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Abstract: The isospin chemical potential region is known as the sign-problem-free region of quantum
chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-
dimensional three-state Potts model to mimic dense QCD; e.g., the QCD effective model with heavy
quarks at finite density. We call it the QCD-like Potts model. The QCD-like Potts model does not
have a sign problem, but we expect it to share some properties with QCD. Since we can obtain the
non-approximated Potts spin configuration at finite isospin chemical potential, where the simple
Metropolis algorithm can work, we perform the persistent homology analysis toward exploring the
dense spatial structure of QCD. We show that the averaged birth-death ratio has the same information
with the Polyakov loop, but the maximum birth-death ratio has additional information near the phase
transition where the birth-death ratio means the ratio of the creation time of a hole and its vanishing
time based on the persistent homology.

Keywords: QCD-like Potts model; persistent homology; confinement–deconfinement transition

1. Introduction

Elucidating the phase structure of Quantum Chromodynamics (QCD) at finite tem-
perature (T) and real chemical potential (µR) is an interesting and important subject for
elementary, nuclear, and hadron physics. Unfortunately, there is the sign problem in QCD at
finite µR, and thus, we cannot have a reliable QCD phase diagram yet; for example, see [1]
for details of the sign problem. Several approaches have been proposed so far to tackle the
sign problem, but the sign problem is not resolved satisfactorily in QCD at present.

To avoid the sign problem, one possibility is to employ the QCD effective models.
Since the sign problem is strongly related to the correlation between the gauge field and
the chemical potential in the Dirac operator, simplifications of the gauge field dynamics
sometimes weaken the sign problem. For example, the simplest Nambu–Jona-Lasinio (NJL)
model [2] does not have the sign problem at finite density. Of course, such simplification
loses some properties of QCD, but we can learn several important lessons from the models.
It should be noted that the sign problem can still remain even if we simplify the gluon
dynamics; it depends on how much original nature of QCD is restored.

The Potts model with a properly constructed external field is the well-known QCD
effective model with heavy quarks; for example, see [3] for details of the Potts model. The
external field consists of the quark mass and the chemical potential, and thus, there is a sign
problem at finite µR even if it is weaker than the original QCD. There are several attempts
to avoid and/or weaken the sign problem appearing in the Potts model [4,5].

There is the analytic expectation that there is a crystalline structure in a certain parame-
ter region in the low-dimensional Potts model with the external field via the transfer matrix
approach; see [6] and references therein. However, the existence of such a non-trivial
spatial structure is not yet confirmed in the higher-dimensional system [7]. The Potts model
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can be regarded as the QCD effective model with heavy quarks, and thus, we may expect
a non-trivial spatial structure even in QCD if it exists. In this paper, we try to sidestep
the sign problem and investigate the possibility of non-trivial spatial structure from the
topological viewpoint.

There are some approaches to weaken the sign problem in QCD and in some other
theories/models at moderate µR with low T. Famous examples are the complexification of
dynamical variables such as the comlpex Langevin dynamics [8,9], the Lefshcetz thimble
method [10,11], and the path optimization method [12,13] . In addition, we can discuss the
region using the canonical approach [14–21], partially. However, those methods are not
perfect yet, and therefore, it is difficult to apply those methods in the whole µR region.

In this study, we introduce the isospin chemical potential (µiso) to the Potts model and
investigate its spatial structure to mimic the dense QCD system with heavy quarks. The
important point is that it is known that the µR region and the µiso region are equivalent
in the region where pion condensation does not appear at least in the large Nc limit
where Nc means the number of colors; see [22] as an example. This indicates that we
can approximately investigate the µR region via the µiso region in the model. Since we
can resolve the sign problem in the Potts model at a finite µiso, we perform the persistent
homology analysis [23,24].

