

Article **Fuzzy Control Problem via Random Multi-Valued Equations in Symmetric F-***n***-NLS**

Reza Saadati 1,[*](https://orcid.org/0000-0002-6770-6951) , Tofigh Allahviranloo ² [,](https://orcid.org/0000-0002-6673-3560) Donal O'Regan [3](https://orcid.org/0000-0002-4096-1469) and Fehaid Salem Alshammari [4](https://orcid.org/0000-0002-3110-414X)

- 1 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran 2 Fernitra of Engineering and Mathematic Islamics University Islamics University 14710. Tembers
- ² Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34710, Turkey
- ³ School of Mathematical and Statistical Sciences, National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
- ⁴ Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
- ***** Correspondence: rsaadati@eml.cc

Abstract: To study an uncertain case of a control problem, we consider the symmetric F-*n*-NLS which is induced by a dynamic norm inspired by a random norm, distribution functions, and fuzzy sets. In this space, we consider a random multi-valued equation containing a parameter and investigate existence, and unbounded continuity of the solution set of it. As an application of our results, we consider a control problem with multi-point boundary conditions and a second order derivative operator.

Keywords: random multi-valued operator; random multi-valued equation; fuzzy control problem

MSC: 47C10

Citation: Saadati, R.; Allahviranloo, T.; O'Regan, D.; Alshammari, F.S. Fuzzy Control Problem via Random Multi-Valued Equations in Symmetric F-*n*-NLS. *Symmetry* **2022**, *14*, 1778. [https://doi.org/10.3390/](https://doi.org/10.3390/sym14091778) [sym14091778](https://doi.org/10.3390/sym14091778)

Academic Editor: Ioan Rașa

Received: 30 July 2022 Accepted: 23 August 2022 Published: 26 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$

1. Introduction

Consider the random operator *Q*1. A natural generalization of parametric random equations of the form $α = Q_1(λ, γ, α)$, in which $λ$ is a element of a probability measure space, is the multi-valued form [\[1\]](#page-9-0),

$$
\alpha \in Q_1(\lambda, \gamma, \alpha). \tag{1}
$$

In regards to solutions, there are many approaches available in the literature, for example the principal eigenvalue-eigenvector method, the monotone minorant method [\[2,](#page-9-1)[3\]](#page-9-2) and topological degree. The idea in this paper is to use the topological degree for random multi-valued mappings and the method of evaluating solutions. The main idea is presenting an uncertain case of a control problem. To achieve this aim, we use a special space, i.e., symmetric F-*n*-NLS, that has a dynamic situation and a parameter *τ*, which can be time, which enable us to consider different cases. We note this kind of space induced by a dynamic norm which is inspired by random norms, probabilistic distances and fuzzy norms was studied; see [\[4\]](#page-9-3) for details and applications. Our results can be applied in uncertainty problems, risk measures and super-hedging in finance [\[5\]](#page-9-4).

For the random multi-valued operator Q_1 , the following sets

$$
\mathbf{U} = \{(\gamma, \alpha) : \alpha \in Q_1(\lambda, \gamma, \alpha)\},\tag{2}
$$

$$
\mathbf{U} = \{ \alpha : \exists \gamma, \alpha \in Q_1(\lambda, \gamma, \alpha) \}.
$$
 (3)

are solutions of [\(1\)](#page-0-0). In this paper, we consider a control problem with multi-point boundary conditions and a second order derivative operator as

or

$$
\begin{cases}\n\varphi''(\lambda,\iota) + \nu(\gamma,\iota)\mu(\varphi(\lambda,\iota)) = 0, \, \iota \in (0,1), \\
\nu(\gamma,\iota) \in Q_1(\lambda,\gamma,\varphi(\lambda,\iota)) \text{ a.e. on } [0,1] \\
\varphi(\lambda,0) = 0, \varphi(\lambda,1) = \sum_{p=1}^{n} \omega_p \varphi(\lambda,\varsigma_p).\n\end{cases}
$$
\n(4)

where $\zeta_p \in (0,1)$, $0 \leq \omega_p$, $\sum_{p=1}^n \omega_p \zeta_p < 1$ and $\lambda \in F$. In Section [2,](#page-1-0) we introduce our special space, i.e., symmetric F-*n*-NLS and present some basic results which we need in the main section. In Section [3,](#page-4-0) we prove some properties of random multi-valued operator. In Section [4,](#page-6-0) we present an application of our results for a fuzzy control problem.

2. Preliminaries

Here, we let $E_1 = [0, 1]$, $E_2 = (0, 1]$, $E_3 = [0, \infty]$ and $E_4 = [0, \infty]$. A mapping δ : $\mathbb{R} \to E_1$, whose ϵ -level set is denoted by

$$
[\delta]_{\epsilon} = \{ \iota : \delta(\iota) \geq \epsilon \},
$$

is said to be a fuzzy real number if it satisfies the following:

- (i) *δ* is normal, i.e., there exists $\iota_0 \in \mathbb{R}$ such that $\delta(\iota_0) = 1$;
- (ii) δ is upper semicontinuous;
- (iii) δ is fuzzy convex, i.e., $\delta(\iota) \ge \min(\delta(\kappa), \delta(s))$, for each $\iota, \kappa \in \mathbb{R}$ such that $\kappa \le \iota \le s$ and $e \in E_2$;
- (iv) For each $\epsilon \in E_2$, $[\delta]_\epsilon = [\delta_\epsilon^-, \delta_\epsilon^+]$, where $-\infty < \delta_\epsilon^- \leq \delta_\epsilon^+ < +\infty$ and $[\delta]^0 =$ $\overline{\{\delta \in \mathbb{R} : \delta(i) > 0\}}$ is compact.

Let the set $\mathbb F$ contain all upper semicontinuous normal convex fuzzy real numbers. $\mathbb F^+$ contains all non-negative fuzzy real numbers of F. For each *κ* ∈ R, we can define

$$
\overline{\kappa}(\iota) = \begin{cases} 1, & \text{if } \iota = \kappa, \\ 0, & \text{if } \iota \neq \kappa, \end{cases}
$$

so $\overline{\kappa} \in \mathbb{F}$ and \mathbb{R} can be embedded in \mathbb{F} .

A partial order \leq in \mathbb{F} is defined as follows: $\delta \leq \sigma$ iff for each $\epsilon \in E_2$, $\delta_{\epsilon}^- \leq \sigma_{\epsilon}^-$ and $\delta_{\epsilon}^+ \leq \sigma_{\epsilon}^+$ where $[\delta]_{\epsilon} = [\delta_{\epsilon}^-,\delta_{\epsilon}^+]$ and $[\sigma]_{\epsilon} = [\sigma_{\epsilon}^-,\sigma_{\epsilon}^+]$. The strict inequality in F is defined by $\delta \prec \sigma$ iff for each $\epsilon \in E_2$, $\delta_{\epsilon}^- < \sigma_{\epsilon}^-$ and $\delta_{\epsilon}^+ < \sigma_{\epsilon}^+$ (see [\[6](#page-9-5)[–8\]](#page-9-6)).

