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Abstract: As one of the key topics in the development of neighborhood rough set, attribute reduction
has attracted extensive attentions because of its practicability and interpretability for dimension
reduction or feature selection. Although the random sampling strategy has been introduced in
attribute reduction to avoid overfitting, uncontrollable sampling may still affect the efficiency of
search reduct. By utilizing inherent characteristics of each label, Multi-label learning with Label
specIfic FeaTures (LIFT) algorithm can improve the performance of mathematical modeling. Therefore,
here, it is attempted to use LIFT algorithm to guide the sampling for reduce the uncontrollability of
sampling. In this paper, an attribute reduction algorithm based on LIFT and random sampling called
ARLRS is proposed, which aims to improve the efficiency of searching reduct. Firstly, LIFT algorithm
is used to choose the samples from the dataset as the members of the first group, then the reduct of
the first group is calculated. Secondly, random sampling strategy is used to divide the rest of samples
into groups which have symmetry structure. Finally, the reducts are calculated group-by-group,
which is guided by the maintenance of the reducts’ classification performance. Comparing with other
5 attribute reduction strategies based on rough set theory over 17 University of California Irvine
(UCI) datasets, experimental results show that: (1) ARLRS algorithm can significantly reduce the
time consumption of searching reduct; (2) the reduct derived from ARLRS algorithm can provide
satisfying performance in classification tasks.

Keywords: attribute reduction; LIFT; neighborhood rough set; random sampling

1. Introduction

In data processing, as one of the mechanisms to obtain important attributes, attribute
reduction has been widely studied. In general, the goal of attribute reduction is to eliminate
unnecessary or irrelevant attributes from the raw attributes in light of the given constraint.
The remaining attributes are then referred to as a reduct. Then, how to explore attribute
reduction has experienced a long development.

In the early stage of exploring attribute reduction [1–4], the exhausted searching
strategies such as the discernibility matrix-based strategy [5–7] grew vigorously. Unfortu-
nately, in the age of big data, such time consumption becomes intolerable as data volume
grows. This is mostly due to the fact that the majority of exhausted searches are NP-hard
issues [8]. For these considerations, various heuristic searching-based strategies have been
designed [9]. For example, Liu et al. [10] presented the bucket in the searching process. It
can minimize the time necessary to derive reduct by reducing the calculations of distance
between samples. Qian et al. [11] proposed an strategy based on positive rough set approx-
imation that may significantly reduce sample size in the searching method. Clearly, both of
them are designed from the perspective of samples, which means the searching efficiency
is improved by compressing the space of samples.

From this point of view, it is not difficult to confirm that the efficiency of these two
strategies depend strongly on the sample distribution. For example, the iterative efficiency
of positive approximation decreases when the constrain of attribute reduction is difficult
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to met. Even the positive approximation will also lose its effectiveness, because the more
iterations attribute reduction has, the fewer samples can be removed in each iteration. As
far as the bucket is concerned, the samples may all appear in the same bucket in the worst
case. In this case, the bucket would be invalid, even redundant, because it is not only
necessary to calculate the distance between any two samples, but also requires additional
time to obtain the bucket.

In order to reduce the strong influence of sample distribution on attribute reduction
algorithm. Chen et al. [12] developed a random sampling accelerator. The first step of
random sampling accelerator is to divide the samples into several groups, which can
lead to rapid attribute assessment and selection for each group. The second step is to
calculate reduct group-by-group based on guidance, which can reduce the search space
of candidate attributes. Then, there are fewer candidate attributes to be evaluated, so the
calculation process can be accelerated. However, the first group of samples constructed by
Chen et al. [12] is still affected by the sample distribution. Even though the size of the first
group of samples is much smaller than the entire dataset, there is often overfitting [13–15]
in the first group, which will inevitably affect the reduction of subsequent groups.

In order to solve the above problem, it is needed to find the most representative
samples of different labels to avoid overfitting. Multi-label learning with Label specIfic
FeaTures (LIFT) [16] has been proved to be effective for above needs. Briefly, LIFT algorithm
constructs inherent characteristics to every label by conducting clustering analysis on its
negative class samples and postive class samples. Therefore, we try to optimize random
sampling process by utilization of LIFT algorithm, that is, the centers obtained from each
cluster are used as the members of first group.

In this paper, the random sampling strategy optimized by LIFT algorithm includes
three main stages: (1) extract the samples that can best distinguish each label; (2) randomly
group the rest of samples in the dataset (the dataset is a finite set of all samples); (3) the
samples selected in the first step are trained, and the corresponding reduct is then obtained.
For the reduction process of subsequent groups, the reduct of the previous groups is used
at the current group to test the classification performance. If the given constraint is met, the
reduct of this group will not be calculated. If not, the previously trained samples will be
added into current group. Then, it is continued to calculate the reduct of the current group.