The persistent homology analysis has been applied to the QCD effective model, e.g., the
effective Polyakov-line model [25], and it is expected to be useful to investigate the spatial
structure such as the center cluster structure; see [26–28] for details of the center cluster. In this
study, we investigate the question of whether there is a non-trivial spatial structure or not at
finite density via the QCD-like Potts model. This study is a first step in investigating the spatial
structure of QCD at finite density with persistent homology. Actually, there are several studies
which use the persistent homology to investigate the phase transition [29–34]. In these papers,
the authors try to detect and investigate phase transition appearing in the condensed matter
system by using the persistent homology. In addition, there are some other applications in
several research fields, such as the string landscape and the structure of the universe [35,36]. We
work in the same direction as [29–32].

This paper is organized as follows. In the next Section 2, we show the formalism
of the Potts model with the isospin chemical potential. In addition, we briefly explain
the persistent homology analysis. Section 3 shows our numerical results and Section 4 is
devoted to the summary.

2. Formalism

In this paper, we employ the three-dimensional three-state Potts model with the
external field as the QCD effective model with heavy quarks; see [37–39] for details of the
relation between the Potts model and QCD. Here, we summarize the Potts model and its
extension to include the isospin chemical potential. Some problems for the Potts model
with the complexification of dynamical variables are discussed in Appendix A.

2.1. QCD-like Potts Model

In this subsection, we summarize theoretical insights into the Potts model and its extension.

2.1.1. Standard Potts Model with External Field

The Potts-model energy with the external field is given by

E = −κ ∑
x,i

δkxkx+i − h ∑
x

kx, (1)

where i means the unit vector in the three-dimensional space, κ denotes the coupling
constant, h is the external magnetic field, and kx are ZQ values which take 0, 1, · · · , Q− 1 at
site x. This model is the so-called Q-state Potts model. In this study, we impose the periodic
boundary condition for Potts spins.
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If κ is positive, the first term in Equation (1) makes spins align to the same direction.
In the case with negative κ, nearest-neighbor spins favor the different direction. The last
term explicitly breaks the ZQ symmetry of the system.

2.1.2. Map of Chemical Potential to External Field

To make the Potts model relate to QCD, we here consider following extension of the
Potts energy based on [37];

E = −κ ∑
x,i

δΦxΦx+i − Nf ∑
x

(
h+Φx + h−Φ̄x

)
, (2)

where Nf denotes the number of flavors where we assume that all the flavors are degenerate,
h± is the external field explained in Equation (3), and Φx (Φ̄x) means the Z3 values (its
conjugate) at each site shown in Equation (4); it corresponds to the Polyakov loop in QCD
where the number of colors is set to 3. The color structure is encoded in the functional form
of Φ and Φ̄. For Nf, we set it to 2 in all the calculations in this paper. Since Potts spins
are defined on the lattice, we put the space index x as the subscript of Φ unlike the QCD
case (A1). The relations between the Potts model and QCD are clearly shown in [37–39].
This model is sometimes referred to as the three-dimensional Z3 spin model [7].

The external fields consist of the quark mass and the chemical potential as

h± = e−β(M∓µR), (3)

which is induced from the fermion determinant in the QCD partition function; see Appendix
in [39] for details. If the quark mass is sufficiently large in QCD, the three-dimensional
three-state Potts model with the external field can be treated as the effective model of QCD
at finite T and µR.

In this study, the Potts spin at the site x is taken to be kx = 0, 1, 2, and then, the
Polyakov loop and its conjugate are defined as

Φx = ei2πkx/3, Φ̄x = e−i2πkx/3. (4)

Therefore, the spatial averaged values are defined as

Φ =
1
V ∑

x
Φx, Φ̄ =

1
V ∑

x
Φ̄x, (5)

where V is the spatial volume of the lattice system, V = L3. It should be noted that this
functional form (4) is just valid in the Potts model: we can easily understand that the
Polyakov loop in the Potts model mimics the Polyakov loop in QCD by using the setting
θ3 = 0 and θ8 = 2πk/3 with k = 0, 1, 2 from Equations (A1)–(A3). Therefore, the Potts
model qualitatively captures the behavior of the Polyakov loop in QCD by using certain
values of θ8; θ8 = 2πkx/3.