The arithmetic operations \oplus , \ominus , \odot and \oslash on $\mathbb{F} \times \mathbb{F}$ are defined by

$$
(\delta \oplus \sigma)(\iota) = \sup_{\kappa \in \mathbb{R}} \min(\delta(\kappa), \sigma(\iota - \kappa)), \, \iota \in \mathbb{R},
$$

$$
(\delta \ominus \sigma)(\iota) = \sup_{\kappa \in \mathbb{R}} \min(\delta(\kappa), \sigma(\kappa - \iota)), \, \iota \in \mathbb{R},
$$

$$
(\delta \odot \sigma)(\iota) = \sup_{0 \neq \kappa \in \mathbb{R}} \min(\delta(\kappa), \sigma(\frac{\iota}{\kappa})), \, \iota \in \mathbb{R},
$$

$$
(\delta \oslash \sigma)(\iota) = \sup_{\kappa \in \mathbb{R}} \min(\delta(\kappa \iota), \sigma(\kappa)), \, \iota \in \mathbb{R}, \, \delta, \sigma(\succ 0) \in \mathbb{F}.
$$

Definition 1. Let \Im be a real linear space over $\mathbb R$ with dim $\Im \geq n$. Suppose $\|\bullet, \ldots, \bullet\| : \Im^n \to \mathbb F^+$ is a mapping and L, $R: E_1{}^2 \rightarrow E_1$ are symmetric, nondecreasing mapping satisfying

$$
L(0,0) = 0
$$
 and $R(1,1) = 1$.

Write

$$
[\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|]_\epsilon=[\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|_\epsilon^-,\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|_\epsilon^+],
$$

for $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in U$, $\epsilon \in E_2$ *and suppose that for every linearly independent vectors* $\vartheta_1, \vartheta_2, \ldots, \vartheta_n$ $\epsilon \in \mathcal{C}$ *f*, there exists $\epsilon_0 \in E_2$ independent of $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \mathcal{C}$ such that for each $\epsilon \leq \epsilon_0$ *, one has*

$$
\inf \|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|_{\epsilon}^->0, \quad \|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|_{\epsilon}^+<\infty.
$$

The quadruple $(\mho^n, \|\bullet, \ldots, \bullet\|, L, R)$ *is said to be a symmetric fuzzy n-normed linear space (F-n-NLS) in the sense of Felbin [\[8\]](#page-9-6) and* $\|\bullet, \ldots, \bullet\|$ *is a fuzzy n-norm if*

- (N1) $\|\theta_1, \theta_2, \dots, \theta_n\| = \overline{0}$ *iff* $\theta_1, \theta_2, \dots, \theta_n$ are linearly dependent;
- (N2) $\|\vartheta_1, \vartheta_2, \ldots, \vartheta_n\|$ *is invariant under any permutation of* $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \mathcal{O}$ *;*
- (N3) $\Vert c\vartheta_1, \vartheta_2, \ldots, \vartheta_n \Vert = |c| \odot \Vert \vartheta_1, \vartheta_2, \ldots, \vartheta_n \Vert$ for any $c \in \mathbb{R}$;
- $(\mathbf{N4}) \|\mathbf{\vartheta}_0 + \mathbf{\vartheta}_1, \mathbf{\vartheta}_2, \dots, \mathbf{\vartheta}_n\| \preceq \|\mathbf{\vartheta}_0, \mathbf{\vartheta}_2, \dots, \mathbf{\vartheta}_n\| \oplus \|\mathbf{\vartheta}_1, \mathbf{\vartheta}_2, \dots, \mathbf{\vartheta}_n\|;$
- (i) *whenever* $\kappa \leq ||\vartheta_0, \vartheta_2, \ldots, \vartheta_n||_1^ \frac{1}{1}, \iota \leq ||\vartheta_1, \vartheta_2, \ldots, \vartheta_n||_1^{-}$ \int_{1}^{π} and $\iota + \kappa \leq ||\vartheta_{0} + \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}||_{1}^{\pi}$ $\frac{1}{1}$,

$$
\|\vartheta_0+\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|(x+\iota)\geq L(\|\vartheta_0,\vartheta_2,\ldots,\vartheta_n\|(x),\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|(t)),
$$

(ii) *whenever* $\kappa \geq ||\vartheta_0, \vartheta_2, \ldots, \vartheta_n||_1^{-1}$ $\frac{1}{1}, \iota \geq ||\vartheta_1, \vartheta_2, \ldots, \vartheta_n||_1^{-}$ \int_1^{π} and $\iota + \kappa \geq ||\vartheta_0 + \vartheta_1, \vartheta_2, \ldots, \vartheta_n||_1^{\pi}$ $\frac{1}{1}$,

$$
\|\vartheta_0+\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|(\kappa+\iota)\leq R(\|\vartheta_0,\vartheta_2,\ldots,\vartheta_n\|(\kappa),\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|(\iota)).
$$

Now, we consider a symmetric F-*n*-NLS in the sense of Narayanan-Vijayabalaji [\[9\]](#page-9-7) and next we show a relationship between them.

Definition 2 ([\[9\]](#page-9-7)). *Assume that U is a linear space and* ∗ *is a continuous <i>t-norm.* Let the fuzzy *subset η of* $\mathbb{S}^n \times \mathbb{R}$ *with dim* $\mathbb{S} \geq n$ *satisfy*

(FN1) For all $τ ∈ ℝ with τ ≤ 0, η(θ₁, θ₂, …, θₙ, τ) = 0;$ (FN2) For all $\tau \in \mathbb{R}$ with $\tau > 0$, $\eta(\vartheta_1, \vartheta_2, ..., \vartheta_n, \tau) = 1$ for $\tau \geq 0$ iff $\vartheta_1, \vartheta_2, ..., \vartheta_n$ are *linearly dependent;*

 $(FN3)$ η $(\vartheta_1, \vartheta_2, \ldots, \vartheta_n, \tau)$ *is invariant under any permutation of* $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \mathbb{C}$ *; (FN4) For all* $\tau \in \mathbb{R}$ *with* $\tau > 0$ *,*

$$
\eta(c\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\tau)=\eta\left(\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\frac{\tau}{|c|}\right) \text{ if } c\in\mathbb{R} \text{ with } c\neq 0;
$$

(FN5) For all $τ ∈ ℝ with τ, θ > 0$ *,*

$$
\eta(\vartheta_0+\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\tau+\theta)\geq \eta(\vartheta_0,\vartheta_2,\ldots,\vartheta_n,\tau)*\eta(\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\theta);
$$

(FN6) $\eta(\vartheta_1, \vartheta_2, \ldots, \vartheta_n, .) : \mathring{E_3} \to E_1$ is left continuous; $(FN7)\lim_{\tau\to+\infty}\eta(\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\tau)=1.$

Thus, the triple $(\mathcal{F}, \eta, *)$ *is a symmetric F-n-NLS (see [\[10–](#page-9-8)[12\]](#page-9-9)).*

A complete symmetric F-*n*-NLS is called symmetric F-*n*-BS.

