
Citation: Wang, J.; Zhou, Z.; Li, B.;

Wu, M. Attribute Network

Representation Learning with Dual

Autoencoders. Symmetry 2022, 14,

1840. https://doi.org/10.3390/

sym14091840

Academic Editors: Jun Wu and José

Carlos R. Alcantud

Received: 26 June 2022

Accepted: 31 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Attribute Network Representation Learning with
Dual Autoencoders
Jinghong Wang 1,2,3, Zhixia Zhou 1, Bi Li 4 and Mancai Wu 5,*

1 College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, China
2 Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Security,

Shijiazhuang 050024, China
3 Hebei Key Laboratory of Network and Information Security, Hebei Normal University,

Shijiazhuang 050024, China
4 Business School, Hebei Normal University, Shijiazhuang 050024, China
5 Hebei Polytechnic Institute, Shijiazhuang 050020, China
* Correspondence: xiaozhang@hbgcjsxy.com

Abstract: The purpose of attribute network representation learning is to learn the low-dimensional
dense vector representation of nodes by combining structure and attribute information. The current
network representation learning methods have insufficient interaction with structure when learning
attribute information, and the structure and attribute information cannot be well integrated. In this
paper, we propose an attribute network representation learning method for dual-channel autoencoder.
One channel is for the network structure,and adopting the multi-hop attention mechanism is used to
capture the node’s high-order neighborhood information and calculate the neighborhood weight; The
other channel is for the node attribute information, and a low-pass Laplace filter is designed to iteratively
obtain the attribute information in the neighborhood of the node. The dual-channel autoencoder
ensures the learning of structure and attribute information respectively. The adaptive fusion module is
constructed in this method to increase the acquisition of important information through the consistency
and difference constraints of two kinds of information. The method trains encoders by supervising
the joint reconstruction of loss functions of two autoencoders. Based on the node clustering task on
four authentic open data sets, and compared with eight network representation learning algorithms
in clustering accuracy, standardized mutual information and running time of some algorithms, the
experimental results show that the proposed method is superior and reasonable.

Keywords: attribute networks; network representation learning; autoencoders; interactive learning;
attention mechanisms

1. Introduction

The goal of network representation learning, also known as network embedding or
graph embedding, is to learn a data representation that represents the nodes in a network
as a low-dimensional, dense vector form while maximizing the preservation of information
in the network [1–3]. The learned vectors are used in machine learning algorithms to
accomplish downstream network analysis tasks such as link prediction, node clustering,
and recommendation systems [4–7].

In recent years, with the rapid development of the Big Data era, the number of data in
various fields has increased and the form of data has become more complex [8–10]. In addi-
tion to text, audio, image, and video data, information networks represent another natural
and complex data structure representing several entities and relationships. The network
formed by these data exists in the modality of a graph in computers, and a wide variety of
real-world data in business, science, and engineering are captured in the form of informa-
tion networks [11], for example, social networks constituted by users and user relationships
in social platforms. citation networks constituted by papers and cross-citations of papers in

Symmetry 2022, 14, 1840. https://doi.org/10.3390/sym14091840 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091840
https://doi.org/10.3390/sym14091840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14091840
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091840?type=check_update&version=1

Symmetry 2022, 14, 1840 2 of 18

academic websites; urban traffic networks [5], protein interaction networks [6], etc. These
graph data have a complex structure and attribute information that can be adapted to
learning tasks in multiple domains [12–16], and in the network, the key aspect of mining
the potential information data is network representation learning. Network representation
learning learns the vector representation of each node from the original graph structure data
so that the obtained representation vectors have representation and inference capabilities
in low-dimensional space [17–20].

Traditional network representation learning methods are dedicated to retaining the
topological structure information of the network [1–3], while the vast majority of real
networks contain rich attribute information, such as hobbies, addresses, and ages of users
in social networks, authors, keywords, and research fields of articles in citation networks,
and such networks are called attribute networks [12,15,21]. When the network is highly
sparse, the attribute information of nodes is important auxiliary information for network
representation and helps to learn better network representation; if two nodes do not have
a similar network structure, but have the same attributes, they should also have similar
representation in the final representation space [22,23].