In the following, the main contributions of the proposed will be detailed: (1) By
using LIFT, the influence of sample distribution is further reduced, which speeds up the
subsequent reduction and has satisfying classification performance. (2) Through random
sampling strategy, the sample volume is reduced to obtain higher time efficiency. In
addition to the two advantages mentioned above, it should be noted that our strategy may
also be easily integrated with other well-liked strategies. For example, the core frameworks
of the bucket and the positive approximation are easily inserted into our construct for
increasing the efficiency of searching reducts further.

The remainder of this paper is structured as follows: Section 2 discusses the basic
concepts used in this paper. Section 3 describes the optimization of the random sampling
strategy by LIFT algorithm. Section 4 reports the comparative experimental results and
detailed analysis. Section 5 summarizes the contributions of this paper and arranges some
further prospects.

2. Preliminaries
2.1. Basic Concept of Rough Set

Usually, a decision system can be described as DS = 〈U, AT ∪ {d}〉: the universe U is
the finite set including all samples; AT is the finite set of condition attributes; d is a label.
∀xi ∈ U, ∀a ∈ AT, a(xi) implies the attribute value of sample xi over the attribute a, d(xi)
indicates the label of sample xi. Immediately, if A ⊆ AT, then an indiscernibility relation
can be given by INDA = {(xi, xj) ∈ U × U : a(xi) = a(xj), ∀a ∈ A} which is also an
equivalence relation having reflexivity, symmetry, transitivity. As a result, the construction
of classical rough set will be given in the Definition 1.
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Definition 1. Given a decision system DS , ∀A ⊆ AT, ∀X ⊆ U, the lower and upper approxima-
tions of X related to A are defined as:

RX = {xi ∈ U : INDA(xi) ⊆ X}; (1)

RX = {xi ∈ U : INDA(xi) ∩ X 6= ∅}; (2)

INDA(xi) = {xj ∈ U : (xi, xj) ∈ INDA} is the set of all samples in U which are equivalent to x
in terms of A.

According to Definition 1, the equivalence class INDA(x) is the key to construct upper
and lower approximations. In general, the process of obtaining INDA(x) is known as
information granulation in the field of Granular Computing. Although indiscernibility
relation is used to perform information granulation in Definition 1, other strategies of
dealing with complex data have also been developed, e.g., information granulation based
on fuzzy [17–20], information granulation based on neighborhood [21,22], information
granulation based on clustering, information granulation based on strongly connected
components [23] and so on [24].

It should be emphasized that the information granulation based on neighborhood is
especially accepted in many researching fields. Such a mechanism is not only suitable to
mixed data, but also equipped with the natural structure of multi-granularity. The detailed
form is given as follows.

Definition 2. Given a decision system DS , ∀A ⊆ AT, ∀xi ∈ U, the neighborhood δA(xi) is
defined as:

δA(xi) = {xj : xj ∈ U, disA(xi, xj) ≤ δ}, (3)

in which disA(xi, xj) indicates the distance between sample xi and sample xj in the terms of A, δ is
a given radius.

δA(xi) indicates the neighborhood based information granule centered with sample xi
in the terms of A. As a result, Definition 3 can be used to denote the definitions of upper
and lower approximations in the neighborhood rough set.

Definition 3. Given a decision system DS , ∀A ⊆ AT, ∀X ⊆ U, the neighborhood-based lower
and upper approximations of X are defined as:

NX = {xi : xi ∈ U, δA(xi) ⊆ X}; (4)

NX = {xi : xi ∈ U, δA(xi) ∩ X 6= ∅}. (5)

Following Definition 3, Approximation Quality (AQ) is a definition of a measure for
expressing the degree of approximation in terms of the neighborhood rough set, which will
show in the following:

Definition 4. Given a decision system DS , ∀A ⊆ AT, the approximation quality in terms of
neighborhood rough set is:

AQ(A) =
|{xi : xi ∈ U, δA(xi) ⊆ [xi]d}|

|U| , (6)

in which [xi]d = {xj : xj ∈ U, d(xi) = d(xj)} indicates the label which contains xi.

2.2. Attribute Reduction

At present, not only the amount, but also the dimensions of datasets are quickly
increasing. In the realm of rough set, an interesting mechanism known as attribute reduction
can efficiently reduce dimension by deleting superfluous attributes. Various kinds of
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attribute reduction strategies have been described for various needs [25–31]. However,
Yao et al. [22] noted that the majority of them have a similar mechanism. They provided
the following general form to clearly express the concept of attribute reduction.

Definition 5. Given a decision system DS , CU
ρ is a constraint related to measure ρ over the

universe U, ∀A ⊆ AT, A is referred to as a CU
ρ -reduct if and only if the following conditions hold:

(1) A meets the constraint CU
ρ ;

(2) ∀A′ ⊂ A, A′ does not meet the constraint CU
ρ .

In Definition 5, ρ can be regarded as a function such that ρ : P(U)× P(AT)→ R, R is
the set of all real numbers, P(U) and P(AT) are the power sets of U and AT, respectively.
For instance, ∀xi ∈ U and ∀a ∈ AT, if the lower approximation is employed, then by using
a, ρ(xi, a) = 1 or 0 means that xi is in or out of the lower approximation. Some typical
explanations will be displayed in Example 1 below.