2.1.3. Extension to Isospin Chemical Potential

One possibility to obtain the spin configurations at finite density even if those are
approximated configurations, the isospin chemical potential (µiso) is a good candidate;
we set µu = µR and µd = −µR in the two-flavor (u, d) system. In this setting, the quark
number density is always zero, but the isospin density can be nonzero. In the realistic
system, the isospin chemical potential relates to the realistic up and down quarks, but here,
we consider the system with two-kind of heavy quarks and these heavy quarks are de-
generated. Thus, the present isospin chemical potential just indicates the asymmetry of
heavy quarks. We will discuss the realistic isospin chemical potential elsewhere with a
more suitable model.



Symmetry 2022, 14, 1783 4 of 16

If the pion and diquark condensates appear, the system with µiso shows the difference
with that with µR, but the systems share similar properties when they do not appear in the
systems. In this paper, we are interested in the system with the heavy quarks, and thus,
both condensations can be neglected. Therefore, we here employ the system with µiso to
investigate the spatial structure of the spin configuration of Potts model at finite density.
The Potts energy with µiso is then given by

Eiso = −κ ∑
x,i

δΦxΦx+i −∑
x

[
(h+Φx + h−Φ̄x) + (h−Φx + h+Φ̄x)

]
= −κ ∑

x,i
δΦxΦx+i −∑

x

[
h+(Φx + Φ̄x) + h−(Φx + Φ̄x)

]
= −κ ∑

x,i
δΦxΦx+i − Nf ∑

x

[
(h+ + h−) cos(Φx)

]
∈ R. (6)

Since the external field term facilitates k = 0 for the spin configuration, it mimics the
behavior of Φ = Φ̄ → 1 with µR → ∞. Of course, Φ = Φ̄ → 0 with κ → 0 and µR → 0 is
naturally obtained. Therefore, we have these desirable behaviors from the isospin chemical
potential in the Potts model, and these are in sharp contrast with the complexfied Potts
model discussed in Appendix A.

In the Potts model, we do not introduce the chiral, diquark, and also the pion conden-
sation, and thus, the µR and µiso regions are expected to be almost consistent with each
other based on the knowledge obtained in the orbifold equivalence; for example, see [22].
This fact indicates that we can approximately obtain the Potts spin configuration with µR
via the µiso region, and then, we can investigate the dense spatial structure, approximately.

2.2. Observables

The most simple quantity that can clarify the system change is the spatially averaged
Polyakov loop defined as

〈Φ〉 =
〈 1

V ∑
x

Φx

〉
, (7)

where 〈· · · 〉means the value averaged by the configuration. This quantity can represent
the bulk properties of the system, but it cannot see the non-trivial spatial structure.

To investigate the spatial structure of the system, one possible quantity is the spatial
correlator of the Polyakov loop, which may be fitted as

〈Φ0Φ†
r 〉 ∼ e−mRr cos(mIr), (8)

where Φ0 means the Polyakov loop at the origin, mR,I can be interpreted as the real and
imaginary part of the effective mass of Potts spins and r is the Euclidean distance between
two Polyakov-loop operators, r =

√
x2 + y2 + z2. At the critical point, the form of the

fitting function is slightly modified. However, the rotational symmetry is explicitly broken
by the lattice discretization, and also, since we do not know the actual functional form of
the oscillating mode, we consider the correlator for the x-direction in this paper. From the
spatial correlator, we can investigate the simple spatial structures of the system such as the
periodic spatial oscillation (inhomogeneity); see [40] for the case of the 1 + 1 dimensional
Gross–Neveu model as an example. Actually, we calculate 〈 f (Φ0) f (Φx)〉 where f (A)
means Re or Im of A. Unfortunately, these quantities are usually noisy, and thus, we need
good statistics.

In addition to the above quantities, we consider the persistent homology to investigate
whether there is complicated spatial structure of the system or not. Some details of persis-
tent homology are explained in the next Section 2.3. A good point is that this quantity is
less noisy than the spatial correlator since it is directly related with the topological structure
of the data.
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In the next subsection, we briefly explain the persistent homology, but the procedure
is almost the same with that presented in [25].