Theorem 1 ([\[9,](#page-9-7)[13](#page-9-10)[–15\]](#page-9-11)). Let $(\mathcal{O}, \eta, *)$ be a symmetric F-n-NLS in which $* = \min$ and

 $(FN8)$ η $(\vartheta_1, \vartheta_2, \ldots, \vartheta_n, \tau) > 0$ *for all* $\tau > 0$ *implies* $\vartheta_1, \vartheta_2, \ldots, \vartheta_n$ *are linearly dependent. Define*

$$
\|\vartheta_1,\vartheta_2,\ldots,\vartheta_n\|_{\epsilon}:=\inf[\eta(\vartheta_1,\vartheta_2,\ldots,\vartheta_n,\tau)]_{\epsilon},\ \epsilon\in\mathring{E}_1.
$$

Then $\{\|\bullet, \cdots, \bullet\|_{\epsilon} : \epsilon \in \mathring{E}_1\}$ *is an ascending family of fuzzy n-norms on* δ *.*

These fuzzy n-norms will be called the e-n-norms on f *corresponding to the fuzzy n-norm on* δ *.*

We note that some applications can be found on [\[16,](#page-9-12)[17\]](#page-9-13).

Remark 1 ([\[18\]](#page-9-14))**.** *Let η^E* : R × *E*˚ ³ → *E*² *be a Euclidean fuzzy norm (Euclidean fuzzy normed spaces were introduced by the authors in [\[18\]](#page-9-14)). Then* $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \mathcal{C}$ *are linearly independent iff* $\eta(\vartheta_1, \vartheta_2, \dots, \vartheta_n, \tau) = \eta_E(1, \tau)$, for any $\tau > 0$.

By the above remark, we have that, $\vartheta_1, \vartheta_2, \ldots, \vartheta_n \in \mathcal{O}$ are linearly independent iff

$$
\begin{array}{rcl}\n\|\theta_1, \theta_2, \dots, \theta_n\|_{\epsilon} & = & \inf\{\tau : \eta(\theta_1, \theta_2, \dots, \theta_n, \tau) \ge \epsilon, \ \epsilon \in \mathring{E}_1\} \\
& = & \inf\{\tau : \eta_E(1, \tau) \ge \epsilon, \ \epsilon \in \mathring{E}_1\} \\
& = & |1|_{\epsilon}.\n\end{array}
$$

Consider the probability measure space $(F, \mathring{E_3}, \xi)$ and let (U, B_U) and (S, B_S) be Borel measurable spaces, where *U* and *S* are symmetric F-*n*-BS. If $\{\lambda: \ \mathcal{F}(\lambda,\xi) \in B\} \in \mathring{E_3}$ for every ζ in *U* and $B \in \mathcal{B}_S$, we say $\mathcal{F} : F \times U \to S$ is a random operator. Let 2^S be the family of all subsets of *S*. The mapping $\mathcal{F}: \mathcal{F} \times U \to 2^S$ is said to be random multivalued operator. A random operator $\mathcal{F} : F \times U \to S$ is said to be *linear* if $\mathcal{F}(\lambda, \mathbf{a}_{i}^{\mathcal{F}})$ **b** ζ ₂) = **a** $\mathcal{F}(\lambda, \zeta_1)$ + **b** $\mathcal{F}(\lambda, \zeta_2)$ almost everywhere for each ζ_1 , ζ_2 in *U* and **a**, **b** are scalers, and *bounded* if there exists a nonnegative real-valued random variable $M(\lambda)$ such that

$$
\eta(\mathcal{F}(\lambda_1,\xi_{1,1})-\mathcal{F}(\lambda_1,\xi_{2,1}),\cdots,\mathcal{F}(\lambda_1,\xi_{1,n})-\mathcal{F}(\lambda_1,\xi_{2,n}),M(\lambda)\tau)
$$

\n
$$
\geq \eta(\xi_{1,1}-\xi_{2,1},\cdots,\xi_{1,n}-\xi_{2,n},\tau),
$$

almost everywhere for each $\xi_{1,j} - \xi_{2,j}$ $(j = 1, 2, ...n)$ in U , $\tau \in \mathring{E_3}$ and $\lambda \in \mathcal{F}$.

Let $(Y, \Omega, ||\bullet, \cdots, \bullet||, L, R)$ be a symmetric F-*n*-BS over $\mathbb R$ with dim $Y \ge n$ and ordering by the cone Ω , i.e., Ω is a closed convex subset of Y such that $\gamma\Omega \subset \Omega$ for $\gamma \geq 0$, $\Omega \cap$ $(-\Omega) = \{0\}$, and $\alpha_p \leq \beta_p$ iff $\beta_p - \alpha_p \in \Omega$ for $\alpha, \beta \in \Upsilon$ with $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $\beta =$ $(\beta_1, \beta_2, \ldots, \beta_n)$ and $1 \leq p \leq n$. For nonempty subsets Δ_1, Δ_2 of Y we write $\Delta_1 \succcurlyeq_2 \Delta_2$ (or, $\Delta_2 \preccurlyeq_2 \Delta_1$) iff for every $\alpha \in \Delta_1$, we can find a $\beta \in \Delta_2$ which $\alpha_p \geq \beta_p$ (or, $\beta_p \leq \alpha_p$) for $1 \leq p \leq n$. We say Ω is a normal cone if we can find a constant $K > 0$ where $0 \leq \alpha_p \leq \beta_p$ for $1 \leq p \leq n$ implies $\|\alpha_1, \alpha_2, \ldots, \alpha_n\|_{\epsilon} \leq K \|\beta_1, \beta_2, \ldots, \beta_n\|_{\epsilon}$. We note in this paper, we consider $Ω$ as a normal cone with $K = 1$. Furthermore,

$$
cc(\Delta_1) = \{G \subset \Delta_1 \subset Y : G \text{ is nonempty closed convex}\}\
$$

