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Abstract: To study an uncertain case of a control problem, we consider the symmetric F-n-NLS
which is induced by a dynamic norm inspired by a random norm, distribution functions, and
fuzzy sets. In this space, we consider a random multi-valued equation containing a parameter and
investigate existence, and unbounded continuity of the solution set of it. As an application of our
results, we consider a control problem with multi-point boundary conditions and a second order
derivative operator.
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1. Introduction

Consider the random operator Q1. A natural generalization of parametric random
equations of the form α = Q1(λ, γ, α), in which λ is a element of a probability measure
space, is the multi-valued form [1],

α ∈ Q1(λ, γ, α). (1)

In regards to solutions, there are many approaches available in the literature, for ex-
ample the principal eigenvalue-eigenvector method, the monotone minorant method [2,3]
and topological degree. The idea in this paper is to use the topological degree for random
multi-valued mappings and the method of evaluating solutions. The main idea is present-
ing an uncertain case of a control problem. To achieve this aim, we use a special space,
i.e., symmetric F-n-NLS, that has a dynamic situation and a parameter τ, which can be
time, which enable us to consider different cases. We note this kind of space induced by
a dynamic norm which is inspired by random norms, probabilistic distances and fuzzy
norms was studied; see [4] for details and applications. Our results can be applied in
uncertainty problems, risk measures and super-hedging in finance [5].

For the random multi-valued operator Q1, the following sets

U = {(γ, α) : α ∈ Q1(λ, γ, α)}, (2)

or
U = {α : ∃γ, α ∈ Q1(λ, γ, α)}. (3)

are solutions of (1). In this paper, we consider a control problem with multi-point boundary
conditions and a second order derivative operator as
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
ϕ′′(λ, ι) + ν(γ, ι)µ(ϕ(λ, ι)) = 0, ι ∈ (0, 1),
ν(γ, ι) ∈ Q1(λ, γ, ϕ(λ, ι)) a.e. on [0, 1]
ϕ(λ, 0) = 0, ϕ(λ, 1) = ∑n

p=1 ωp ϕ(λ, ςp).
(4)

where ςp ∈ (0, 1), 0 ≤ ωp, ∑n
p=1 ωpςp < 1 and λ ∈ z. In Section 2, we introduce our

special space, i.e., symmetric F-n-NLS and present some basic results which we need in
the main section. In Section 3, we prove some properties of random multi-valued operator.
In Section 4, we present an application of our results for a fuzzy control problem.

2. Preliminaries

Here, we let E1 = [0, 1], E2 = (0, 1], E3 = [0, ∞) and E4 = [0, ∞].
A mapping δ : R→ E1, whose ε-level set is denoted by

[δ]ε = {ι : δ(ι) ≥ ε},

is said to be a fuzzy real number if it satisfies the following:

(i) δ is normal, i.e., there exists ι0 ∈ R such that δ(ι0) = 1;
(ii) δ is upper semicontinuous;
(iii) δ is fuzzy convex, i.e., δ(ι) ≥ min(δ(κ), δ(s)), for each ι, κ ∈ R such that κ ≤ ι ≤ s and

ε ∈ E2;
(iv) For each ε ∈ E2, [δ]ε = [δ−ε , δ+ε ], where −∞ < δ−ε ≤ δ+ε < +∞ and [δ]0 =

{δ ∈ R : δ(ι) > 0} is compact.

Let the set F contain all upper semicontinuous normal convex fuzzy real numbers. F+

contains all non-negative fuzzy real numbers of F. For each κ ∈ R, we can define

κ(ι) =

{
1, if ι = κ,
0, if ι 6= κ,

so κ ∈ F and R can be embedded in F.
A partial order � in F is defined as follows: δ � σ iff for each ε ∈ E2, δ−ε ≤ σ−ε and

δ+ε ≤ σ+
ε where [δ]ε = [δ−ε , δ+ε ] and [σ]ε = [σ−ε , σ+

ε ]. The strict inequality in F is defined by
δ ≺ σ iff for each ε ∈ E2, δ−ε < σ−ε and δ+ε < σ+

ε (see [6–8]).
The arithmetic operations ⊕, 	, � and � on F× F are defined by

(δ⊕ σ)(ι) = sup
κ∈R

min(δ(κ), σ(ι− κ)), ι ∈ R,

(δ	 σ)(ι) = sup
κ∈R

min(δ(κ), σ(κ − ι)), ι ∈ R,

(δ� σ)(ι) = sup
0 6=κ∈R

min
(

δ(κ), σ(
ι

κ
)
)

, ι ∈ R,

(δ� σ)(ι) = sup
κ∈R

min(δ(κι), σ(κ)), ι ∈ R, δ, σ(� 0) ∈ F.