2.3. Persistent Homology Analysis

In this study, we employ the persistent homology to investigate the spatial structure
of the model at finite density: persistent homology is known to clarify non-trivial spatial
structures [29,41,42] and also hidden order [30]. In the numerical estimation of persistent
homology, we use the homcloud [43]. Since the persistent homology is a complicated
mathematical concept, we only show a brief explanation here. If the reader is interested
in mathematical details of the persistent homology, see the text and conceptual figures in
Section II of [25] and references therein.

2.3.1. Setting of Data Space

In the QCD-like Potts model, there are three independent directions of spin degrees of
freedom for each site. Let us consider the datasets A, B, and C; we save the spatial structure
for the datasets. For sites with k = 0 spin, the corresponding data (coordinate data) are
“ON” (occupied) in the dataset A, but other sites in the dataset A are “OFF” (empty) if k 6= 0
spins are realized. Via the setting, we can save the spatial structure for k = 0 spins into the
dataset A. Similarly, we can save the spatial structure for the k = 1 and k = 2 spins in the
datasets B and C, respectively.

In the case of the Polyakov line model analyzed in [25], we need to divide the Polyakov
loop into three domains based on the center symmetry and construct the datasets A, B and
C. In the QCD-like Potts model, however, we can simply divide the data space into three
datasets because the Potts spins are discrete Z3 quantities by definition.

2.3.2. Birth and Death Times of Holes

After setting the datasets A, B and C, we can consider filtration for each data point,
and filtration leads to persistent homology. In persistent homology analysis, we consider
the r-ball model. The ball has the radius r for each data point which is corresponding to
occupied sites. The center of each ball is set to the position of each site. The value of r
is controlled by the fictitious time t. When r is sufficiently small (t is small), each ball is
isolated, but the neighborhood balls overlap when r becomes large (t is large). Therefore,
there should be a time when the hole appears for the overlapped balls; this time is called the
birth time, tB. Of course, such a hole will be vanish when r becomes sufficiently large; this
time is the so-called death time, tD. Unfortunately, the construction of r balls is numerically
difficult, and thus, we employ the alpha complex to approximate the r-ball model; see [25]
for details of the alpha complex as an example. Then, the birth and death times are related
to the squared radius of the ball, r2.

Figure 1 shows the persistent diagram for randomly distributed data as an example.
Here, about 33%, 40%, 50%, and 60% of the sites are occupied from the top-left to the right-
bottom panel. The situation with occupation 33% corresponds to the ideal confined phase
where non-trivial spatial structures are absent, and thus, deviations from the randomly
distributed case should be related with the confinement–deconfinement nature and also
the spatial non-trivial structure. In the case of the uniform distributed data which means
that all sites are occupied, there are only the trivial holes; the actual value of the birth and
death times for the trivial holes are tB = 0.5 and tD = 0.75, respectively. Those trivial holes
can be easily imaged from the system where all sites are occupied; the system consists of
the smallest cubes. This situation corresponds to the ideal deconfined phase for the k = 0
spins in this lattice model. The dominant hole structures are clarified in [25] in the confined
phase at low κ and zero density.
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Figure 1. The persistent diagram for randomly distributed data in the 303 squared lattice system as a
function of the birth and death times. The occupation ratio of the system is about 33%, 40%, 50%, and
60% from the top-left→ top-right→ left bottom→ right-bottom panels, respectively. In the legend,
Value means the number of data points which appear at the same point.

2.3.3. Ratio of Birth and Death Times

Since the persistent diagram, which is the two-dimensional diagram, is not conve-
nient in the lattice simulation because we must take the configuration average, the two-
dimensional diagram is obtained for each configuration. To simply visualize the persistent
diagram, the averaged ratio of birth and death times have been proposed in [25];

R =
〈 1

Nh
∑

i

tD,i

tB,i

〉
, (9)

where Nh is the number of all possible holes and ∑i means that we sum up tD/tB for all possible
holes. In this study, we show this ratio in addition to the standard persistent diagram.

However, the simple definition of the average ratio (9) may not be good because
relatively trivial holes that appear near the diagonal line on the persistent diagram can
dominate R; it is known that distant data from the diagonal line usually have meaningful
non-trivial spatial structures. Therefore, we will investigate the maximum ratio for all
possible holes in Section 3 in addition to the above average ratio. Such a maximum ratio is
expected to be relevant for the non-trivial large spatial structure.