Consider the open convex subset Ξ of Y, and let $\Xi_{\Omega} = \Omega \cap \Xi$, $\partial_{\Omega} \Xi = \Omega \cap \partial \Xi$ and l $\Omega=\Omega\backslash\{0\}$, where $\partial \Xi$ is boundary of Ξ in Y. The mapping Q_3 : $\digamma\times (\Omega\cap\overline{\Xi})\to cc(\Omega)$ is said to be compact if $Q_3(F \times \Delta_2)$ is relatively compact for any bounded subset Δ_2 of $\Omega \cap \Xi$, where $Q_3(F \times \Delta_2) = \cup_{\alpha \in \Delta_2} Q_3(\lambda, \alpha)$, for any $\lambda \in F$. We say a random multi-valued operator *Q*³ has the upper semi-continuity property (in short, u.s.c.rmvo) if

$$
\{\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n)\in\Omega\cap\overline{\Xi}:Q_3(\lambda,\alpha)\subset W\}
$$

 $\text{where } \Omega \cap \overline{\Xi} = (\Omega \cap \overline{\Xi})^{\circ} \text{ and } \lambda \in F.$ Further, if $\alpha \notin Q_3(\lambda, \alpha)$ for all $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in G$ $\partial_{\Omega}\Xi$ and $\lambda \in F$, the random fixed point index of Q_3 in Ξ with respect to Ω is defined which is an integer denoted by $i_{\Omega}(Q_3, \Xi)$.

Lemma 1. [\[2\]](#page-9-1) Let $Q_3: F \times (\Omega \cap \overline{\Xi}) \to cc(\Omega)$ be a compact u.s.c.rmvo. Then l

- *i*_Ω(*Q*₃, Ξ) = 0 *if there exists* $\varphi \in \Omega$ *such that* $\alpha \notin Q_3(\lambda, \alpha) + \varrho \varphi$ for all $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in$ $\partial_{\Omega} \Xi$ *,* $\lambda \in F$ *and* $\varrho \geq 0$ *.*
- *2.* $i_{\Omega}(Q_3, \Xi) = 1$ *if* $\varrho \alpha \notin Q_3(\lambda, \alpha)$ for all $\lambda \in F$ and $\varrho \geq 1$.

The following results are needed later to obtain a generalization of [\[19\]](#page-9-15).

Lemma 2. [\[20\]](#page-9-16) *Assume that* $Q_3: F \times E_3 \subset F \times Y \to c(Y)$ *is a u.s.c.rmvo,* $(\alpha_{\varepsilon}, \beta_{\varepsilon}) \to (\alpha, \beta)$ *with* $\beta_{\varepsilon} \in Q_3(\lambda, \alpha_{\varepsilon})$ *and* $\lambda \in F$. *Thus,* $\beta \in Q_3(\lambda, \alpha)$ *.*

Lemma 3. [\[19\]](#page-9-15) Let $\Psi : F \times E_1 \times (\Omega \cap \overline{\Xi}) \to cc(\Omega)$ be a compact u.s.c.rmvo with $\alpha \notin \Psi(\lambda, \iota, \alpha)$ *for all* $(\iota, \alpha) \in E_1 \times \partial_{\Omega} \Xi$ *and* $\lambda \in F$. Then, $i_{\Omega}(\Psi(\lambda, 0, .), \Xi) = i_{\Omega}(\Psi(\lambda, 1, .), \Xi)$.

3. Random Multi-Valued Operator

Lemma 4. Let Q_3 : $F \times E_3 \times \Omega \rightarrow cc(\Omega)$ be a compact u.s.c.rmvo and $\Xi \subset Y$ be open with 0 ∈ Ξ*. Additionally,*

l

- *1.* $\alpha \in Q_3(\lambda, 0, \alpha)$, for any $\lambda \in F$, for some $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \Omega$ implies $\iota < 1$,
- *2.* $i_{\varrho}(Q_3(\lambda, \gamma,.), \Xi) = 0$ *if* γ *is sufficiently large and* $\lambda \in F$ *. Then* $\{\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \partial_{\Omega} \Xi : \exists \gamma > 0, \alpha \in Q_3(\lambda, \gamma, \alpha)\}\neq \emptyset$.

Proof. From the second condition in Lemma [4](#page-4-1) we can find $\gamma_0 > 0$ such that $i_\rho(Q_3(\lambda, \gamma, \cdot), \Xi)$ $= 0$ for all $\lambda \in F$ and $\gamma \geq \gamma_0$. Define

$$
\omega = \sup \{ \gamma > 0 : i_{\Omega}(Q_3(\lambda, \gamma,.), \Xi) \neq 0 \}.
$$

We first observe that $\omega > 0$. Furthermore,

$$
\forall \varepsilon > 0, \exists (\iota_{\varepsilon}, \alpha_{\varepsilon}) \in E_1 \times \partial_{\Omega} \Xi : \alpha_{\varepsilon} \in (1 - \iota_{\varepsilon}) Q_3(\lambda, \varepsilon, \alpha_{\varepsilon}) + \iota_{\varepsilon} Q_3(\lambda, 0, \alpha_{\varepsilon}). \tag{5}
$$

for any $\lambda \in F$. Since Q_3 is compact, without loss of generality we may assume that $\iota_{\varepsilon} \to \iota$, $\alpha_{\varepsilon} \to \alpha$ when $\varepsilon \to 0$ and $\lambda \in F$. From [\(5\)](#page-4-2) by Lemma [2](#page-3-0) it follows that

$$
\alpha\in(1-\iota)Q_3(\lambda,0,\alpha)+\iota Q_3(\lambda,0,\alpha)\subset Q_3(\lambda,0,\alpha).
$$

This contradicts the first condition in Lemma [4.](#page-4-1) Thus, there exist $\epsilon > 0$ such that $(\iota, \alpha) \notin \Psi(\lambda, \iota, \alpha)$ for all $\lambda \in F$ and $(\iota, \alpha) \in E_1 \times \partial_{\Omega} \Xi$, where

$$
\Psi(\lambda,\iota,\alpha)=(1-\iota)Q_3(\lambda,\varepsilon,\alpha)+\iota Q_3(\lambda,0,\alpha).
$$

Using Lemma [3](#page-4-3) we have

$$
i_{\Omega}(Q_3(\lambda,0,.),\Xi)=i_{\Omega}(Q_3(\lambda,\varepsilon,.),\Xi).
$$

Using Lemma [1](#page-3-1) implies that $i_{\Omega}(Q_3(\lambda, 0, .), \Xi) = 1$. Thus, $i_{\Omega}(Q_3(\lambda, \varepsilon, .), \Xi) = 1$, and we deduce $0 < \omega < \gamma_0$, for each $\lambda \in F$.

