A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems
Abstract
:1. Introduction
- As stated above, only a few papers have addressed the issue of designing and non-fragile observers for FO systems. The key benefit of the current study is that it is the first to address the problem of the Caputo fractional-order system.
- The suggested strategy exploits a variety of mathematical properties and unique situations. The authors feel that this increases the value and significance of the current work.
2. Some Preliminaries and a Description of the Problem
2.1. Preliminaries
2.2. Problem Statement
3. Estimation of Non-Fragile States
- Case 1 ():
- Case 2 ():
4. Numerical Illustration
4.1. Case 1 ()
4.2. Case 2 ()
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional Order Systems and Controls: Fundamentals and Applications; Springer: Berlin, Germany, 2010; ISBN 9781849963350. [Google Scholar]
- Cattani, C.; Srivastava, H.M.; Yang, X.J. Fractional Dynamics; Walterde Gruyter, K.G., Ed.; De Gruyter Open Poland: Warsaw, Poland, 2015; ISBN 9783110472097. [Google Scholar]
- Makhlouf, A.B.; Kharrat, M.; Hammami, M.A.; Baleanu, D. Henry–Gronwall type q-fractional integral inequalities. Math. Methods Appl. Sci. 2021, 44, 2033–2039. [Google Scholar] [CrossRef]
- Mohammad, T.; Mohammad, H.A. Stability analysis of time-delay incommensurate fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 2022, 109, 106270. [Google Scholar]
- Dhanalakshmi, P.; Senpagam, S.; Mohanapriya, R. Finite-time fuzzy reliable controller design for fractional-order tumor system under chemotherapy. Fuzzy Sets Syst. 2022, 432, 168–181. [Google Scholar] [CrossRef]
- Majid, G. Robust stabilization criteria of a general form of fractional-order controllers for interval fractional-order plants with complex uncertain parameters. ISA Trans. 2022, in press. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Pseudo-State Estimation for Fractional Order Neural Networks. Neural Process. Lett. 2022, 54, 251–264. [Google Scholar] [CrossRef]
- Wang, H.; Liu, P.X.; Shi, P. Observer-based fuzzy adaptive output-feedback control of stochastic nonlinear multiple time-delay systems. IEEE Trans. Cybern. 2017, 47, 2568–2578. [Google Scholar] [CrossRef]
- Salah, R.B.; Omor, K.; Hsan, H. A nonlinear Takagi-Sugeno fuzzy logic control for single machine power system. Int. J. Adv. Manuf. Technol. 2017, 90, 575–590. [Google Scholar] [CrossRef]
- Mostafa, M.A.K. Nonlinear biological population model; computational and numerical investigations. Chaos Solitons Fractals 2022, 162, 112388. [Google Scholar]
- Khater, M.M.A. Recent electronic communications; optical quasi–monochromatic soliton waves in fiber medium of the perturbed Fokas–Lenells equation. Opt. Quantum Electron. 2022, 54, 586. [Google Scholar] [CrossRef]
- Wang, R.; Xing, J.; Wang, P.; Yang, Q. Non-Fragile Observer Design for Nonlinear Switched Time Delay Systems Using Delta Operator. In Proceedings of the IEEE 2012 UKACC International Conference on Control, Cardiff, UK, 3–5 September 2012; pp. 387–393. [Google Scholar]
- Xiao, H.A.N.; Song, W.O. Non-fragile Observer Design and Stabilization Control for Singular Systems. J. Nanjing Univ. Sci. Technol. 2012, 36, 606–611. [Google Scholar]
- Hu, J.; Wang, Z.; Niu, Y.; Stergioulas, L.K. H∞ sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach. Int. J. Robust Nonlinear Control 2012, 22, 1806–1826. [Google Scholar] [CrossRef]
- Gao, N.; Darouach, M.; Voos, H.; Alma, M. New unified H∞ dynamic observer design for linear systems with unknown inputs. Automatica 2016, 65, 43–52. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Wang, J. H∞ Observer Design for LPV Systems With Uncertain Measurements on Scheduling Variables: Application to an Electric Ground Vehicle. IEEE/ASME Trans. Mechatron. 2016, 21, 1659–1670. [Google Scholar] [CrossRef]
- Martynyuk, V.; Ortigueira, M. Fractional model of an electrochemical capacitor. Signal Process. 2015, 107, 355–360. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
- Fatemeh, D.; Hamed, M. An ADRC-based backstepping control design for a class of fractional-order systems. ISA Trans. 2022, 121, 140–146. [Google Scholar]
- Saliha, M.; Mohammed, C.; Michael, V. Basin, Bounded real lemma for singular linear continuous-time fractional-order systems. Automatica 2022, 135, 109962. [Google Scholar] [CrossRef]
- Boroujeni, E.A.; Momeni, H.R. An iterative method to design optimal non-fragile H∞ observer for Lipschitz nonlinear fractional-order systems. Nonlinear Dyn. 2015, 80, 1801–1810. [Google Scholar] [CrossRef]
- Huong, D.C.; Thuan, M.V. Mixed H∞ $ H_ {\infty} $ and Passive Control for Fractional-Order Nonlinear Systems Via LMI Approach. Acta Appl. Math. 2020, 170, 37–52. [Google Scholar] [CrossRef]
- Duarte-Mermoud, M.A.; Aguila-Camacho, N.; Gallegos, J.A.; Castro-Linares, R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simulat. 2015, 22, 650–659. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Zhang, F. The Schur Complement and Its Applications; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Naifar, O.; Jmal, A.; Ben Makhlouf, A. Non-fragile H∞ observer for Lipschitz conformable fractional-order systems. Asian J. Control 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahouli, O.; Naifar, O.; Makhlouf, A.B.; Bouteraa, Y.; Aloui, A.; Rebhi, A. A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems. Symmetry 2022, 14, 1795. https://doi.org/10.3390/sym14091795
Kahouli O, Naifar O, Makhlouf AB, Bouteraa Y, Aloui A, Rebhi A. A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems. Symmetry. 2022; 14(9):1795. https://doi.org/10.3390/sym14091795
Chicago/Turabian StyleKahouli, Omar, Omar Naifar, Abdellatif Ben Makhlouf, Yassine Bouteraa, Ali Aloui, and Ali Rebhi. 2022. "A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems" Symmetry 14, no. 9: 1795. https://doi.org/10.3390/sym14091795
APA StyleKahouli, O., Naifar, O., Makhlouf, A. B., Bouteraa, Y., Aloui, A., & Rebhi, A. (2022). A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems. Symmetry, 14(9), 1795. https://doi.org/10.3390/sym14091795