3. Numerical Results

In this study, we used the squared V = L3 = 303 lattice system. We generate 103

configurations for each L3 update (1 Monte Carlo step) after thermalization using the standard
Metropolis algorithm; the transition probability (P) for acceptance or rejection of the single
spin flip is defined as P = min[1, exp(−β∆Eiso)] where β is the inverse temperature β = 1/T
and ∆Eiso is the energy difference about the single spin flip. The lattice spacing is set to a = 1.
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Statistical errors are estimated using the Jackknife method. For the random number generation,
we employ the Mersenne Twister algorithm [44]. The mass parameter M and the temperature
T are set to 10 and 1 throughout the calculation, respectively.

Figure 2 shows the Monte Carlo evolution of the spatially averaged Polyakov loop. The
left-side (right-side) panel is the result with κ = 0.6 and µiso = 2 (κ = 0.6 and µ = 6) after
thermalization as a typical example. This figure means that we can generate configurations
well even at finite µiso.
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Figure 2. The Monte Carlo evolution of the spatial averaged Polyakov loop after thermalization. The
left (right) panel is the result with κ = 0.6 and µiso = 2 (κ = 0.6 and µiso = 6). Each symbol is the
result with corresponding configuration which is obtained via the standard Metropolis algorithm.
The horizontal axis t means the label number of configurations.

3.1. Basic Phase Structure

Figure 3 shows the κ-dependence of the Polyakov loop with µiso = 0, 6, 7, and 8.
Statistical errors are small, and therefore, the error bars are in the symbols. Because of the
finite-size effect, the phase transitions are smeared if they exist in the thermodynamic limit.
In the Potts model, κ is treated as the temperature, and thus, we can see the increasing
behavior of 〈Φ〉 with increasing κ. In addition, 〈Φ〉 increases with increasing µiso as we
expected: since µiso enhances the explicit Z3 symmetry breaking and it leads nonzero
〈Φ〉, the first-order thermal phase transition is weakened when µiso becomes large. In the
present model, statistical errors are under control for each µiso. Therefore, we can think that
the present QCD-like Potts model shares several properties with thermal and dense QCD
matter with heavy quarks, and thus, it is a convenient model in this study. It is noted again
that the QCD-like Potts model does not have the sign problem, and thus, we can have exact
Potts spin configurations.

Figure 4 shows the mean value of the Polyakov loop in the µiso-κ plane. Statistical
errors estimated using the Jackknife method are quite small, and thus, we do not show
them here. We can clearly see the κ- and the µiso-dependence of 〈Φ〉 from the figure,
and the behavior is well matched with our expectation in dense QCD with heavy quarks.
At low µiso, there is a first-order thermal transition, but not at large µiso because the µiso-
contribution explicitly breaks the Z3 symmetry as explained above. This indicates that
there should be the second-order transition point, which is the critical endpoint at finite κ
and µiso. In the next subsection, we discuss the spatial structure at finite µiso.
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Figure 3. The κ-dependence of the Polyakov loop. The open circle, diamond, square, and triangle
symbols are results with µiso = 0, 6, 7 and 8, respectively. Lines are just eye guides.
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Figure 4. The mean value of Polyakov loop on the µiso-κ plane. Statistical errors are small, and thus,
we do not show them here.

3.2. Spatial Structure

In this section, we investigate the spatial structure at finite µiso using spatial correlators
and persistent homology. Figure 5 shows the spatial correlators for Re Φ and Im Φ at
µiso = 5 with κ = 0.3, 0.4, 0.5, and 0.6 from the top to the bottom panel. Left (right) panels
are result of the spatial correlator for the real (imaginary) part of the Polyakov loop. Since
the Polyakov loop is a complex quantity, the correlator must be complex. Therefore, we
here show the real and imaginary parts individually. The spatial correlators are very noisy
compared to the Polyakov loop with the present statistics. From the figures, we cannot
see a clear tendency of the spatial oscillation within the interval 2σ; we may expect the
non-trivial structure around κ = 0.5 if it exists.
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Figure 5. The spatial correlators for the x-direction at µiso = 5 with κ = 0.3, 0.4, 0.5, and 0.6 from the
top to the bottom panel, respectively. The left and right panels show the spatial correlators for the
real and imaginary parts of the Polyakov loop, respectively.