Next, for every $\varepsilon \in (0, \omega)$ and $\lambda \in F$, there exists $\gamma_{\varepsilon} \in (\omega - \varepsilon, \omega]$ with $i_{\Omega}(Q_3(\lambda, \gamma_{\varepsilon}, \lambda))$ E) \neq 0. Consider the random multi-valued operator Ψ_ε defined by

$$
\Psi_{\varepsilon}(\lambda,\iota,\alpha)=(1-\iota)Q_3(\lambda,\gamma_{\varepsilon},\alpha)+\iota Q_3(\lambda,\omega+\varepsilon,\alpha).
$$

Now, we prove

$$
\{\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n)\in\partial_{\Omega}\Xi:\exists\gamma>0,\alpha\in Q_3(\lambda,\gamma,\alpha)\}\neq\emptyset.
$$

Assume the contrary, that

$$
\{\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \partial_{\Omega} \Xi : \exists \gamma > 0, \alpha \in Q_3(\lambda, \gamma, \alpha)\} = \emptyset.
$$
 (6)

Then, the random fixed point index of $Q_3(\lambda, \omega + \varepsilon)$ is well defined, for each $\lambda \in F$. If

$$
\alpha \notin \Psi_{\varepsilon}(\lambda, \iota, \alpha) \text{ for all } (\iota, \alpha) \in E_1 \times \partial_{\Omega} \Xi,
$$
 (7)

then, by Lemma [3](#page-4-3) we obtain

$$
i_{\Omega}(Q_3(\lambda, \gamma_{\varepsilon}, \cdot), \Xi) = i_{\Omega}(Q_3(\lambda, \omega + \varepsilon, \cdot), \Xi), \tag{8}
$$

for each $\lambda \in F$, a contradiction. Then, we can find a $(\iota_{\varepsilon}, \alpha_{\varepsilon}) \in E_1 \times \partial_{\Omega} \Xi$ satisfying

$$
\alpha_{\varepsilon} \in (1 - \iota_{\varepsilon}) Q_3(\lambda, \gamma_{\varepsilon}, \alpha_{\varepsilon}) + \iota_{\varepsilon} Q_3(\lambda, \omega + \varepsilon, \alpha_{\varepsilon}), \tag{9}
$$

for each *λ* ∈ *F*. Similarly, there is a *α* ∈ $∂_Ω$ Ξ with *α* ∈ $Q_3(λ, ω, α)$, which shows [\(6\)](#page-4-4) is not true, and completes the proof. \square

Let $(\Gamma, \Omega_{\Gamma}, \|\bullet, \cdots, \bullet\|^{\Gamma}, L, R)$ be asymmetric F-*n*-BS over $\mathbb R$ with dim $Y \ge n$ ordered by the normal cone Ω_{Γ} . Suppose that $Y\subset \Gamma$, $\Omega\subset \Omega_{\Gamma}\cap Y$, the embedding $(Y,\|\bullet,\cdots,\bullet\|_{\epsilon})\hookrightarrow$ $(\Gamma, ||\bullet,\cdots,\bullet||_{\epsilon})$ is continuous, and $Q_1: F \times E_3 \times \Omega \to cc(\Omega_{\Gamma})$ is a compact u.s.c.rmvo. Assume $\Phi: \mathcal{F} \times \Gamma \to Y$ is a compact random linear operator satisfying $\Phi(\lambda, \Omega_{\Gamma}) \subset \Omega$ such that $\Phi = (\Phi_1, \Phi_2, \dots, \Phi_n)$, for each $\lambda \in F$.

Theorem 2. *Let*

- *i*. $\alpha \in \Phi \circ Q_1(\lambda, 0, \alpha)$, for any $\lambda \in F$, for some $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \Omega$ implies $\varrho < 1$;
- *2. we can find positive numbers* a_1 , a_2 , a_3 *and a random linear operator* Q_4 : $F \times \Gamma \to \mathbb{R}_+$ *with* $Q_4(\lambda, \beta) \neq 0$, for any $\lambda \in F$, for some $\beta = (\beta_1, \beta_2, \dots, \beta_n) \in \Omega$ such that
	- (a) $Q_4\Phi(\lambda, \alpha) \geq 2 \{a_1Q_4(\lambda, \alpha)\}\$ and

$$
Q_4\Phi(\lambda,\alpha) \succcurlyeq_2 \{a_1.\|(\Phi_1,\Phi_2,\ldots,\Phi_n)(\lambda,\alpha)\|_{\epsilon}^{\Gamma}\},\
$$

for all $\lambda \in F$ *and* $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \Omega_\Gamma$,

- (b) $Q_4(\lambda, Q_1(\lambda, \gamma, \alpha)) \succcurlyeq_2 \{a_2 \gamma Q_4(\lambda, \alpha) a_3\}$ for all $\lambda \in F$, $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in$ Ω*, and*
- *(c) we can find an increasing map (on the second part)* $\varpi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ *such that*

$$
\lim_{\gamma \to \infty} \omega(\gamma, \frac{a_3}{a_1 a_2 \gamma - 1}) = 0 \tag{10}
$$

such that $(\rho, \gamma, \alpha) \in E_1 \times E_3 \times \Omega$ *with*

$$
\alpha \in \varrho \Phi \circ Q_1(\lambda, \gamma, \alpha) + (1 - \varrho) a_2 \gamma \Phi(\lambda, \alpha) \tag{11}
$$

implies

$$
\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon} \leq \varpi(\gamma, \|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon}^1). \tag{12}
$$

Then

$$
\mathbf{U} = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbf{\dot{\Omega}} : \exists \gamma > 0, \alpha \in \Phi \circ Q_1(\lambda, \gamma, \alpha) \},
$$

is an unbounded continuous branch emanating from 0, for each $\lambda \in F$.

Proof. Suppose $\Xi \subset Y$ is open and bounded where $0 \in \Xi$. We use Lemma [4](#page-4-1) with $Q_3(\lambda, \gamma, \alpha) = \Phi \circ Q_1(\lambda, \gamma, \alpha)$ to show $U \cap \partial_{\Omega} \Xi \neq \emptyset$, for any $\lambda \in \mathcal{F}$. Clearly, condi-tion 1 of Lemma [4](#page-4-1) holds. Assume that $(\varrho, \gamma, \alpha) \in E_1 \times E_3 \times \Omega$ satisfies [\(11\)](#page-5-0), so $\alpha \in$ $\Phi(\lambda, \varrho Q_1(\lambda, \gamma, \alpha) + (1 - \varrho)a_2\gamma\alpha)$, hence, $\alpha = \Phi(\lambda, \varrho\beta, \gamma + (1 - \varrho)a_2\gamma\alpha)$, for any $\lambda \in F$, for some $\beta_{\gamma} \in Q_1(\lambda, \gamma, \alpha)$. By 2(a) and 2(b) we have

$$
Q_4(\lambda, \alpha) \ge a_1 Q_4(\lambda, \varrho \beta_\gamma + (1 - \varrho) a_2 \gamma \alpha) \ge a_1 (a_2 \gamma Q_4(\lambda, \alpha) - a_3), \tag{13}
$$

and

$$
Q_4(\lambda, \alpha) \geq a_1 \| (\Phi_1, \Phi_2, \dots, \Phi_n) (\lambda, \varrho \beta_\gamma + (1 - \varrho) a_2 \gamma \alpha) \|_{\epsilon}^{\Gamma}
$$