Example 1. The following two phases can be elaborated.

(1) The greater the degree of the constrain obtained by rho, the less the level of approximation will
be described. One example of such a metric is the definition of approximation quality.

(2) The less the degree of the constrain we derived by utilizing rho, the less the amount of
approximation in the dataset. One example of such a metric is the idea of decision error rate.

Finally, ∀U′ ⊆ U, ρ(U′, A) can be considered as a fusion of {ρ(xi, A) : ∀xi ∈ U′}, is
denoted by

ρ
(
U′, A

)
=

⊙
xi∈U′

ρ(xi, A). (7)

In Equation (7),
⊙

is viewed as a fusion operator [32,33] with a variety of forms.
In [32], the fusion operator is explained as the averaging operator. In addition, in [33],
the fusion operator is explained as the summation operator. As a result, various forms to
calculate ρ(U′, A) can yield various results. For instance, if

⊙
can be demonstrated at ∑,

i.e., ρ(U′, A) = ∑xi∈U′ ρ(xi, A), then ρ(U′, A) can be utilized to determine the degree of
approximation quality over U′.

2.3. Obtaining Reduct

Following Definition 5, the minimal attribute subset is called a reduct which meet the
constraint CU

ρ . Immediately, it has become a serious challenge how to seek out such the
minimum attribute subset. Algorithm 1 depicts a comprehensive procedure of forward
greedy searching that can be utilized to determine one reduct.

For every iteration of determing reduct in Algorithm 1, every candidate attribute must
be examined. In the worst-case, every attribute in AT is added to the reduct. As a result,
the time complexity of Algorithm 1 is O(|U|2 · |AT|2).

Even if the Algorithm 1 is successful in obtaining reduct, there are still problems. For
instance, if the size of dataset becomes large, the consumption of time to derive reduct
will be too extensive. As a result, several researchers have built many strategies from
diverse perspectives. All of them have their own disadvantages and advantages. In the
next subsection, three strategies built from the perspective of samples will be introduced
in detail.
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Algorithm 1: Forward Greedy Searching for Attribute Reduction (FGSAR)

Input: Decision system DS , constraint CU
ρ .

Output: One reduct A.
1 Perform information granulation over U by using AT;
2 Calculate the measure-value such that ρ(U, AT) =

⊙
x∈U ρ(x, AT);

3 A = ∅;
4 While CU

ρ is not met do
5 // Determine the required attributes
6 ∀a ∈ AT − A, perform information granulation over U by using A ∪ {a};
7 Analyze a according to compute ρ(U, A ∪ {a});
8 Choose a an appropriate attribute b ∈ AT − Ai by the standard;
9 A = A ∪ {b};

10 Calculate ρ(U, A);
11 End
12 Repeat
13 // Eliminate superfluous attributes
14 ∀c ∈ A, perform information granulation over U by using A− {c};
15 Calculate ρ(U, A− {c});
16 If CU

ρ is met
17 A = A− {c};
18 End
19 Until A remains unchanged;
20 // |A| represents the fundamental amount of set A
21 Return A.

2.4. Strategy Based on Sample

The key of strategy based on sample is compression of sample space [34]. These
strategies can immediately reduce the number of scanned samples or comparisons between
samples. Here are three classical strategies based on the sample.

• Bucket based searching for attribute reduction. Liu et al. [10] have considered the bucket
method for fast obtaining reduct. A hash function is used in their technique, and
every sample in the dataset will then be mapped into a number of separate buckets.
Following the intrinsic properties of such a mapping, only samples from the same
bucket must be compared rather than samples from the entire dataset. According to
this viewpoint, the computing burden of information granulation may be minimized.
As a result, the technique for obtaining reduct by the bucket-based strategy is identical
to that of Algorithm 1, except for the device of information granulation.

• Positive approximation for attribute reduction (PAAR). Qian et al. [11] have presented the
method based on positive approximation to calculate reduct rapidly. The essence to
positive approximation is to compress gradually the sample space. The compressing
process should be guided by the values associated with the constrain rho. The follow-
ing are the precise steps of the attribute reduction based on positive approximation.

(1) The hypothetical reduct A will be defined as ∅, as well as the sample compressed
space U′ will be defined as U.

(2) By using the constrain of ρ(U′, A ∪ {a}), analyse all hypothetical a ∈ AT − A
which in U′.

(3) Using the acquired constrain, choose one qualified attribute b ∈ AT − A then
merge in b to A.

(4) Based on A, calculate ρ(U′, A) and then reanalysis construction of the sample
compressed space U′.

