kawahara, T. Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 1972, 1, 260–264. [Google Scholar] [CrossRef]
- Jakub, V. Symmetries and conservation laws for a generalization of Kawahara equation. J. Geom. Phys. 2020, 150, 103579. [Google Scholar]
- Jin, L. Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation. Math. Comput. Model Dyn. Syst. 2009, 3–4, 573–578. [Google Scholar] [CrossRef]
- Jabbari, A.; Kheiri, H. New exact traveling wave solutions for the Kawahara and modified Kawahara equations by using modified tanh-coth method. Acta Univ. Apulensis Math. Inform. 2010, 23, 21–38. [Google Scholar]
- Wazwaz, A.M. New solitary wave solutions to the modified Kawahara equation. Phys. Lett. A 2010, 4–5, 588–592. [Google Scholar] [CrossRef]
- Kurulay, M. Approximate analytic solutions of the modified Kawahara equation with homotopy analysis method. Adv. Differ. Equ. 2012, 2012, 178. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Liu, P.; Din, A.; Zarin, R. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 2022, 39, 105757. [Google Scholar] [CrossRef]
- Wu, P.; Din, A.; Munir, T.; Malik, M.Y.; Alqahtani, A.S. Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with cell-to-cell transmission. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Dhaigude, D.B.; Bhadgaonkar, V.N. A novel approach for fractional Kawahara and modified Kawahara equations using Atangana-Baleanu derivative operator. J. Math. Comput. Sci. 2021, 3, 2792–2813. [Google Scholar]
- Gaul, L.; Klein, P.; Kemple, S. Damping description involving fractional operators. Mech. Syst. Signal. Process. 1991, 2, 81–88. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Mainardi, F.; Vaz, J. Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 2014, 9, 2049–2060. [Google Scholar] [CrossRef]
- Figueiredo Camargo, R.; Capelas de Oliveira, E.; Vaz, J., Jr. On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J. Math. Phys. 2009, 12, 123518. [Google Scholar] [CrossRef]
- Langlands, T.A.M.; Henry, B.I.; Wearne, S.L. Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions. J. Math. Biol. 2009, 6, 761–808. [Google Scholar] [CrossRef]
- Abbasbandy, S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 2006, 1, 109–113. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method–a kind of non-linear analytical technique: Some examples. Int. J. Non Linear Mech. 1999, 4, 699–708. [Google Scholar] [CrossRef]
- Sontakke, B.R.; Shelke, A.S.; Shaikh, A.S. Solution of non-linear fractional differential equations by variational iteration method and applications. Far East J. Math. Sci. 2019, 1, 113–129. [Google Scholar] [CrossRef]
- Dhaigude, D.B.; Kiwne, S.B.; Dhaigude, R.M. Monotone iterative scheme for weakly coupled system of finite difference reaction-diffusion equations. Commun. Appl. Anal. 2008, 2, 161. [Google Scholar]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 3–4, 257–262. [Google Scholar] [CrossRef]
- Inc, M.; Akgül, A.; Kiliçman, A. Explicit solution of telegraph equation based on reproducing kernel method. J. Funct. Spaces. Appl. 2012, 2012, 984682. [Google Scholar] [CrossRef]
- Boutarfa, B.; Akgül, A.; Inc, M. New approach for the Fornberg–Whitham type equations. J. Comput. Appl. Math. 2017, 312, 13–26. [Google Scholar] [CrossRef]
- Akgül, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solit. Fractals. 2018, 114, 478–482. [Google Scholar] [CrossRef]
- Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with 2αth-order of convergence and its stability. Appl. Math. Lett. 2019, 98, 344–351. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Iqbal, M.; Lu, D. Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Phys. Stat. Mech. Appl. 2020, 544, 123560. [Google Scholar] [CrossRef]