= $a_1 \| (\alpha_1, \alpha_2, \dots, \alpha_n) \|_{\epsilon}^{\Gamma}$ (14)

for each $\lambda \in F$. For sufficiently large γ , [\(13\)](#page-5-1) and [\(14\)](#page-5-2) we conclude that

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}^{\Gamma} \leq \frac{a_3}{a_1a_2\gamma-1},
$$

Γ

j

which combining with [\(12\)](#page-5-3) gives

$$
\|(\alpha_1, \alpha_2, \dots, \alpha_n)\|_{\epsilon} \leq \omega(\gamma, \frac{a_3}{a_1 a_2 \gamma - 1}),
$$
\n(15)

for each $\lambda \in F$. If $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \partial_{\Omega} \Xi$, $0 < \varepsilon < a_2 ||(\alpha_1, \alpha_2, ..., \alpha_n)||_{\varepsilon}$ for some *ε*. From [\(15\)](#page-6-1), [\(11\)](#page-5-0) it follows that $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \notin \Psi(\lambda, \varrho, \alpha)$ for all $\lambda \in F$ and $(\varrho, \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)) \in E_1 \times \partial_{\Omega} \mathbb{E}$, where $\Psi(\lambda, \varrho, \alpha) = \varrho \Phi \circ Q_1(\lambda, \gamma, \alpha) + (1 - \varrho) \alpha_2 \gamma \alpha$. Applying Lemma [1](#page-3-1) we obtain $i_{\Omega}(Q_3(\lambda, \gamma, \Xi)) = i_{\Omega}(\phi, \Xi)$, here $\phi(\alpha) = a_2 \gamma \alpha$, and therefore $i_{\Omega}(Q_3(\lambda, \gamma, \cdot), \Xi) = 0$, so condition 2 of Lemma [4](#page-4-1) holds. The proof is complete. \square

4. Applications

In this section, we study an uncertain case of a control problem. For it, we consider the compact u.s.c. rmvo $Q_1 : F \times E_3 \times \mathbb{R}_+ \to cc(\mathbb{R}_+)$ and the continuous map $\mu : \mathbb{R}_+ \to \mathbb{R}_+$. We consider the following control problem which contains a parameter:

$$
\begin{cases}\n\varphi''(\lambda,\iota) + \nu(\gamma,\iota)\mu(\varphi(\lambda,\iota)) = 0, \, \iota \in \mathring{E}_1, \\
\nu(\gamma,\iota) \in Q_1(\lambda,\gamma,\varphi(\lambda,\iota)) \text{ a.e. on } E_1 \\
\varphi(\lambda,0) = 0, \varphi(\lambda,1) = \sum_{p=1}^n \omega_p \varphi(\lambda,\varsigma_p)\n\end{cases}
$$
\n(16)

where $\varsigma_p \in \mathring{E}_1$, $0 \leq \omega_p$, $\sum_{p=1}^n \omega_p \varsigma_p < 1$ and $\lambda \in \mathcal{F}$. Denote $\Theta = \sum_{p=1}^{n} \omega_p \zeta_p$ for every $(\iota, \kappa) \in E_1 \times E_1$, and let

$$
\varpi(\iota,\kappa) = \begin{cases} \kappa(1-\iota), & \kappa \leq \iota, \\ \iota(1-\kappa), & \kappa > \iota \end{cases}
$$

$$
Q_5(\iota,\kappa) = \frac{\iota}{1-\Theta} \sum_{p=1}^n \omega_p \varpi(\varsigma_p,\kappa) + \varpi(\iota,\kappa);
$$

Let $C(E_1)$, resp., $C^1(E_1)$, be the symmetric F-*n*-BS of all continuous, resp., continuously differentiable, functions on *E*1. Denote

$$
Y = \left\{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in C^1(E_1) : \alpha(0) = 0 \right\},\
$$

and

$$
\Gamma = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in C(E_1) : \alpha(0) = 0 \}.
$$

Let Φ : $\Gamma \times \Gamma \to Y$ be a random linear operator ($\Phi = (\Phi_1, \Phi_2, \dots, \Phi_n)$) defined by

$$
\Phi(\lambda, \varphi)(\iota) = \int_0^1 Q_5(\iota, \kappa) \varphi(\lambda, \kappa) d\kappa, \tag{17}
$$

for each $\iota \in E_1$ and $\lambda \in F$. We solve

$$
\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \Phi \circ Q_3(\lambda, \gamma, \alpha), \tag{18}
$$

where the random multi-valued operator Q_3 is defined by

$$
Q_3(\lambda, \gamma, \alpha)(\iota) = Q_1(\lambda, \gamma, \alpha(\iota))\mu(\alpha(\iota)),
$$

for each $\iota \in E_1$ and $\lambda \in F$, since it is equivalent [\(17\)](#page-6-2).

Theorem 3. Let $b_1 = \left\{ \sup_{t \in E_1} \int_0^1 Q_5(t,\kappa) d\kappa \right\}^{-1}$. Suppose we can find $b_2 > 0$, $b_3 > 0$, $b_4 \in$ $(0, b_1)$, $\lambda \in F$ and $s \in (0, 2)$ *such that*

- *1.* $Q_1(\lambda, 0, \alpha) \mu(\alpha) \preccurlyeq_2 \gamma \alpha, \ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) > 0,$
- 2. $b_2 \gamma \alpha b_3 \preccurlyeq_2 Q_1(\lambda, \gamma, \alpha) \mu(\alpha)$,

3. $Q_1(\lambda, \gamma, \alpha) \preccurlyeq_2 1 + \gamma^{\frac{s}{2}} |\alpha|^s$ for all $(\gamma, \alpha) \in \mathring{E}_3 \times \mathbb{R}_+$.