(5) If the specified constraint is met, produce reduct A; otherwise, back to step(2).
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• Random sampling accelerator for attribute reduction(RSAR). Chen et al. [12] examined the
above-mentioned strategies, they found that: (1) Regardless of the searching technique,
information granulation over the entire dataset is required; (2) Information granulation
over the dataset always needs to be regenerated in each iteration throughout the entire
searching process. In this aspect, sample distribution may influence the effectiveness of
searching. Therefore, the two above-mentioned strategies have their own restrictions
since they are directly tied to sample distribution. The restriction of BBSAR is that
Bucket strategy will become inefficient when sample is too centralized, which is
time-consuming. The restriction of PAAR is that the sample distribution strongly
affect the construction of positive approximation, and then affect the effectiveness of
attribute reduction. In view of this, Chen et al. [12] developed a new random sampling
strategy. The following shows the exact structure of the random sampling being used
to derive reduct.

(1) The samples were randomly separated to n sample groups of equal size: U1, · · · , Un.
(2) Compute the reduct A1 over U1; reduct A1 will then provide advice for comput-

ing the reduct A2 over U1 ∪U2, and so on.
(3) Get the reduct An, use it as the ultimate reduct over the entire dataset.

RSAR can reduce the influence of sample distribution on attribute reduction to a
certain extent. It is well-known that the reduct obtained from a small volume of samples
often does not represent the attribute importance of the entire dataset. However, there
are two facts in RSAR: (1) the volume of first sample group is frequently much less than
the volume of entire dataset; (2) the reduct obtained from the first sample group is used
to guide the reduction calculation of subsequent sample groups which have symmetry.
These two facts may reduce the efficiency of attribute reduction. As a result, developing an
effective attribute reduction strategy to solve the problem is widely valued.

3. LIFT for Attribute Reduction
3.1. Theoretical Foundations

This section provides an attribute reduction strategy based on random sampling and
LIFT [16] which can select a small volume of represented samples from entire dataset. LIFT

considers that samples with different labels should have their own characteristics, which
should be helpful to find samples with high discernibility.

In LIFT, given an n-dimensional attribute space, DL =
{

d1, d2, · · · , dq} represents the
finite set of q possible labels possessed by all samples. Therefore, the sample space can be
expressed as S = {(xi, di) | i = 1, 2, · · · , m}, xi is a sample with n-dimensional attribute in
the dataset, and di ⊆ DL represents the label set of xi. In order to extract the characteristics
that can best distinguish one label from every other label, the internal relationship between
samples under each label will be consider. Specifically, for a label dk ∈ DL, samples are
divided into two categories, the positive class samples set Pk and the negative class samples
set Nk, as shown in following:

Pk =
{

xi | (xi, di) ∈ S, dk ∈ di

}
; (8)

Nk =
{

xi | (xi, di) ∈ S, dk /∈ di

}
. (9)

For the label dk, if one sample possesses this label, the sample will be classified into
positive class, otherwise it will be classified into negative class. In order to explore the
internal structures of positive and negative classes, k-means [35] clustering is, respectively,
carried out on Pk and Nk. Since the clustering information of Pk can be regarded as equally
important with Nk, the number of cluster centers is set as mk, that is:

mk = dδ ·min(|Pk|, |Nk|)e; (10)
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| · | is the cardinality of set; δ ∈ [0, 1] is the parameters controlling the number of clusters;
the cluster centers of Pk and Nk are recorded as

{
pk

1, pk
2, · · · , pk

mk

}
and

{
nk

1, nk
2, · · · , nk

mk

}
.

By utilizing the ability of LIFT on selecting the represented samples, we try to give a
new strategy for deriving reduct:

(1) Collect all cluster centers into U1.
(2) The other samples were randomly separated to n − 1 sample groups of equal size:

U2, · · · , Un.
(3) Compute the first reduct A1 over U1; this reduct will then provide advice for comput-

ing the second reduct A2 over U1 ∪U2; A2 will also provide advice for computing A3
over U1 ∪U2 ∪U3 and so on.

(4) Get the n-th reduct An, use it as the ultimate reduct over the entire dataset.

According to the previous description, it can be seen that the new strategy provides the
following advantages. To begin, when the sample distribution information is unclear, LIFT

is used to select the most representative samples as the first sample group to better guide
the subsequent attribute reduction. Then, except the attribute reduction of the first sample
group, the sample distribution will no longer affect the efficiency of attribute reduction of
other sample groups which have symmetry. Obviously, these two advantages may aid in
reducing the time consumption of attribute reduction.

3.2. Detailed Algorithm

In the worst case of the Algorithm 1, it contains two aspects: (1) There is always only
one attribute to be added to the reduct in the each iteration; (2) The final reduct contains
all attributes in the dataset. After that, the following will show the time complexity of
Algorithm 2.