Definition 1. Let f be a real linear space over R with dim f ≥ n. Suppose ‖•, . . . , •‖ : fn → F+

is a mapping and L, R : E1
2 → E1 are symmetric, nondecreasing mapping satisfying

L(0, 0) = 0 and R(1, 1) = 1.

Write

[‖ϑ1, ϑ2, . . . , ϑn‖]ε = [‖ϑ1, ϑ2, . . . , ϑn‖−ε , ‖ϑ1, ϑ2, . . . , ϑn‖+ε ],
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for ϑ1, ϑ2, . . . , ϑn ∈ f, ε ∈ E2 and suppose that for every linearly independent vectors ϑ1, ϑ2, . . . , ϑn
∈ f, there exists ε0 ∈ E2 independent of ϑ1, ϑ2, . . . , ϑn ∈ f such that for each ε ≤ ε0, one has

inf ‖ϑ1, ϑ2, . . . , ϑn‖−ε > 0, ‖ϑ1, ϑ2, . . . , ϑn‖+ε < ∞.

The quadruple (fn, ‖•, . . . , •‖, L, R) is said to be a symmetric fuzzy n-normed linear space
(F-n-NLS) in the sense of Felbin [8] and ‖•, . . . , •‖ is a fuzzy n-norm if

(N1) ‖ϑ1, ϑ2, . . . , ϑn‖ = 0 iff ϑ1, ϑ2, . . . , ϑn are linearly dependent;
(N2) ‖ϑ1, ϑ2, . . . , ϑn‖ is invariant under any permutation of ϑ1, ϑ2, . . . , ϑn ∈ f;
(N3) ‖cϑ1, ϑ2, . . . , ϑn‖ = |c| � ‖ϑ1, ϑ2, . . . , ϑn‖ for any c ∈ R;
(N4) ‖ϑ0 + ϑ1, ϑ2, . . . , ϑn‖ � ‖ϑ0, ϑ2, . . . , ϑn‖ ⊕ ‖ϑ1, ϑ2, . . . , ϑn‖;
(i) whenever κ ≤ ‖ϑ0, ϑ2, . . . , ϑn‖−1 , ι ≤ ‖ϑ1, ϑ2, . . . , ϑn‖−1 and ι+ κ ≤ ‖ϑ0 +ϑ1, ϑ2, . . . , ϑn‖−1 ,

‖ϑ0 + ϑ1, ϑ2, . . . , ϑn‖(κ + ι) ≥ L(‖ϑ0, ϑ2, . . . , ϑn‖(κ), ‖ϑ1, ϑ2, . . . , ϑn‖(ι)),

(ii) whenever κ ≥ ‖ϑ0, ϑ2, . . . , ϑn‖−1 , ι ≥ ‖ϑ1, ϑ2, . . . , ϑn‖−1 and ι+ κ ≥ ‖ϑ0 +ϑ1, ϑ2, . . . , ϑn‖−1 ,

‖ϑ0 + ϑ1, ϑ2, . . . , ϑn‖(κ + ι) ≤ R(‖ϑ0, ϑ2, . . . , ϑn‖(κ), ‖ϑ1, ϑ2, . . . , ϑn‖(ι)).

Now, we consider a symmetric F-n-NLS in the sense of Narayanan-Vijayabalaji [9]
and next we show a relationship between them.