Thus, the positive fuzzy solution set \bm{U} *for [\(18\)](#page-6-3) is unbounded continuous in* $C^1(E_1)$ *, originating from 0.*

Proof. Use Theorem [2](#page-5-4) and cones

$$
\Omega = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \Upsilon : \alpha(\iota) \geq 0, \ \iota \in E_1 \},
$$

and

$$
\Omega_{\Gamma} = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \Gamma : \alpha(\iota) \geq 0, \ \iota \in E_1 \}.
$$

Then, Γ and Υ, resp., are symmetric F-*n*-BSs with the norms

l

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}^{\Gamma}=\sup_{\iota\in E_1}\|(\alpha_1,\alpha_2,\ldots,\alpha_n)(\iota)\|_{\epsilon},
$$

and

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}=\|(\alpha_1,\alpha_2,\ldots,\alpha_n)'\|_{\epsilon}^{\Gamma}.
$$

Suppose $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \Omega$, $\lambda \in F$ and ϱ satisfies $\varrho \alpha \in \Phi \circ Q_3(\lambda, 0, \alpha)$, so we can find $\varphi(\lambda, \kappa) \in Q_1(\lambda, 0, \alpha(\kappa))$ such that

$$
\begin{array}{rcl}\n|\varrho\alpha(\iota)| & = & \left| \int_0^1 Q_5(\iota, \kappa) \varphi(\lambda, \kappa) \mu(\alpha(\kappa)) d\kappa \right| \\
& \leq & b_4 \| (\alpha_1, \alpha_2, \dots, \alpha_n) \|_{\epsilon}^{\Gamma} \left| \int_0^1 Q_5(\iota, \kappa) d\kappa \right| \\
& \leq & \| (\alpha_1, \alpha_2, \dots, \alpha_n) \|_{\epsilon}^{\Gamma},\n\end{array}
$$

for each $\iota \in E_1$ and $\lambda \in F$. Then $\varrho < 1$. By [\[21\]](#page-9-17), we can conclude that the compact random linear operator Φ have an eigen-value $\varrho_0 > 0$ and a positive eigen-map φ_0 . Define the random linear operator Q_4 on Γ, by $Q_4(\lambda, \alpha) = \int_0^1 \alpha(\kappa) \varphi_0(\kappa) d\kappa$. From condition 2. we have

$$
Q_4(\lambda, Q_3(\lambda, \gamma, \alpha)) \geqslant_2 \int_0^1 (b_2 \gamma \alpha(\kappa) - b_3) \varphi_0(\kappa) d\kappa
$$

$$
\geq b_2 \gamma Q_4(\lambda, \alpha) - a_3,
$$

for each $\lambda \in F$; here $a_3 = b_3 \int_0^1 \varphi_0(\kappa) d\kappa$. When $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$ in which $\beta(0) = 0$ and $\beta(1) \geq 0$, then we can find a number $b_5 > 0$ such that $\beta(\iota) \geq b_5 \|(\beta_1, \beta_2, \ldots, \beta_n)\|_{\epsilon}^{\Gamma} \varphi_0(\iota)$ on *E*₁. For $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \Omega_\Gamma$, $\Phi \alpha$ is a concave function with $\Phi \alpha(\lambda, 0) = 0$ and Φ *α*(*λ*, 1) ≥ 0 , and we have Φ *α*(*λ*, *ι*) $\geq b_5 \| (\Phi_1, \Phi_2, \ldots, \Phi_n) (\lambda, \alpha) \|_{\epsilon}^{\Gamma} \varphi_0(\iota)$, for each $\lambda \in \Gamma$. From Fubini's Theorem it follows that

$$
Q_4(\lambda, \Phi(\lambda, \alpha)) = \int_0^1 \left(\int_0^1 Q_5(\iota, \kappa) \alpha(\kappa) d\kappa \right) \varphi_0(\iota) d\iota
$$

\n
$$
= \int \int_{E_1 \times E_1} Q_5(\iota, \kappa) \alpha(\kappa) \varphi_0(\iota) d\kappa d\iota
$$

\n
$$
= \int_0^1 \left(\int_0^1 Q_5(\iota, \kappa) \varphi_0(\iota) d\iota \right) \alpha(\kappa) d\kappa
$$

\n
$$
= \int_0^1 \Phi \varphi_0(\lambda, \kappa) \alpha(\kappa) d\kappa
$$

\n
$$
= \varphi_0 \int_0^1 \varphi_0(\kappa) \alpha(\kappa) d\kappa
$$

\n
$$
= \varphi_0 Q_4(\lambda, \alpha),
$$

for each $\lambda \in F$. Consequently, there is constant $a_1 > 0$ satisfying

$$
Q_4(\lambda, \Phi(\lambda, \alpha)) \ge a_1 Q_4(\lambda, \alpha) \text{ and } Q_4(\lambda, \Phi(\lambda, \alpha)) \ge a_1 \|(\Phi_1, \Phi_2, \dots, \Phi_n)(\lambda, b_2)\|_{\epsilon}^{\Gamma}, \quad (19)
$$

for each $\lambda \in F$. Now, assume $(\varrho, \gamma, \alpha) \in E_1 \times E_3 \times \Omega$ with

$$
\alpha \in \varrho \Phi \circ Q_3(\lambda, \gamma, \alpha) + (1 - \varrho) b_2 \gamma \Phi(\lambda, \alpha). \tag{20}
$$

This implies

$$
-\alpha'' \in \varrho Q_3(\lambda, \gamma, \alpha) + (1 - \varrho) b_2 \gamma \alpha,
$$
\n(21)

for each $\lambda \in F$. Now, n_a , $q = 0, 1, 2, \ldots$, 6 and *n* are constant, not depending on γ , *α* and *ι* ∈ *E*₁. Using Theorem [2](#page-5-4) implies that

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}^{\Gamma} \leq \frac{a_3}{a_1b_2\gamma-1}.
$$

Therefore we can choose n_1 such that

$$
\gamma \|(\alpha_1, \alpha_2, \dots, \alpha_n)\|_{\epsilon}^{\Gamma} \leq n_1. \tag{22}
$$

From [\(22\)](#page-8-0), the well-known inequality

$$
\left(\|(\alpha_1,\alpha_2,\ldots,\alpha_n)'\|_{\epsilon}^{\Gamma}\right)^2 \leq n_2\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}^{\Gamma}\|(\alpha_1,\alpha_2,\ldots,\alpha_n)''\|_{\epsilon}^{\Gamma}
$$
 (23)

and [\(21\)](#page-8-1) we obtain

$$
\begin{array}{rcl}\n\|(\alpha_1, \alpha_2, \ldots, \alpha_n)''\|_{\epsilon}^{\Gamma} & \leq & n_3 \Big(1 + \gamma^{\frac{s}{2}} \Big(\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon}^{\Gamma} \Big)^s \Big) + b_2 n_1 \\
& \leq & n_4 \Big(1 + \gamma^{\frac{s}{2}} \Big(\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon}^{\Gamma} \Big)^s \Big).\n\end{array} \tag{24}
$$

Furthermore, for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \Omega$, we have

$$
\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon}^{\Gamma} \le n_0 \|\left(\alpha_1, \alpha_2, \ldots, \alpha_n\right)'\|_{\epsilon}^{\Gamma}.
$$
 (25)