Remark 1. The time complexity of Algorithm 2 isO
(
( 1

n |U|)2 ·S2
1 +( 2

n |U|)2 ·S2
2 + · · ·+( n

n |U|)2 ·

S2
n

)
, i.e.,O

(
|U|2
n2 ·∑n

i=1(i
2 · S2

i )
)

. For such complexity, n refers to the amount of sample groups, Sn

indicates the amount attributes ought to be included in the reduct for every iterations, thus ∑n
i=1 Si =

S1 + S2 + · · ·+ Sn = |AT|. As a result, it is simple to arrive at the following conclusions:

O
(
(

1
n
|U|)2 · S2

1 + (
2
n
|U|)2 · S2

2 + · · ·+ (
n
n
|U|)2 · S2

n

)
= O

( |U|2
n2 ·

n

∑
i=1

(i2 · S2
i )
)

≤ O
( |U|2

n2 ·
n

∑
i=1

(n2 · S2
i )
)

= O
(
|U|2 · (

n

∑
i=1

S2
i )
)

≤ O
(
|U|2 · (

n

∑
i=1

Si)
2
)

,

i.e., O( |U|
2

n2 ·∑n
i=1(i

2 · S2
i )) ≤ O(|U|2 · |AT|2).
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Algorithm 2: Attribute Reduction Based on LIFT and Random Sampling

Input: Decision system DS , constraint CU
ρ , amount of sample groups n.

Output: One reduct A.
1 Create the positive class samples Pk and negative class samples Nk by, respectively, using

the Equations (8) and (9);
2 Utilize k-means clustering over Pk and Nk, get every cluster centers according to

Equation (10);
3 Collect all the cluster centers into U1;
4 Randomly divide other sample into n− 1 groups with same size: U2, · · · , Un;
5 Get reduct A1 over U1 by using Algorithm 1;
6 For i = 2 : n do
7 // i represents the iteration quantity
8 Ai = Ai−1;
9 // The guidance of the selection of attribute by previous reduct

10 While C
∪i

j=1Uj
ρ is not met do

11 // Determine the required attributes
12 ∀a ∈ AT − Ai, perform information granulation over ∪i

j=1Uj by using Ai ∪ {a};
13 Evaluate a by calculating ρ(∪i

j=1Uj, Ai ∪ {a});
14 Choose an appropriate attribute b ∈ AT − Ai by the standard;
15 Ai = Ai ∪ {b};
16 Calculate ρ(∪i

j=1Uj, Ai);

17 End
18 End
19 A = An;
20 Repeat
21 // Remove the redundant attributes
22 ∀c ∈ A, perform information granulation over U by using A− {c};
23 Compute ρ(U, A− {c});
24 If CU

ρ is met
25 A = A− {c};
26 End
27 Until A remains unchanged;
28 Return A.

In this section, according to the above strategy, an attribute reduction algorithm called
ARLRS is proposed as Algorithm 2. In ARLRS, LIFT algorithm is used to choose the samples
from the dataset as the members of the first group, and random sampling strategy is used
to divide the rest of samples into groups. Generally, the reduct of the first sample group
is calculated quickly by Algorithm 1. For every subsequent sample group, if the given
constrain is satisfied, the attribute reduction calculation of current sample group can be
skipped; if the given constrain is not satisfied, the previous sample groups are integrated
into the current sample group, then attribute reduction calculation of this integrated group
is carried out. As a result, by gradually integrating many previous sample groups, the
classification performance of the temporary reduct over the current sample group will be
improved until the attribute reduction constrain is met.

4. Analysis of Experiment
4.1. Datasets

To illustrate the effectiveness of the proposed ARLRS algorithm, 17 UCI datasets were
chosen for the tests. The UCI datasets is a collection of databases, top level theory, and
data generators used by the machine learning to conduct empirical evaluations of machine
learning algorithms. David Aha and his fellow graduate students at UC Irvine established
the archive as an ftp archive in 1987. Since then, it has been widely used as a key source of
machine learning datasets by students, instructors, and researchers all over the world. All
the datasets this paper used were download on: https://archive.ics.uci.edu/ml/datasets.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php


Symmetry 2022, 14, 1828 9 of 16

php (accessed on 12 January 2022). The Table 1 contains full descriptions of 17 datasets. All
experiment were conducted on a personal computer running Windows 10, with an Intel
Core i7-6700HQ CPU (2.60 GHz) and 16.00 GB of RAM. Matlab R2019b is the programming
language. In order to further analyze the advantages of ARLRS algorithm, the experiment
will be shown in two aspects: time consumption and classification performance.

Table 1. Datasets used in the experiment.