Definition 2 ([9]). Assume that f is a linear space and ∗ is a continuous t-norm. Let the fuzzy
subset η of fn ×R with dim f ≥ n satisfy

(FN1) For all τ ∈ R with τ ≤ 0, η(ϑ1, ϑ2, . . . , ϑn, τ) = 0;
(FN2) For all τ ∈ R with τ > 0, η(ϑ1, ϑ2, . . . , ϑn, τ) = 1 for τ ≥ 0 iff ϑ1, ϑ2, . . . , ϑn are

linearly dependent;
(FN3) η(ϑ1, ϑ2, . . . , ϑn, τ) is invariant under any permutation of ϑ1, ϑ2, . . . , ϑn ∈ f;
(FN4) For all τ ∈ R with τ > 0,

η(cϑ1, ϑ2, . . . , ϑn, τ) = η

(
ϑ1, ϑ2, . . . , ϑn,

τ

|c|

)
if c ∈ R with c 6= 0;

(FN5) For all τ ∈ R with τ, θ > 0,

η(ϑ0 + ϑ1, ϑ2, . . . , ϑn, τ + θ) ≥ η(ϑ0, ϑ2, . . . , ϑn, τ) ∗ η(ϑ1, ϑ2, . . . , ϑn, θ);

(FN6) η(ϑ1, ϑ2, . . . , ϑn, .) : E̊3 → E1 is left continuous;
(FN7) limτ→+∞ η(ϑ1, ϑ2, . . . , ϑn, τ) = 1.

Thus, the triple (f, η, ∗) is a symmetric F-n-NLS (see [10–12]).

A complete symmetric F-n-NLS is called symmetric F-n-BS.

Theorem 1 ([9,13–15]). Let (f, η, ∗) be a symmetric F-n-NLS in which ∗ = min and

(FN8) η(ϑ1, ϑ2, . . . , ϑn, τ) > 0 for all τ > 0 implies ϑ1, ϑ2, . . . , ϑn are linearly dependent.

Define

‖ϑ1, ϑ2, . . . , ϑn‖ε := inf[η(ϑ1, ϑ2, . . . , ϑn, τ)]ε, ε ∈ E̊1.

Then {‖•, · · · , •‖ε : ε ∈ E̊1} is an ascending family of fuzzy n-norms
on f.

These fuzzy n-norms will be called the ε-n-norms on f corresponding to the fuzzy n-norm
on f.

We note that some applications can be found on [16,17].
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Remark 1 ([18]). Let ηE : R× E̊3 → E2 be a Euclidean fuzzy norm (Euclidean fuzzy normed
spaces were introduced by the authors in [18]). Then ϑ1, ϑ2, . . . , ϑn ∈ f are linearly independent iff
η(ϑ1, ϑ2, . . . , ϑn, τ) = ηE(1, τ), for any τ > 0.

By the above remark, we have that, ϑ1, ϑ2, . . . , ϑn ∈ f are linearly independent iff

‖ϑ1, ϑ2, . . . , ϑn‖ε = inf{τ : η(ϑ1, ϑ2, . . . , ϑn, τ) ≥ ε, ε ∈ E̊1}
= inf{τ : ηE(1, τ) ≥ ε, ε ∈ E̊1}
= |1|ε.

Consider the probability measure space (z, E̊3, ξ) and let (U, BU) and (S, BS) be Borel
measurable spaces, where U and S are symmetric F-n-BS. If {λ : F (λ, ξ) ∈ B} ∈ E̊3 for
every ξ in U and B ∈ BS, we say F : z×U → S is a random operator. Let 2S be the
family of all subsets of S. The mapping F : z× U → 2S is said to be random multi-
valued operator. A random operator F : z× U → S is said to be linear if F (λ, aξ1 +
bξ2) = aF (λ, ξ1) + bF (λ, ξ2) almost everywhere for each ξ1, ξ2 in U and a, b are scalers,
and bounded if there exists a nonnegative real-valued random variable M(λ) such that

η(F (λ1, ξ1,1)−F (λ1, ξ2,1), · · · ,F (λ1, ξ1,n)−F (λ1, ξ2,n), M(λ)τ)