- Shah, K.; Seadawy, A.R.; Arfan, M. Evaluation of one dimensional fuzzy fractional partial differential equations. Alex. Eng. J. 2020, 59, 3347–3353. [Google Scholar] [CrossRef]
- Rahman, M.U.; Arfan, M.; Shah, Z.; Alzahrani, E. Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives. Phys. Scr. 2021, 96, 115203. [Google Scholar] [CrossRef]
- Kiliç, S.Ş.Ş.; Çelik, E. Complex solutions to the higher-order nonlinear boussinesq type wave equation transform. Ric. Mat. 2022. [Google Scholar] [CrossRef]
- Yazgan, T.; Ilhan, E.; Çelik, E.; Bulut, H. On the new hyperbolic wave solutions to Wu-Zhang system models. Opt. Quantum Electron. 2022, 54, 298. [Google Scholar] [CrossRef]
- Tazgan, T.; Çelik, E.; Gülnur, Y.E.L.; Bulut, H. On Survey of the Some Wave Solutions of the Non-Linear Schrödinger Equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. 2022. [Google Scholar] [CrossRef]
- Rahman, M.U.; Arfan, M.; Deebani, W.; Kumam, P.; Shah, Z. Analysis of time-fractional Kawahara equation under Mittag-Leffler Power Law. Fractals 2022, 30, 2240021. [Google Scholar] [CrossRef]
- Zafar, H.; Ali, A.; Khan, K.; Sadiq, M.N. Analytical Solution of Time Fractional Kawahara and Modified Kawahara Equations by Homotopy Analysis Method. Int. J. Appl. Math. Comput. Sci. 2022, 8, 94. [Google Scholar] [CrossRef]
- Sontakke, B.R.; Shaikh, A. Approximate solutions of time fractional Kawahara and modified Kawahara equations by fractional complex transform. Commun. Numer. Anal. 2016, 2, 218–229. [Google Scholar] [CrossRef]
- Culha Ünal, S. Approximate Solutions of Time Fractional Kawahara Equation by Utilizing the Residual Power Series Method. Int. J. Appl. Math. Comput. Sci. 2022, 8, 78. [Google Scholar] [CrossRef]
- Mahmood, B.A.; Yousif, M.A. A novel analytical solution for the modified Kawahara equation using the residual power series method. Nonlinear Dyn. 2017, 89, 1233–1238. [Google Scholar] [CrossRef]
- Rawashdeh, M.S.; Maitama, S. Solving coupled system of nonlinear PDE’s using the natural decomposition method. Int. J. Pure Appl. Math. 2014, 5, 757–776. [Google Scholar] [CrossRef]
- Eltayeb, H.; Abdalla, Y.T.; Bachar, I.; Khabir, M.H. Fractional telegraph equation and its solution by natural transform decomposition method. Symmetry 2019, 3, 334. [Google Scholar] [CrossRef]
- Alrawashdeh, M.S.; Migdady, S. On finding exact and approximate solutions to fractional systems of ordinary differential equations using fractional natural adomian decomposition method. J. Algorithm Comput. Technol. 2022, 16. [Google Scholar] [CrossRef]
- Kanth, A.R.; Aruna, K.; Raghavendar, K.; Rezazadeh, H.; Inc, M. Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative Shehu transform method. J. Ocean Eng. Sci 2021. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Agarwal, R.P.; Shah, R.; Botmart, T. Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators. Mathematics 2021, 18, 2326. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel simulations to the time-fractional Fisher’s equation. Math. Sci. 2019, 1, 33–42. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Shah, R.; Khan, A. A Comparative Analysis of Fractional-Order Kaup-Kupershmidt Equation within Different Operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Saad Alshehry, A.; Imran, M.; Khan, A.; Shah, R.; Weera, W. Fractional View Analysis of Kuramoto-Sivashinsky Equations with Non-Singular Kernel Operators. Symmetry 2022, 14, 1463. [Google Scholar] [CrossRef]
- Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 2, 87–92. [Google Scholar]
- Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solit. Fractals 2016, 89, 447–454. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Silambarasan, R. Advances in the natural transform. AIP Conf. Proc. 2012, 1493, 106–110. [Google Scholar]