Figure 6 shows persistent diagrams at κ = 0.3, 0.4, 0.5, and 0.6 with µiso = 0. The
persistent homology analysis then detects the phase transition from sudden change of the
persistent diagram. In addition, from the figures, we can see the qualitative difference
at intermediate κ. When we compare the results with κ = 0.3 and 0.6, the distribution
appears to simply shrink, but the distribution is temporally enlarged at intermediate κ.
This means that possible types of holes are changed, and finally, only trivial cubes persist.
This indicates that the system forms the cluster-like structure at intermediate κ because
the QCD-like Potts model has the first-order thermal phase transition at µiso = 0 in the
thermodynamic limit.

Figure 7 shows the persistent diagrams at κ = 0.3, 0.4, 0.5, and 0.6 with µiso = 5 as an
example of the intermediate µiso case. From these figures, we can see the similar tendency
of Figure 6 at intermediate κ, but we will see that the maximum birth-death ration is not
changed so much unlike the result with µiso = 0 ; details are discussed later.
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Figure 6. The persistent diagram at µ = 0 for k = 0 spins; e.g., the dataset A. Panels are results with
κ = 0.3, 0.4, 0.5, and 0.6 for one particular configuration from the left-top→ right-top→ left-bottom
→ the right-bottom panels, respectively.
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Figure 7. The persistent diagram at µ = 5 for k = 0 spins; e.g., the dataset A. Panels are results with
κ = 0.3, 0.4, 0.5, and 0.6 for one particular configuration from the left-top→ right-top→ left-bottom
→ right-bottom panels, respectively.
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Figure 8 shows the persistent diagrams with µiso = 2, 4, 6, and 8 with κ = 0.2. There
are no non-trivial changes at finite µiso. This indicates that there is no first-order phase
transition and also no non-trivial spatial structure; we can expect that the crossover is
realized along the µiso direction at κ = 0.2. Actually, the chiral symmetry is not present in
this model, and thus, there are no mechanisms which enhance the phase transition at low κ.
To investigate the persistent homology more deeply, we next consider the averaged ratio
and the maximum ratio of the birth and the death time.

0 2 4 6 8 10
Birth

0

2

4

6

8

10

De
at
h

100

101

102

103

Va
lu
e

0 2 4 6 8 10
Birth

0

2

4

6

8

10

De
at
h

100

101

102

103

Va
lu
e

0 2 4 6 8 10
Birth

0

2

4

6

8

10

De
at
h

100

101

102

103

Va
lu
e

0 2 4 6 8 10
Birth

0

2

4

6

8

10

De
at
h

100

101

102

103

Va
lu
e

Figure 8. The persistent diagram at κ = 0.2 for k = 0 spins; e.g., the dataset A. Panels are results with
µiso = 2, 4, 6, and 8 for one particular configuration from the left-top→ right-top→ left-bottom→
right-bottom panels, respectively.

The above persistent diagrams are obtained by using one particular configuration,
and thus, we show the result of the ratio of birth and death times with the configuration
average in Figure 9. Statistical errors are small, and thus, they are hidden in the symbols.
The averaged ratio of birth and death times is shown in the top panel of Figure 9; we can
expect that the averaged ratio is responsible for the bulk properties of the system. From
the upper panel of the figure, we can see the clear tendency of the first-order transition
at small µiso from the steep change in the averaged ratio. Since the holes which have
distinct ratio from the diagonal line on the persistent diagram are responsible for important
spatial structures in the persistent homology analysis, we also show the maximum ratio at
µiso = 0, 5, 6 and 7. At low µiso, the maximum ratio temporally decreases at intermediate
κ and it has a peak after its decreasing behavior ends. This indicates that small spatial
structures are developed as we approach the first-order transition and after larger spatial
structures are formed. Interestingly, we can find the flat region with increasing κ at
intermediate µiso ∼ 5. In this region, there is no change of the topological (large spatial)
structure of the system and it may indicate the critical endpoint because the enhancement of
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the correlation length is expected, and then, the topological structure may not be changed so
much; there may be the block-spin transformation invariance for the large spatial structure.
This also indicates that there are no non-trivial spatial structures such as the oscillation near
the critical endpoint, at least, in this model.
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Figure 9. The κ-dependence of the mean value of the birth-death ratio with µiso = 0, 5, 6, and 7
where we take the configuration average. The top and bottom panels are the result of the averaged
birth-death ratio (R) and the maximum birth-death ratio (Rmax), respectively. The open circle,
diamond, square and triangle symbols are results with µiso = 0, 5, 6, and 7, respectively. Lines are
just eye guides.