ID Datasets # Samples # Attributes # Labels Attributes Type

1 Australian Credit Approval [36] 690 14 2 Real
2 Breast Cancer Wisconsin (Diagnostic) [37] 569 30 2 Real
3 Cardiotocography [38] 2126 21 10 Real
4 Connectionist Bench (Sonar, Mines vs. Rocks) [39] 208 60 2 Real
5 Crowdsourced Mapping [40] 10,845 28 6 Real
6 Diabetic Retinopathy Debrecen [41] 1151 19 2 Integer & Real
7 DrivFace [42] 606 6400 3 Real
8 Forest Type Mapping [43] 523 27 4 Integer & Real
9 Glass Identification [44] 214 9 6 Real
10 Ionosphere [45] 351 34 2 Integer & Real
11 MAGIC Gamma Telescope [46] 19,020 28 6 Real
12 Parkinson Multiple Sound Recording [47] 1208 26 2 Real
13 QSAR Biodegradation [48] 1055 41 2 Real
14 Musk (Version 1) [49] 476 166 2 Integer
15 Page Blocks Classification [50] 5473 10 5 Integer & Real
16 Urban Land Cover [51] 675 147 9 Integer & Real
17 Quality Assessment of Digital Colposcopies [52] 287 62 2 Real

4.2. Basic Experiment Setting

In this paper, the neighborhood rough set [53–58] was used as the model for deriving
reducts. It should be noted that the computational results of the neighborhood rough set are
heavily reliant on the radius chosen, and we pick 0.2 as our radius to illustrate the generality
of ARLRS algorithm. Moreover, the concept of approximation quality (Equation (6)) is
selected as the constrain of ARLRS algorithm. The approximation quality describes the
ability of the approximation in terms of attribute reduction. In general, the higher the
degree of approximation quality is, the better performance the selected attribute has.

Five classical algorithms are chosen to compare with the proposed ARLRS algorithm.
The four algorithms of them have been introduced detailed in previous context of this paper,
that are FGSAR [59–61], BBSAR [10], PAAR [11] and RSAR [12]. The fifth compared algo-
rithm is the Attribute Group for Attribute Reduction (AGAR) [62]. AGAR is also a sample
based algorithm and has excellent time efficiency and classification performance. Adding
AGAR to the comparison can better help us test the performance of ARLRS algorithm.

4.3. Time Consumption

In this subsection, the time consumption of five compared algorithms (FGSAR, BBSAR,
PAAR, RSAR and AGAR) and ARLRS algorithm on computing reducts are listed in Table 2.
For every dataset, the best time consumption is bold.

Table 2 shows that ARLRS performs admirably on time consumption compared to the
other five classical algorithms. Using the “QSAR Biodegradation” (ID 13) dataset as an
example, the time consumptions of RSAR, FGSAR, PAAR, BBSAR and AGAR are 11.9454,
13.6468, 13.4522, 12.5647 and 12.3949 seconds, respectively. The proposed ARLRS algorithm
only takes 9.6467 seconds. Obviously, ARLRS algorithm has the ability to remarkable
accelerate the process of computing reduct.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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Table 2. The time consumption (unit is second) of six attribute reduction algorithms.

ID ARLRS RSAR FGSAR PAAR BBSAR AGAR

1 1.3439 1.6046 1.9683 1.9533 3.0378 2.0001
2 2.8514 3.2616 3.7553 3.6474 4.9878 6.3496
3 1.7156 2.3740 3.6215 3.3452 4.0248 2.6923
4 3.114 3.8712 4.6534 4.4532 4.9458 6.3526
5 0.0331 0.0351 0.3561 0.3424 0.4138 0.0493
6 1.5043 1.6542 3.3462 3.3977 2.7745 3.4527
7 21.5071 21.6074 22.9543 22.6464 32.7441 24.2342
8 3.2707 4.9173 10.2732 10.2480 4.4253 4.5429
9 36.6825 39.9173 55.4524 54.2809 46.355 40.6939

10 2.2156 2.3740 3.5643 3.5754 4.0248 2.5551
11 32.6542 34.7645 35.3475 35.3342 35.4578 34.9578
12 2.5127 2.7545 3.1642 3.0008 2.8361 3.147
13 9.6467 11.9454 13.6468 13.4522 12.5647 12.3949
14 16.9655 18.3361 19.7468 19.2312 19.1485 18.5435
15 44.4554 46.1265 48.4641 48.8529 45.5659 48.4844
16 3.6125 4.0415 4.8353 4.1237 4.7264 4.9645
17 38.4124 41.5415 43.8515 43.4529 45.4554 44.5455

To further demonstrate the superiority of ARLRS algorithm, the speedup ratios of
ARLRS algorithm against the five compared algorithms (FGSAR, BBSAR, PAAR, RSAR
and AGAR) are shown in Table 3 and the lengths of reducts produced by overall six
algorithms are shown in Table 4. It is worth mentioning that FGSAR and PAAR have
similar mechanism, so their reduct lengths have symmetry. For every dataset, the shortest
length of reducts produced by six algorithms is set bold.

Table 3. The speed up ratio of five compared algorithms to ARLRS.