Combining the inequalities, (22) , (23) , (24) and (25) we get

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)''\|_{\epsilon}^{\Gamma} \leq n_5(1+\left(\|(\alpha_1,\alpha_2,\ldots,\alpha_n)''\|_{\epsilon}^{\Gamma}\right)^{\frac{s}{2}}) \leq n_6.
$$
 (26)

From [\(23\)](#page-8-2) we can choose *n* such that

$$
\|(\alpha_1,\alpha_2,\ldots,\alpha_n)'\|_{\epsilon}^{\Gamma} \leq n\Big(\|(\alpha_1,\alpha_2,\ldots,\alpha_n)\|_{\epsilon}^{\Gamma}\Big)^{\frac{1}{2}}.
$$

Since $\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon} = \|(\alpha_1, \alpha_2, \ldots, \alpha_n)'\|_{\epsilon}^{\Gamma}$ $\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon} = \|(\alpha_1, \alpha_2, \ldots, \alpha_n)'\|_{\epsilon}^{\Gamma}$ $\|(\alpha_1, \alpha_2, \ldots, \alpha_n)\|_{\epsilon} = \|(\alpha_1, \alpha_2, \ldots, \alpha_n)'\|_{\epsilon}^{\Gamma}$ we have condition (2c) of Theorem 2 satisfied with the function $\omega(\gamma, \iota) = n\iota^{\frac{1}{2}}$.

5. Conclusions

In this paper, using a generalized norm which has a dynamic case and is inspired by a random norm and fuzzy sets, we introduced a symmetric F-*n*-NLS to study the existence, and unbounded continuity of the solution set of random multi-valued equation containing a parameter. These results allow us to consider an uncertain control problem. The applied procedure can hopefully be useful in the future to consider other types of fuzzy control problems.

Author Contributions: R.S., methodology and project administration. T.A., writing—original draft preparation. D.O., methodology, writing—original draft preparation and project administration. F.S.A., writing—original draft preparation and project administration. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-08.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Feng, B.; Zhou, H.C.; Yang, X.G. Uniform boundness of global solutions for a n-dimensional spherically symmetric combustion model. *Appl. Anal.* **2019**, *98*, 2688–2722. [\[CrossRef\]](http://doi.org/10.1080/00036811.2018.1469010)
- 2. Huy, N.B.; Binh, T.T.; Tri, V.V. The monotone minorant method and eigenvalue problem for multivalued operators in cones. *Fixed Point Theory* **2019**, *19*, 275–286. [\[CrossRef\]](http://dx.doi.org/10.24193/fpt-ro.2018.1.22)
- 3. Huy, N.B. Global Continua of Positive Solutions for Equations with nondifferentiable operators. *J. Math. Anal. Appl.* **1999**, *239*, 449–456. [\[CrossRef\]](http://dx.doi.org/10.1006/jmaa.1999.6582)
- 4. Cho, Y.J.; Rassias, T.M.; Saadati, R. *Fuzzy Operator Theory in Mathematical Analysis*; Springer: Berlin/Heidelberg, Germany, 2018.
- 5. Ren, Y.; Wang, J.; Hu, L. Multi-valued stochastic differential equations driven by *G*-Brownian motion and related stochastic control problems. *Int. J. Control* **2017**, *90*, 1132–1154. [\[CrossRef\]](http://dx.doi.org/10.1080/00207179.2016.1204560)
- 6. Kaleva, O.; Seikkala, S. On fuzzy metric spaces. *Fuzzy Sets Syst.* **1984**, *12*, 215–229. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(84)90069-1)
- 7. Morsi, N.N. On fuzzy pseudo-normed vector spaces. *Fuzzy Sets Syst.* **1988**, *27*, 351–372. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(88)90061-9)
- 8. Felbin, C. Finite-dimensional fuzzy normed linear space. *Fuzzy Sets Syst.* **1992**, *48*, 239–248. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(92)90338-5)
- 9. Narayanan, A.; Vijayabalaji, S. Fuzzy *n*-normed linear space. *Int. J. Math. Math. Sci.* **2005**, *2005*, 3963–3977. [\[CrossRef\]](http://dx.doi.org/10.1155/IJMMS.2005.3963)
- 10. Saadati, R.; Cho, Y.J.; Vaezpour, S.M. A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces". *J. Inequal. Appl.* **2009**, *2008*, 1–6. [\[CrossRef\]](http://dx.doi.org/10.1155/2009/214530)
- 11. Mao, W.; Hu, L.; You, S.; Mao, X. The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients. *Discret. Contin. Dyn. Syst.-B* **2019**, *24*, 4937–4954. [\[CrossRef\]](http://dx.doi.org/10.3934/dcdsb.2019039)
- 12. O'Regan, D. A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps. *J. Nonlinear Sci. Appl.* **2021**, *14*, 118–123. [\[CrossRef\]](http://dx.doi.org/10.22436/jnsa.014.03.01)
- 13. Mardones-Perez, I.; de Prada Vicente, M.A. An application of a representation theorem for fuzzy metrics to domain theory. *Fuzzy Sets Syst.* **2016**, *300*, 72–83. [\[CrossRef\]](http://dx.doi.org/10.1016/j.fss.2016.04.001)
- 14. Mardones-Perez, I.; de Prada Vicente, M.A. Fuzzy pseudometric spaces vs. fuzzifying structures. *Fuzzy Sets Syst.* **2015**, *267*, 117–132. [\[CrossRef\]](http://dx.doi.org/10.1016/j.fss.2014.06.003)
- 15. Lee, K.Y. Approximation properties in fuzzy normed spaces. *Fuzzy Sets Syst.* **2016**, *282*, 115–130. [\[CrossRef\]](http://dx.doi.org/10.1016/j.fss.2015.02.003)
- 16. Jang, J.S.R.; Sun, C.T.; Mizutani, E. *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence*; Pearson India: Chennai, India, 2015.
- 17. Debnath, P.; Mohiuddine, S.A. *Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences*; CRC Press: Boca Raton, FL, USA, 2021.
- 18. Deschrijver, G.; O'Regan, D.; Saadati, R.; Vaezpour, S.M. L–fuzzy Euclidean normed spaces and compactness. *Chaos Solitons Fractals* **2009**, *42*, 40–45. [\[CrossRef\]](http://dx.doi.org/10.1016/j.chaos.2008.10.026)
- 19. Phong, T.T.; Tri, V.V. The continuity of solution set of a multivalued equation and applications in control problem. *Adv. Theory Nonlinear Anal. Appl.* **2021**, *5*, 330–336.
- 20. Hu, S.; Papageorgiou, N.S. *Handbook of Multivalued Analysis*; Kluwer: Dordrecht, The Netherlands, 1997; Volume I.
- 21. Webb, J.R.L.; Lan, K.Q. Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. *Topol. Methods Nonlinear Anal.* **2006**, *27*, 91–115.