Finally, we show the ratio of birth and death times for each (κ, µiso) in Figure 10.
The left and right panels show the averaged ratio (R) and the maximum ratio (Rmax),
respectively. From the panels, we can image the behaviors of the averaged ratio and
the maximum ratio in the whole (µiso, κ) region. The behavior of the averaged ratio is
well matched with the Polyakov loop, but we can see that the maximum ratio has more
information about the system since the plateau structure, which may indicate the second-
order transition, exists in the maximum ratio as mentioned before. Thus, the persistent
homology has not only the information of the bulk properties of the system but also the
spatial structure.
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Figure 10. The mean value of the birth-death ratio on the µiso-κ plane where we take the configuration
average. The left and right panels are the result of the averaged birth-death ratio R and the maximum
Rmax, respectively. Statistical errors are very small, and thus, we do not show them here.

4. Summary

In this paper, we have investigated the phase structure of the three-dimensional three-
state Potts model with finite isospin chemical potential (µiso); we call it the QCD-like Potts
model. Since the Potts model with the external field has the sign problem, we sidestep the
sign problem by using the isospin chemical potential. The spin configurations are then
generated by using the QCD-like Potts model via the simple Metropolis algorithm, and the
spatial structure of it is explored. Even if the isospin chemical potential leads to some
differences in the QCD-like Potts model compared with the original one, we expect the
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correct spin configuration to be mimicked at finite density via the QCD-like Potts model.
Then, we performed a persistent homology analysis to investigate the spatial structure of
the spin configuration.

It has been obtained that the averaged ratio of birth-and-death times is well matched
with the behavior of the Polyakov loop, and thus, this quantity is only responsible for the
bulk properties of the system. On the other hand, the maximum ratio of the birth-death
ratio is expected to be responsible of the spatial structure in addition to the bulk properties
of the system. We found that there may be no non-trivial spatial structure in the QCD-
like Potts model at high and intermediate µiso; this can be seen from the behavior of the
maximum ratio of birth-to-death times.

In the case of realistic QCD, we do not have a spin configuration, and thus, we need
some further extension to use persistent homology. However, we can have the gauge
configuration in QCD, and thus, a similar analysis can be possible; for example, we can
classify each gauge field at each site from the viewpoint of the center symmetry structure
of the Polyakov loop which has been employed in the investigation of the center clustering
structure. Of course, gauge configurations are a more complicated quantities than the Potts
spin, and thus, we need some more progresses for the analysis. We hope that this study
sheds new light on exploring the phase structure of QCD at finite µR from a topological
point of view based on persistent homology.
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Appendix A. Problem of Complexification

One may wonder why we do not use complexification of dynamical variables in
the present Potts model. This is because the complexification approach is quite powerful
approach to sidestep the sign problem in QCD. In this section, first, we summarize the
details of the complexification of dynamical variables in QCD and then discuss the problem
that appears in the Potts model.

Appendix A.1. Complexification in QCD

It is well known that the CK symmetry imposed on the Dirac operator can sidestep
the sign problem at least in the mean field level computation of the Nambu–Jona-Lasinio
(NJL)-type QCD effective model, which includes the Polyakov loop dynamics [45,46]. In
the following, all discussions are made with the Polyakov gauge fixing, ∂4 A4 = 0, and A4
is then diagonalized by using the remaining spatial gauge degrees of freedom.