≥ η(ξ1,1 − ξ2,1, · · · , ξ1,n − ξ2,n, τ),

almost everywhere for each ξ1,j − ξ2,j (j = 1, 2, ...n) in U, τ ∈ E̊3 and λ ∈ z.
Let (Υ, Ω, ‖•, · · · , •‖, L, R) be a symmetric F-n-BS over R with dim Υ ≥ n and ordering

by the cone Ω, i.e., Ω is a closed convex subset of Υ such that γΩ ⊂ Ω for γ ≥ 0, Ω ∩
(−Ω) = {0}, and αp ≤ βp iff βp − αp ∈ Ω for α, β ∈ Υ with α = (α1, α2, . . . , αn), β =
(β1, β2, . . . , βn) and 1 ≤ p ≤ n. For nonempty subsets ∆1, ∆2 of Υ we write ∆1 <2 ∆2 (or,
∆2 42 ∆1) iff for every α ∈ ∆1, we can find a β ∈ ∆2 which αp ≥ βp (or, βp ≤ αp) for
1 ≤ p ≤ n. We say Ω is a normal cone if we can find a constant K > 0 where 0 ≤ αp ≤ βp
for 1 ≤ p ≤ n implies ‖α1, α2, . . . , αn‖ε ≤ K‖β1, β2, . . . , βn‖ε. We note in this paper, we
consider Ω as a normal cone with K = 1. Furthermore,

cc(∆1) = {G ⊂ ∆1 ⊂ Υ : G is nonempty closed convex}

Consider the open convex subset Ξ of Υ, and let ΞΩ = Ω ∩ Ξ, ∂ΩΞ = Ω ∩ ∂Ξ and
�

Ω = Ω\{0}, where ∂Ξ is boundary of Ξ in Υ. The mapping Q3 : z×
(
Ω ∩ Ξ

)
→ cc(Ω)

is said to be compact if Q3(z× ∆2) is relatively compact for any bounded subset ∆2 of
Ω ∩ Ξ, where Q3(z× ∆2) = ∪α∈∆2 Q3(λ, α), for any λ ∈ z. We say a random multi-valued
operator Q3 has the upper semi-continuity property (in short, u.s.c.rmvo) if

{α = (α1, α2, . . . , αn) ∈ Ω ∩ Ξ : Q3(λ, α) ⊂W}

where Ω ∩ Ξ = (Ω ∩ Ξ)◦ and λ ∈ z. Further, if α /∈ Q3(λ, α) for all α = (α1, α2, . . . , αn) ∈
∂ΩΞ and λ ∈ z, the random fixed point index of Q3 in Ξ with respect to Ω is defined which
is an integer denoted by iΩ(Q3, Ξ).

Lemma 1. [2] Let Q3 : z×
(
Ω ∩ Ξ

)
→ cc(Ω) be a compact u.s.c.rmvo. Then

1. iΩ(Q3, Ξ) = 0 if there exists ϕ ∈
�

Ω such that α /∈ Q3(λ, α)+ $ϕ for all α = (α1, α2, . . . , αn) ∈
∂ΩΞ, λ ∈ z and $ ≥ 0.

2. iΩ(Q3, Ξ) = 1 if $α /∈ Q3(λ, α) for all λ ∈ z and $ ≥ 1.

The following results are needed later to obtain a generalization of [19].

Lemma 2. [20] Assume that Q3 : z× E3 ⊂ z× Υ → c(Υ) is a u.s.c.rmvo, (αε, βε) → (α, β)
with βε ∈ Q3(λ, αε) and λ ∈ z. Thus, β ∈ Q3(λ, α).
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Lemma 3. [19] Let Ψ : z× E1×
(
Ω ∩ Ξ

)
→ cc(Ω) be a compact u.s.c.rmvo with α /∈ Ψ(λ, ι, α)

for all (ι, α) ∈ E1 × ∂ΩΞ and λ ∈ z. Then, iΩ(Ψ(λ, 0, .), Ξ) = iΩ(Ψ(λ, 1, .), Ξ).

3. Random Multi-Valued Operator

Lemma 4. Let Q3 : z× E3 ×Ω → cc(Ω) be a compact u.s.c.rmvo and Ξ ⊂ Υ be open with
0 ∈ Ξ. Additionally,

1. ια ∈ Q3(λ, 0, α), for any λ ∈ z, for some α = (α1, α2, . . . , αn) ∈
�

Ω implies ι < 1,
2. i$(Q3(λ, γ, .), Ξ) = 0 if γ is sufficiently large and λ ∈ z.

Then {α = (α1, α2, . . . , αn) ∈ ∂ΩΞ : ∃γ > 0, α ∈ Q3(λ, γ, α)} 6= ∅.

Proof. From the second condition in Lemma 4 we can find γ0 > 0 such that i$(Q3(λ, γ, .), Ξ)
= 0 for all λ ∈ z and γ ≥ γ0. Define

ω = sup{γ > 0 : iΩ(Q3(λ, γ, .), Ξ) 6= 0}.