ID RSAR FGSAR PAAR BBSAR AGAR

1 16.37 31.19 41.17 30.34 32.81
2 12.58 24.07 21.82 20.53 19.31
3 27.73 35.12 27.82 18.21 26.34
4 19.63 33.14 30.13 25.75 7.22
5 2.36 23.38 2.65 2.71 17.78
6 9.06 14.64 42.91 34.52 27.98
7 13.15 19.01 18.62 4.57 5.99
8 8.11 33.85 32.42 34.91 9.86
9 20.13 37.84 38.03 24.24 13.29

10 10.23 11.09 22.97 23.13 30.23
11 6.07 7.02 7.88 7.91 6.59
12 25.97 20.59 16.27 11.40 20.16
13 19.24 9.39 7.71 23.22 22.17
14 25.09 18.28 13.71 12.93 6.77
15 3.62 8.27 6.00 2.44 8.31
16 15.23 13.88 14.76 17.84 20.76
17 31.25 4.33 6.12 7.32 15.9

avg 15.63 20.29 20.64 17.79 17.14

According to Table 3, all speedup ratios of ARLRS algorithm against other five classic
sample based algorithms are substantially greater than 1. Even that average speedup ratio
approaches 15. These findings show that the proposed ARLRS algorithm can speed up the
process of computing reducts from datasets. Furthermore, Table 4 shows that in the most
of datasets, the lengths of reducts generated by ARLRS are substantially shorter than those
acquired by the other five algorithms. The reducts with shorter length often indicate that
ARLRS needs fewer iterations to get the reducts with satisfying classification performance.
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From this viewpoint, it also shows that ARLRS can effectively reduce the time consumption
of attribute reduction.

Table 4. Reduct lengths of six algorithms.

ID ARLRS RSAR FGSAR PAAR BBSAR AGAR

1 7.14 7.32 8.03 8.03 8.03 7.17
2 8.67 8.21 9.19 9.19 9.19 8.11
3 7.38 8.66 7.57 7.57 7.57 8.45
4 7.13 7.43 8.17 8.17 8.17 7.43
5 14.34 15.32 14.38 14.38 14.38 16.64
6 9.46 9.21 8.32 8.32 8.32 8.76
7 8.74 9.87 7.15 7.15 7.15 9.75
8 8.65 9.07 9.25 9.25 9.25 8.98
9 7.91 9.87 8.57 8.57 8.57 8.07

10 8.65 8.97 8.78 8.78 8.78 9.21
11 23.87 24.58 25.32 25.32 25.32 27.98
12 7.03 10.34 10.01 10.01 10.01 9.28
13 6.98 9.01 8.34 8.34 8.34 7.32
14 8.75 8.65 8.90 8.90 8.90 10.76
15 13.66 15.32 16.24 16.24 16.24 15.23
16 14.31 15.09 15.65 15.65 15.65 16.32
17 8.02 8.06 8.19 8.19 8.19 9.15

Among the above six attribute reduction algorithms, ARLRS and RSAR are designed
both based on random sampling. It is not difficult to find that for the two algorithms with
the similar mechanism, ARLRS algorithm has obvious advantage on the time consumption.
Especially on high-dimensional datasets such as “Musk (Version 1)” (ID 14), “DrivFace” (ID
7), “Quality Assessment of Digital Colposcopies” (ID 17) and “MAGIC Gamma Telescope”
(ID 11), ARLRS algorithm performs particularly well. In order to better show the advantage
of ARLRS algorithm on high-dimensional datasets, Figure 1 shows the time consumption
over these four datasets. Obviously, the time consumption of ARLRS is less than that of
RSAR over the four high-dimensional datasets.

DrivFace

Musk (Version 1)

MAGIC Gamma Telescope

Quality Assessment of Digital Colposcopies

15 30 45

ARLRS

RSAR

Figure 1. Time consumption of attribute reduction on high-dimensional datasets.



Symmetry 2022, 14, 1828 12 of 16

It is worth mentioning that ARLRS will filter out the samples with low representation,
then only evaluate the samples with most representation. The filtration process leads to
reduce greatly the time consumption of samples evaluation in the process of attribute
reduction. Therefore, comparing with other attribute reduction strategies, the proposed
ARLRS algorithm has better performance in time consumption.

4.4. Classification Performance

K-Nearest Neighbor (KNN, K parameter will be set as 3) and Support Vector Machine
(SVM) classifiers are used to test the classification accuracies of different reducts produced
by six algorithms. The average values of the classification accuracies of generated reducts
are provided in Tables 5 and 6. It is worth mentioning that FGSAR and PAAR have similar
mechanism, so the classification performance of them have symmetry. For every dataset,
the best classification accuracy is bold.

According to Tables 5 and 6, ARLRS’s classification performance is somewhat greater
than the other five algorithms. Especially for high-dimensional dataset “DrivFace” (ID 7),
the classification accuracies of proposed ARLRS are 0.9089 on KNN classifier and 0.8841 on
SVM classifier, respectively, which perform better than other five algorithms. As a result,
regardless of which two classifiers are utilized, the reducts obtained from ARLRS deliver
satisfying classification performance.

It is because LIFT can filter out samples with low representation, some candidate
attributes will be deleted after the attribute reduction of the first sample group. The
subsequent reduction process can receive better guidance for selecting attributes with
better classification performance. This mechanism enables the attribute reduction process
to focus on attributes with most representation. This is why the classification performances
of reducts produced by ARLRS can be satisfying.