The traditional network representation learning method known as the Deepwalk [24]
algorithm is based on random wandering, where all vertices in the graph are first labeled,
the starting vertex is randomly selected, the path length is specified, and then the random
wandering starts and the node representation is obtained in the generated wandering
sequence with the help of the Skip-Gram model. Since its way of selecting the next node
in the random wandering sequence is uniformly randomly distributed, the sampling
process will repeat the sampling of the central node. Node2vec [25] puts restrictions on
the neighborhood of vertices based on random wandering by adding a biased random
wandering strategy to capture the structure of the context, i.e., defining a transfer probability
between wandering strategies so that different neighborhoods can be explored effectively.
The struc2vec [26] approach considers that nodes with similar network space structure also
have high similarity and thus perform random wandering based on hierarchical weighted
graphs. LINE [27] preserves the first-order and second-order nearest neighbors of the
network by marginalized random wandering while preserving the local and global network
structure of the network. SDNE [28] uses deep learning techniques in representation
learning, combining autoencoders and Laplacian feature mapping to preserve the first-
order and second-order similarity of the network structure.

Given that most real networks are rich in attribute information, combining node
attribute information to learn vector representations of nodes can solve the problem of
sparse network structure while better preserving the information of the original network.
TADW [29] first proposed combining textual information of nodes into representation learn-
ing through matrix decomposition, reflecting a better performance than the Deepwalk [24]
algorithm. The traditional Deepwalk method based on random wandering is proved and
extended, and it is proved that its essence is an equivalent matrix decomposition method, so
by adding the textual feature information matrix in the decomposition process, the method
has both structure and textual information for representation learning, but the problem is
that the computation and storage of the two correlation matrices for structure and textual
information are less efficient and not suitable for large networks. The model of AANE [30]
also integrates topological and attribute information in the network based on matrix decom-
position, but the model decomposes the optimization process into multiple subproblems
working in parallel, which improves the efficiency of the algorithm. ASNE [31] separates
the structure and attributes of the topological nodes perform a layer of embedding, and then
weighted stitching is inputted to a deep neural network to achieve network representation
learning. DeepEmLAN [32] smoothly projects different types of attribute information into
the same semantic space by a deep attention model while maintaining its topology. Deep
autoencoder-based GAE and variational autoencoder-based VGAE [33] integrate and map
the topology and attribute information into the same semantic space, using the middle layer
as a vector representation of the nodes. GraphSAGE [34] extends the traditional graph con-

Symmetry 2022, 14, 1840 3 of 18

volutional neural network to generate a vector representation by aggregating information
of multi-order neighbor nodes with node attribute information. GraphRNA [35] generates
random wandering sequences on node attribute information, based on which a recurrent
neural network framework is designed to learn node representations. ARNL [36] combines
encoder and Skip-Gram models to jointly learn structurally and attribute representations.
GCN [37] uses first-order information based on local spectral convolution filters to aggre-
gate neighbor attribute information. GAT [38] adds node attribute information to neighbors
to assign different weights and learn neighbor weights based on importance.

Existing methods for learning network representations combining structural and node
attribute information continue to suffer from several problems:

• Non-linearity: Most representation learning methods are shallow, but the structure
and attribute information in the network are highly non-linear, and it is difficult to
capture the highly non-linear topology and node attribute information in the network.

• Interactivity: Topological structure and attribute information learning are comple-
mentary to network representation, and both should be ensured to learn interactively
when performing learning, and the consistency and interactivity of structure and
attribute information cannot be learned well.

• Multimodality: structure and node attribute information are two different kinds of
information; one should know how to efficiently fuse the two kinds of information
and learn important information in structure and attributes adaptively in down-
stream tasks.

To address the above issues, this paper proposes a dual autoencoders’ attribute net-
work representation learning method that can fuse local and global structure information
and node attribute information in network representation learning to obtain a better node
representation. Specifically, the multi-hop attention mechanism is used to capture the
higher-order neighborhood information of the nodes [39], and the attribute autoencoder
part is designed with a low-pass Laplace filter to process the attribute matrix because
the low-frequency signals are smoother and the signal values of neighboring nodes are
more correlated and have stronger similarity, while the high-frequency graph signals have
much more drastic changes and the differences between the signal values of neighboring
nodes are more significant. Therefore, a low-pass Laplace filter is designed to process the
attribute information.

The main contributions of this paper can be summarized as follows:

• In this paper, we propose the dual autoencoders network representation learning
(DANRL) method, which uses the neighbor weight analysis strategy of a multi-hop
attention mechanism to assign different weights to nodes based on node neighbor
attribute information, capture node high-order neighborhood information, and obtain
node structure embedding representation.