We first observe that ω > 0. Furthermore,

∀ε > 0, ∃(ιε, αε) ∈ E1 × ∂ΩΞ : αε ∈ (1− ιε)Q3(λ, ε, αε) + ιεQ3(λ, 0, αε). (5)

for any λ ∈ z. Since Q3 is compact, without loss of generality we may assume that
ιε → ι, αε → α when ε→ 0 and λ ∈ z. From (5) by Lemma 2 it follows that

α ∈ (1− ι)Q3(λ, 0, α) + ιQ3(λ, 0, α) ⊂ Q3(λ, 0, α).

This contradicts the first condition in Lemma 4. Thus, there exist ε > 0 such that
(ι, α) /∈ Ψ(λ, ι, α) for all λ ∈ z and (ι, α) ∈ E1 × ∂ΩΞ, where

Ψ(λ, ι, α) = (1− ι)Q3(λ, ε, α) + ιQ3(λ, 0, α).

Using Lemma 3 we have

iΩ(Q3(λ, 0, .), Ξ) = iΩ(Q3(λ, ε, .), Ξ).

Using Lemma 1 implies that iΩ(Q3(λ, 0, .), Ξ) = 1. Thus, iΩ(Q3(λ, ε, .), Ξ) = 1, and we
deduce 0 < ω < γ0, for each λ ∈ z.

Next, for every ε ∈ (0, ω) and λ ∈ z, there exists γε ∈ (ω− ε, ω] with iΩ(Q3(λ, γε, .),
Ξ) 6= 0. Consider the random multi-valued operator Ψε defined by

Ψε(λ, ι, α) = (1− ι)Q3(λ, γε, α) + ιQ3(λ, ω + ε, α).

Now, we prove

{α = (α1, α2, . . . , αn) ∈ ∂ΩΞ : ∃γ > 0, α ∈ Q3(λ, γ, α)} 6= ∅.

Assume the contrary, that

{α = (α1, α2, . . . , αn) ∈ ∂ΩΞ : ∃γ > 0, α ∈ Q3(λ, γ, α)} = ∅. (6)

Then, the random fixed point index of Q3(λ, ω + ε) is well defined, for each λ ∈ z. If

α /∈ Ψε(λ, ι, α) for all (ι, α) ∈ E1 × ∂ΩΞ, (7)

then, by Lemma 3 we obtain

iΩ(Q3(λ, γε, .), Ξ) = iΩ(Q3(λ, ω + ε, .), Ξ), (8)
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for each λ ∈ z, a contradiction. Then, we can find a (ιε, αε) ∈ E1 × ∂ΩΞ satisfying

αε ∈ (1− ιε)Q3(λ, γε, αε) + ιεQ3(λ, ω + ε, αε), (9)

for each λ ∈ z. Similarly, there is a α ∈ ∂ΩΞ with α ∈ Q3(λ, ω, α), which shows (6) is not
true, and completes the proof.

Let
(
Γ, ΩΓ, ‖•, · · · , •‖Γ, L, R

)
be asymmetric F-n-BS over R with dim Υ ≥ n ordered by

the normal cone ΩΓ. Suppose that Υ ⊂ Γ, Ω ⊂ ΩΓ ∩ Υ, the embedding (Υ, ‖•, · · · , •‖ε) ↪→(
Γ, ‖•, · · · , •‖Γ

ε

)
is continuous, and Q1 : z× E3 ×Ω → cc(ΩΓ) is a compact u.s.c.rmvo.

Assume Φ : z× Γ→ Υ is a compact random linear operator satisfying Φ(λ, ΩΓ) ⊂ Ω such
that Φ = (Φ1, Φ2, . . . , Φn), for each λ ∈ z.