- Khan, Z.H.; Khan, W.A. N-transform properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
- Loonker, D.; Banerji, P.K. Solution of fractional ordinary differential equations by natural transform. Int. J. Math. Eng. Sci. 2013, 2, 1–7. [Google Scholar]
- Khalouta, A.; Kadem, A. A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense. J. Appl. Math. Comput. Mech. 2020, 1, 43–56. [Google Scholar] [CrossRef]
- Ravi Kanth, A.S.V.; Aruna, K.; Raghavendar, K. Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives. Math. Meth. Appl. Sci. 2021, 44, 14025–14040. [Google Scholar]
NTDM | NTDM | NTDM | RPSM [40] | |
0.0 | 0 | 0 | 0 | 0 |
0.1 | 1.41553 | 1.41553 | 1.41553 | 1.41553 |
0.2 | 4.68063 | 4.68063 | 4.68063 | 4.68063 |
0.3 | 3.6391 | 3.6391 | 3.6391 | 3.6391 |
0.4 | 1.56886 | 1.56886 | 1.56886 | 1.56886 |
0.5 | 4.89617 | 4.89617 | 4.89617 | 4.89617 |
0.6 | 1.24542 | 1.24542 | 1.24542 | 1.24542 |
0.7 | 2.75069 | 2.75069 | 2.75069 | 2.75069 |
0.8 | 5.47829 | 5.47829 | 5.47829 | 5.47829 |
0.9 | 1.0081 | 1.0081 | 1.0081 | 1.0081 |
1.0 | 1.7428 | 1.7428 | 1.7428 | 1.7428 |
NTDM | NTDM | NTDM | RPSM [40] | |
0.0 | 3.04206 | 3.29806 | 3.29806 | 3.04206 |
0.1 | 3.25021 | 3.30723 | 3.35567 | 3.25033 |
0.2 | 3.29225 | 3.31643 | 3.36675 | 3.29247 |
0.3 | 3.32093 | 3.32564 | 3.37421 | 3.32123 |
0.4 | 3.34339 | 3.33488 | 3.38000 | 3.34378 |
0.5 | 3.36214 | 3.34414 | 3.38480 | 3.3626 |
0.6 | 3.37839 | 3.35342 | 3.38893 | 3.37893 |
0.8 | 3.40585 | 3.37206 | 3.39586 | 3.40655 |
0.9 | 3.41778 | 3.38141 | 3.39885 | 3.41855 |
1.0 | 3.42882 | 3.39078 | 3.40160 | 3.42966 |
0.0 | 3.04206 | 3.20859 | 3.20859 | 3.04206 |
0.1 | 3.15837 | 3.22610 | 3.27177 | 3.15838 |
0.2 | 3.20842 | 3.24370 | 3.29844 | 3.20845 |
0.3 | 3.24759 | 3.26138 | 3.31911 | 3.24765 |
0.4 | 3.28114 | 3.27915 | 3.33667 | 3.28122 |
0.5 | 3.31109 | 3.29700 | 3.35224 | 3.31122 |
0.6 | 3.33850 | 3.31495 | 3.36641 | 3.33867 |
0.7 | 3.36398 | 3.33297 | 3.37950 | 3.36421 |
0.8 | 3.38794 | 3.35109 | 3.39175 | 3.38822 |
0.9 | 3.41066 | 3.36929 | 3.40331 | 3.41099 |
1.0 | 3.43233 | 3.38757 | 3.41429 | 3.43273 |
0.0 | 3.04206 | 3.12331 | 3.12331 | 3.04206 |
0.1 | 3.10417 | 3.14837 | 3.17206 | 3.10417 |
0.2 | 3.14737 | 3.17362 | 3.20580 | 3.14737 |
0.3 | 3.18582 | 3.19905 | 3.23572 | 3.18583 |
0.4 | 3.22162 | 3.22466 | 3.26348 | 3.22163 |
0.5 | 3.25565 | 3.25047 | 3.28978 | 3.25567 |
0.6 | 3.28839 | 3.27645 | 3.31501 | 3.28842 |
0.7 | 3.32014 | 3.30263 | 3.33941 | 3.32019 |
0.8 | 3.35111 | 3.32900 | 3.36315 | 3.35117 |
0.9 | 3.38144 | 3.35556 | 3.38633 | 3.38153 |
1.0 | 3.41124 | 3.38231 | 3.40906 | 3.41135 |
0.0 | 3.04206 | 3.04206 | 3.04206 | 3.04206 |
0.1 | 3.07393 | 3.07393 | 3.07393 | 3.07393 |
0.2 | 3.10612 | 3.10612 | 3.10612 | 3.10612 |
0.3 | 3.13861 | 3.13861 | 3.13861 | 3.13861 |
0.4 | 3.17143 | 3.17143 | 3.17143 | 3.17143 |
0.5 | 3.20455 | 3.20455 | 3.20455 | 3.20455 |
0.6 | 3.23800 | 3.23800 | 3.23800 | 3.23800 |
0.7 | 3.27178 | 3.27178 | 3.27178 | 3.27178 |
0.8 | 3.30588 | 3.30588 | 3.30588 | 3.30588 |
0.9 | 3.34030 | 3.34030 | 3.34030 | 3.34030 |
1.0 | 3.37506 | 3.37506 | 3.37506 | 3.37506 |
NTDM | NTDM | NTDM | HAM [38] | ||
−20 | 0.0 | 9.2996 | 9.2996 | 9.2996 | 9.299 |
0.2 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.4 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.6 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.8 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
1.0 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
−10 | 0.0 | 9.4396 | 9.4396 | 9.4396 | 9.439 |
0.2 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.4 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.6 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.8 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