Table 5. Based on KNN classifier, the classification accuracies of reducts produced by six attribute
reduction algorithms.

ID ARLRS RSAR FGSAR PAAR BBSAR AGAR

1 0.8555 0.8742 0.8168 0.8168 0.8557 0.9175
2 0.9785 0.9000 0.8534 0.8534 0.9347 0.9456
3 0.9399 0.9320 0.8824 0.8824 0.8356 0.8943
4 0.9569 0.9642 0.8074 0.8074 0.9741 0.9456
5 0.8848 0.8351 0.8022 0.8022 0.8149 0.8624
6 0.8449 0.8272 0.9074 0.9074 0.8736 0.8488
7 0.9089 0.9003 0.8075 0.8075 0.8572 0.8197
8 0.8437 0.8326 0.8731 0.8731 0.8186 0.8279
9 0.8441 0.8741 0.8507 0.8507 0.9117 0.7986

10 0.9575 0.9320 0.9269 0.9269 0.8356 0.8943
11 0.9145 0.8487 0.8366 0.8366 0.8869 0.8747
12 0.9035 0.9055 0.9266 0.9266 0.8845 0.8647
13 0.8364 0.8641 0.8644 0.8644 0.9153 0.8279
14 0.9634 0.9534 0.9128 0.9128 0.8934 0.8634
15 0.9314 0.9169 0.8674 0.8674 0.8467 0.8469
16 0.9299 0.9064 0.8796 0.8796 0.9074 0.8534
17 0.8036 0.8712 0.8642 0.8642 0.8541 0.8779
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Table 6. Based on SVM classifier, the classification accuracies of reducts produced by six attribute
reduction algorithms.

ID ARLRS RSAR FGSAR PAAR BBSAR AGAR

1 0.8396 0.8614 0.8318 0.8318 0.8496 0.8779
2 0.8984 0.8401 0.8302 0.8302 0.7121 0.7326
3 0.8351 0.8741 0.9164 0.9164 0.8813 0.8801
4 0.8433 0.8381 0.8041 0.8041 0.8701 0.8912
5 0.9103 0.8701 0.9328 0.9328 0.9488 0.8468
6 0.9434 0.9362 0.9723 0.9723 0.9356 0.9147
7 0.8841 0.8766 0.8452 0.8452 0.8141 0.7998
8 0.8321 0.8311 0.9723 0.9723 0.7318 0.7323
9 0.9194 0.9248 0.9049 0.9049 0.8722 0.8413
10 0.8954 0.8888 0.7763 0.7763 0.8052 0.7113
11 0.9165 0.8971 0.9460 0.9460 0.8741 0.8492
12 0.9365 0.9207 0.9194 0.9194 0.8279 0.7812
13 0.9153 0.8803 0.7436 0.7436 0.7799 0.8940
14 0.8915 0.8766 0.8622 0.8622 0.8348 0.8786
15 0.9255 0.8903 0.8802 0.8802 0.8584 0.9205
16 0.9044 0.8909 0.8633 0.8633 0.8261 0.8759
17 0.8759 0.9204 0.8816 0.8816 0.9362 0.8294

4.5. Discussion

In the above experimental analysis, it can be concluded that ARLRS algorithm often
performs well in big data, both in terms of time consumption and classification performance,
for this conclusion, the following reasons can be given.

(1) The higher the dimension of the datasets is, the more information the selected sample
can carry. Then, the more information can better help to guide the subsequent
attribute reduction. Therefore, ARLRS algorithm performs well in handling big data.

(2) Due to the low value density of big data, it is often necessary to preferentially
extract relevant and useful information from a large amount of datasets. The above-
mentioned needs are well solved by introducing LIFT. The most representative
samples found by LIFT make the unclear information under each label have avail-
able structure, from the perspective of samples, thus different samples form a
certain association. Such preprocessing is very effective in the processing big data,
so ARLRS will have certain advantages in processing big data.

5. Conclusions and Future Perspectives

This paper combines LIFT with random sampling strategy to proposed an attribute
reduction algorithm call ARLRS. The utilization of LIFT reduces the impact of overfitting in
the first sample group, which can produce the reduct being able to provide better guidance
for subsequent attribute reduction. The retainment of random sampling strategy is helpful
to reduce the impact of sample distribution. Due to the fact that LIFT can mine the samples
with most representation, the proposed ARLRS algorithm also has satisfying results in
classification performance. The experimental results over 17 UCI datasets show that the
above conclusions are effective and credible.

The following research directions will be of great value as our next work.

(1) In light of the uncertainty existed in constraints and classification performances, the
resultant reduct may result in over-fitting. As a result, in future investigation, we will
try balance the efficiency of attribute reduction with the classification performance.

(2) The attribute reduction strategy presented in this research is only applied from the
sample’s perspective. Therefore, we will try to investigate some novel algorithms
taking into account both samples and attributes for improving more efficiency.
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