Theorem 2. Let

1. $α ∈ Φ ◦Q1(λ, 0, α), for any λ ∈ z, for some α = (α1, α2, . . . , αn) ∈
�

Ω implies $ < 1;
2. we can find positive numbers a1, a2, a3 and a random linear operator Q4 : z× Γ→ R+ with

Q4(λ, β) 6= 0, for any λ ∈ z, for some β = (β1, β2, . . . , βn) ∈ Ω such that

(a) Q4Φ(λ, α) <2 {a1Q4(λ, α)} and

Q4Φ(λ, α) <2 {a1.‖(Φ1, Φ2, . . . , Φn)(λ, α)‖Γ
ε},

for all λ ∈ z and α = (α1, α2, . . . , αn) ∈ ΩΓ,
(b) Q4(λ, Q1(λ, γ, α)) <2 {a2γQ4(λ, α)− a3} for all λ ∈ z, α = (α1, α2, . . . , αn) ∈

Ω, and
(c) we can find an increasing map ( on the second part) v : R+ ×R+ → R such that

lim
γ→∞

v(γ,
a3

a1a2γ− 1
) = 0 (10)

such that ($, γ, α) ∈ E1 × E3 ×Ω with

α ∈ $Φ ◦Q1(λ, γ, α) + (1− $)a2γΦ(λ, α) (11)

implies
‖(α1, α2, . . . , αn)‖ε ≤ v(γ, ‖(α1, α2, . . . , αn)‖Γ

ε). (12)

Then
U = {α = (α1, α2, . . . , αn) ∈

�
Ω : ∃γ > 0, α ∈ Φ ◦Q1(λ, γ, α)},

is an unbounded continuous branch emanating from 0, for each λ ∈ z.

Proof. Suppose Ξ ⊂ Υ is open and bounded where 0 ∈ Ξ. We use Lemma 4 with
Q3(λ, γ, α) = Φ ◦ Q1(λ, γ, α) to show U ∩ ∂ΩΞ 6= ∅, for any λ ∈ z. Clearly, condi-
tion 1 of Lemma 4 holds. Assume that ($, γ, α) ∈ E1 × E3 × Ω satisfies (11), so α ∈
Φ(λ, $Q1(λ, γ, α) + (1− $)a2γα), hence, α = Φ(λ, $βγ + (1− $)a2γα), for any λ ∈ z,
for some βγ ∈ Q1(λ, γ, α). By 2(a) and 2(b) we have

Q4(λ, α) ≥ a1Q4(λ, $βγ + (1− $)a2γα) ≥ a1(a2γQ4(λ, α)− a3), (13)

and

Q4(λ, α) ≥ a1‖(Φ1, Φ2, . . . , Φn)(λ, $βγ + (1− $)a2γα)‖Γ
ε (14)

= a1‖(α1, α2, . . . , αn)‖Γ
ε ,

for each λ ∈ z. For sufficiently large γ, (13) and (14) we conclude that

‖(α1, α2, . . . , αn)‖Γ
ε ≤

a3

a1a2γ− 1
,
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which combining with (12) gives

‖(α1, α2, . . . , αn)‖ε ≤ v(γ,
a3

a1a2γ− 1
), (15)

for each λ ∈ z. If α = (α1, α2, . . . , αn) ∈ ∂ΩΞ, 0 < ε < a2‖(α1, α2, . . . , αn)‖ε for some
ε. From (15), (11) it follows that α = (α1, α2, . . . , αn) /∈ Ψ(λ, $, α) for all λ ∈ z and
($, α = (α1, α2, . . . , αn)) ∈ E1 × ∂ΩΞ, where Ψ(λ, $, α) = $Φ ◦ Q1(λ, γ, α) + (1− $)a2γα.
Applying Lemma 1 we obtain iΩ(Q3(λ, γ, Ξ)) = iΩ(φ, Ξ), here φ(α) = a2γα, and therefore
iΩ(Q3(λ, γ, .), Ξ) = 0, so condition 2 of Lemma 4 holds. The proof is complete.

4. Applications

In this section, we study an uncertain case of a control problem. For it, we consider the
compact u.s.c. rmvo Q1 : z× E3 ×R+ → cc(R+) and the continuous map µ : R+ → R+.
We consider the following control problem which contains a parameter:

ϕ′′(λ, ι) + ν(γ, ι)µ(ϕ(λ, ι)) = 0, ι ∈ E̊1,
ν(γ, ι) ∈ Q1(λ, γ, ϕ(λ, ι)) a.e. on E1
ϕ(λ, 0) = 0, ϕ(λ, 1) = ∑n

p=1 ωp ϕ(λ, ςp)
(16)

where ςp ∈ E̊1, 0 ≤ ωp, ∑n
p=1 ωpςp < 1 and λ ∈ z.