1.0 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0 | 0.0 | 9.4868 | 9.4868 | 9.4868 | 9.486 |
0.2 | 9.4868 | 9.4868 | 9.4868 | 9.486 | |
0.4 | 9.4868 | 9.4868 | 9.4868 | 9.486 | |
0.6 | 9.4868 | 9.4868 | 9.4868 | 9.486 | |
0.8 | 9.4868 | 9.4868 | 9.4868 | 9.486 | |
1.0 | 9.4868 | 9.4868 | 9.4868 | 9.486 | |
10 | 0.0 | 9.4396 | 9.4396 | 9.4396 | 9.439 |
0.2 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.4 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.6 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
0.8 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
1.0 | 9.4396 | 9.4396 | 9.4396 | 9.439 | |
20 | 0.0 | 9.2996 | 9.2996 | 9.2996 | 9.299 |
0.2 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.4 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.6 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
0.8 | 9.2996 | 9.2996 | 9.2996 | 9.299 | |
1.0 | 9.2996 | 9.2996 | 9.2996 | 9.299 |
NTDM | NTDM | NTDM | NTDM | NTDM | NTDM | NTDM | NTDM | NTDM | ||
---|---|---|---|---|---|---|---|---|---|---|
−20 | 0.0 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 |
0.2 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.4 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.6 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.8 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
1.0 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
−10 | 0.0 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 |
0.2 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.4 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.6 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.8 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
1.0 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0 | 0.0 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 |
0.2 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | |
0.4 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | |
0.6 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | |
0.8 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | |
1.0 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | 9.4868 | |
10 | 0.0 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 |
0.2 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.4 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.6 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
0.8 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
1.0 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | 9.4396 | |
20 | 0.0 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 |
0.2 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.4 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.6 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
0.8 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | |
1.0 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 | 9.2996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koppala, P.; Kondooru, R. An Efficient Technique to Solve Time-Fractional Kawahara and Modified Kawahara Equations. Symmetry 2022, 14, 1777. https://doi.org/10.3390/sym14091777
Koppala P, Kondooru R. An Efficient Technique to Solve Time-Fractional Kawahara and Modified Kawahara Equations. Symmetry. 2022; 14(9):1777. https://doi.org/10.3390/sym14091777
Chicago/Turabian StyleKoppala, Pavani, and Raghavendar Kondooru. 2022. "An Efficient Technique to Solve Time-Fractional Kawahara and Modified Kawahara Equations" Symmetry 14, no. 9: 1777. https://doi.org/10.3390/sym14091777
APA StyleKoppala, P., & Kondooru, R. (2022). An Efficient Technique to Solve Time-Fractional Kawahara and Modified Kawahara Equations. Symmetry, 14(9), 1777. https://doi.org/10.3390/sym14091777