Without imposing the CK symmetry, the temporal gluon field (A4) is given by

A4(x) = A4
3(x)λ3 + A4

8(x)λ8, (A1)

and the Polyakov loop (Φ) then becomes

Φ(x) =
1
3

(
eiβφ1(x) + eiβφ2(x) + eiβφ3(x)

)
, (A2)
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where λ3 and λ8 are diagonal components of the Gell–Man matrices, β = 1/T is the inverse
temperature and

φ1(x) = A3(x) +
A8(x)√

3
, φ2(x) = −A3(x) +

A8(x)√
3

, φ3(x) = −
2A8(x)√

3
. (A3)

here, A3, A8 ∈ R.
When we introduce the complexification of dynamical variables, the temporal compo-

nent of the gluon field becomes the following:

A4(x) = [A4,R
3 (x) + iA4,I

3 (x)]λ3 + [A4,R
8 (x) + iA4,R

8 (x)]λ8, (A4)

where AR,I
3,8 ∈ R. The CK symmetry imposed is corresponding to the setting with

A4,I
3 = A4,R

8 = 0. This modification means that we replace the real A8 with a pure imaginary
one. This CK symmetric choice, Equation (A4) with A8,I

3 = 0 and A8,R
8 = 0, is the special

case of the complexified dynamical variables approach. Of course, we can also complexify
the third component of the gluon field A3 if we want. This complexification has a similarity
with the imaginary chemical potential [47,48].

It should be noted that the CK symmetry realization in the QCD effective model which
includes the Polyakov-loop dynamics such as the Polyakov-loop-extended NJL (PNJL)
model [49] is mathematically and numerically proven by using the Lefschetz thimble
method [50] and the path optimization method [51], at least for the homogeneous solution.
Although we do not know how the symmetry efficiently weakens the sign problem in
realistic QCD including quantum fluctuations, we can expect that the symmetry weakens
the sign problem.

Appendix A.2. Complexification in Potts Model

To introduce the complexification of dynamical variables into the Potts model, we
encounter a serious problem since there are too many simplifications on the gauge field
treatment in the Potts model.

The Polyakov loop in the Potts model with complexification of dynamical variables is
defined as

Φ(x) =
1
3

(
eiβφ̃1,x + eiβφ̃2,x + eiβφ̃3,x

)
,

Φ̄(x) =
1
3

(
e−iβφ̃1.x + e−iβφ̃2,x + e−iβφ̃3,x

)
, (A5)

where

φ̃1,x = A4,R
3,x + iA4,I

3,x +
A4,R

8 (x) + iA4,I
8,x√

3
,

φ̃2,x = −[A4,R
3,x + iA4,I

3,x] +
A4,R

8,x + iA4,I
8,x√

3
,

φ̃3,x = −
2[A4,R

8,x + iA4,I
8,x]√

3
, (A6)

here, the Potts model requires

β
A4,R

8,x√
3

=
2πk

3
. (A7)
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To make the Potts energy real by using A4,R
3 , A4,I

3 , and A4,I
8 , we can find one possible

setting from the structure of the Dirac operator in QCD; the actual possible form is

A4,R
3 = A4,R

8 , A4,I
3 = −3

2
µ, A4,I

8 =

√
3

2
µ. (A8)

With this setting, we can easily check that the Dirac operator is real. Then, Φ and Φ̄
become

Φ(x) =
eµ/T

3

(
e2πik/3 + e−3µ/T + e4πik/3

)
,

Φ̄(x) =
e−µ/T

3

(
e4πik/3 + e3µ/T + e2πik/3

)
. (A9)

In this setting, all additional dynamical variables are fixed by using βµ. Unfortunately,
the above Polyakov loop and its conjugate take 1

3 ≤ 〈Φ〉 and do not match those behaviors
in QCD even at µ = 0. Since A4,R

8,x takes the specific values (A7) in the Potts model, and
thus, we cannot suitably remove the sign problem via the complexification unlike the PNJL
model: in the case of the PNJL model, we complexify A4

8, but A4
3 is kept as the real value.
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