Denote Θ = ∑n
p=1 ωpςp for every (ι, κ) ∈ E1 × E1, and let

v(ι, κ) =

{
κ(1− ι), κ ≤ ι,
ι(1− κ), κ > ι

Q5(ι, κ) =
ι

1−Θ

n

∑
p=1

ωpv(ςp, κ) + v(ι, κ);

Let C(E1), resp., C1(E1), be the symmetric F-n-BS of all continuous, resp., continuously
differentiable, functions on E1. Denote

Υ =
{

α = (α1, α2, . . . , αn) ∈ C1(E1) : α(0) = 0
}

,

and
Γ = {α = (α1, α2, . . . , αn) ∈ C(E1) : α(0) = 0}.

Let Φ : z× Γ→ Υ be a random linear operator (Φ = (Φ1, Φ2, . . . , Φn)) defined by

Φ(λ, ϕ)(ι) =
∫ 1

0
Q5(ι, κ)ϕ(λ, κ)dκ, (17)

for each ι ∈ E1 and λ ∈ z. We solve

α = (α1, α2, . . . , αn) ∈ Φ ◦Q3(λ, γ, α), (18)

where the random multi-valued operator Q3 is defined by

Q3(λ, γ, α)(ι) = Q1(λ, γ, α(ι))µ(α(ι)),

for each ι ∈ E1 and λ ∈ z, since it is equivalent (17).

Theorem 3. Let b1 =
{

supι∈E1

∫ 1
0 Q5(ι, κ)dκ

}−1
. Suppose we can find b2 > 0, b3 > 0, b4 ∈

(0, b1), λ ∈ z and s ∈ (0, 2) such that

1. Q1(λ, 0, α)µ(α) 42 γα, α = (α1, α2, . . . , αn) > 0,
2. b2γα− b3 42 Q1(λ, γ, α)µ(α),
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3. Q1(λ, γ, α) 42 1 + γ
s
2 |α|s for all (γ, α) ∈ E̊3 ×R+.

Thus, the positive fuzzy solution set U for (18) is unbounded continuous in C1(E1), originat-
ing from 0.

Proof. Use Theorem 2 and cones

Ω = {α = (α1, α2, . . . , αn) ∈ Υ : α(ι) ≥ 0, ι ∈ E1},

and
ΩΓ = {α = (α1, α2, . . . , αn) ∈ Γ : α(ι) ≥ 0, ι ∈ E1}.

Then, Γ and Υ, resp., are symmetric F-n-BSs with the norms

‖(α1, α2, . . . , αn)‖Γ
ε = sup

ι∈E1

‖(α1, α2, . . . , αn)(ι)‖ε,

and
‖(α1, α2, . . . , αn)‖ε = ‖(α1, α2, . . . , αn)

′‖Γ
ε .

Suppose α = (α1, α2, . . . , αn) ∈
�

Ω, λ ∈ z and $ satisfies $α ∈ Φ ◦ Q3(λ, 0, α), so we
can find ϕ(λ, κ) ∈ Q1(λ, 0, α(κ)) such that

|$α(ι)| =

∣∣∣∣∫ 1

0
Q5(ι, κ)ϕ(λ, κ)µ(α(κ))dκ

∣∣∣∣
≤ b4‖(α1, α2, . . . , αn)‖Γ

ε

∣∣∣∣∫ 1

0
Q5(ι, κ)dκ

∣∣∣∣
≤ ‖(α1, α2, . . . , αn)‖Γ

ε ,

for each ι ∈ E1 and λ ∈ z. Then $ < 1. By [21], we can conclude that the compact random
linear operator Φ have an eigen-value $0 > 0 and a positive eigen-map ϕ0. Define the
random linear operator Q4 on Γ, by Q4(λ, α) =

∫ 1
0 α(κ)ϕ0(κ)dκ. From condition 2. we have

Q4(λ, Q3(λ, γ, α)) <2

∫ 1

0
(b2γα(κ)− b3)ϕ0(κ)dκ

≥ b2γQ4(λ, α)− a3,

for each λ ∈ z; here a3 = b3
∫ 1

0 ϕ0(κ)dκ. When β = (β1, β2, . . . , βn) in which β(0) = 0 and
β(1) ≥ 0, then we can find a number b5 > 0 such that β(ι) ≥ b5‖(β1, β2, . . . , βn)‖Γ

ε ϕ0(ι)
on E1. For α = (α1, α2, . . . , αn) ∈ ΩΓ, Φα is a concave function with Φα(λ, 0) = 0 and
Φα(λ, 1) ≥ 0, and we have Φα(λ, ι) ≥ b5‖(Φ1, Φ2, . . . , Φn)(λ, α)‖Γ

ε ϕ0(ι), for each λ ∈ z.
From Fubini’s Theorem it follows that

Q4(λ, Φ(λ, α)) =
∫ 1

0

(∫ 1

0
Q5(ι, κ)α(κ)dκ

)
ϕ0(ι)dι

=
∫ ∫

E1×E1

Q5(ι, κ)α(κ)ϕ0(ι)dκdι

=
∫ 1

0

(∫ 1

0
Q5(ι, κ)ϕ0(ι)dι

)
α(κ)dκ

=
∫ 1

0
Φϕ0(λ, κ)α(κ)dκ

= $0

∫ 1

0
ϕ0(κ)α(κ)dκ

= $0Q4(λ, α),
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for each λ ∈ z. Consequently, there is constant a1 > 0 satisfying

Q4(λ, Φ(λ, α)) ≥ a1Q4(λ, α) and Q4(λ, Φ(λ, α)) ≥ a1‖(Φ1, Φ2, . . . , Φn)(λ, b2)‖Γ
ε , (19)

for each λ ∈ z. Now, assume ($, γ, α) ∈ E1 × E3 ×Ω with

α ∈ $Φ ◦Q3(λ, γ, α) + (1− $)b2γΦ(λ, α). (20)

This implies
− α′′ ∈ $Q3(λ, γ, α) + (1− $)b2γα, (21)

for each λ ∈ z. Now, nq, q = 0, 1, 2, . . . , 6 and n are constant, not depending on γ, α and
ι ∈ E1. Using Theorem 2 implies that

‖(α1, α2, . . . , αn)‖Γ
ε ≤

a3

a1b2γ− 1
.

Therefore we can choose n1 such that

γ‖(α1, α2, . . . , αn)‖Γ
ε ≤ n1. (22)

From (22), the well-known inequality(
‖(α1, α2, . . . , αn)

′‖Γ
ε

)2
≤ n2‖(α1, α2, . . . , αn)‖Γ

ε .‖(α1, α2, . . . , αn)
′′‖Γ

ε (23)

and (21) we obtain

‖(α1, α2, . . . , αn)
′′‖Γ

ε ≤ n3

(
1 + γ

s
2

(
‖(α1, α2, . . . , αn)‖Γ

ε

)s)
+ b2n1

≤ n4

(
1 + γ

s
2

(
‖(α1, α2, . . . , αn)‖Γ

ε

)s)
. (24)

Furthermore, for α = (α1, α2, . . . , αn) ∈ Ω, we have

‖(α1, α2, . . . , αn)‖Γ
ε ≤ n0‖(α1, α2, . . . , αn)

′‖Γ
ε . (25)

Combining the inequalities, (22), (23), (24) and (25) we get

‖(α1, α2, . . . , αn)
′′‖Γ

ε ≤ n5(1 +
(
‖(α1, α2, . . . , αn)

′′‖Γ
ε

) s
2
) ≤ n6. (26)

From (23) we can choose n such that

‖(α1, α2, . . . , αn)
′‖Γ

ε ≤ n
(
‖(α1, α2, . . . , αn)‖Γ

ε

) 1
2 .

Since ‖(α1, α2, . . . , αn)‖ε = ‖(α1, α2, . . . , αn)
′‖Γ

ε we have condition (2c) of Theorem 2
satisfied with the function v(γ, ι) = nι

1
2 .

5. Conclusions

In this paper, using a generalized norm which has a dynamic case and is inspired
by a random norm and fuzzy sets, we introduced a symmetric F-n-NLS to study the
existence, and unbounded continuity of the solution set of random multi-valued equation
containing a parameter. These results allow us to consider an uncertain control problem.
The applied procedure can hopefully be useful in the future to consider other types of fuzzy
control problems.
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