• A low-pass Laplace smoothing filter is designed to process the attribute matrix, remove
the high-frequency signals, make the nodes close to each other in the neighborhood
closer, iteratively obtain the attribute information of important neighbor nodes, realize
the complementarity and mutual constraint of two kinds of information, and obtain
the attribute embedding representation after adaptive decoding.

• The adaptive learning strategy is proposed to design common parameter sharing and
the importance of adaptive learning structure and properties by optimizing the joint
reconstruction loss of two autoencoders.

• We experiment on four real-world datasets and compare them with eight network
representation learning methods, and the experimental results show the advantages
and rationality of DANRL for the node-clustering task.

Symmetry 2022, 14, 1840 4 of 18

2. Related Work
2.1. Network Representation Learning

Real-world networks are essentially graph-structured, in which the vertices in the
network are the nodes in the graph, and the relational links between the vertices in the
network are the edges connecting nodes to nodes in the graph structure; therefore, network
representation learning is also called graph representation learning, network embedding,
or graph embedding.

Traditional network representation learning methods focus on capturing linear and
shallow topological information in the network, while realistic complex networks exist
with high sparsity and nodes that contain rich attribute information, and combining
attribute information to learn low-dimensional vector representations of nodes makes
the learned vectors better represent the information of the original network and gives
them representation and inference capabilities in low-dimensional space [40–42]. In the
introduction, we mentioned traditional topology-based representation learning methods
and representation learning methods that incorporate node attribute information. In this
paper, we classify network representation learning methods into two major categories: one
that is not based on graph neural networks and retains shallow network information and the
other that is based on graph neural networks and captures network structure and attribute
information. The difference between the graph neural network-based approach and the non-
graph neural network-based approach is that the graph neural network-based approach
can be generalized to invisible nodes, can learn vector representations using the attribute
information of the nodes, and can also capture highly nonlinear information about the
network structure and attributes [43]. Although the graph neural network-based approach
can exploit the node attribute information in the network, it also introduces problems
such as over-smoothing, which reduces the robustness of the approach. In addition, graph
neural networks lack interpretation in the fusion of the structure and attribute information
and do not guarantee interactivity and consistency when performing the fusion of the
two types of information, which keeps the two types of information mutually constrained
when learning.

2.2. Auto-Encoder

The autoencoder consists of an artificial neural network composed of an encoder and a
decoder, where the encoder maps the graph structure data in the input space to the potential
representation space, and the decoder then maps the data in the potential representation
space to the reconstruction space, making the graph structure in the reconstruction space
similar to the graph structure in the original input space. Encoder–decoder architecture
combined with deep neural networks completes the reconstruction of complex networks,
as shown in Figure 1 [44]. The structure of the graph autoencoder facilitates multimodal
information fusion for efficient joint representation learning, and the basic encoder contains
three layers, the input layer, the hidden layer, and the output layer:

hi = σ(W(1)
i + b(1)) (1)

x̂i = σ(W(2)hi + b(2)) (2)

Here, xi denotes the first i input data, hi is the hidden layer representation of the
encoder, x̂i is the data reconstructed by the decoder, and θ =

{
W(1), W(2), b(1), b(2)

}
is the

parameter of the autoencoder model and is the nonlinear activation function. The encoder
and decoder can be set up with different dimensionality-reduction methods depending on
the task.

Symmetry 2022, 14, 1840 5 of 18

Figure 1. Encoder architecture.

In the autoencoder, the loss function is usually taken as the squared error loss func-
tion or the cross-entropy loss function. For the input sample and reconstructed sample,
the squared error loss function is:

J
(

X, X̂
)
=

1
2

n

∑
i=1
‖x̂i − xi‖2

2 (3)

The cross-entropy loss function is:

J
(

X, X̂
)
= −

n

∑
i=1

[xi log(x̂i) + (1− xi) log(1− x̂i)] (4)

3. Attribute Network Representation with Dual Autoencoders
3.1. Related Concepts

In order to better describe the proposed model and its specific algorithm, this pa-
per first gives a description of relevant concepts in the problem and the main symbolic
representation involved in the algorithm model, and the main symbols are shown in Table 1.

Table 1. Symbol definition.

Symbol Meaning

V Node collection
E Collection of edges between nodes
A Node attribute collection
n Number of network nodes, |V|
m Number of node attributes, |A|
X Attribute matrix, n×m
M Adjacency matrix
eij Weight between nodes vi and vj
vi Node labeled i, vi ∈ V
d The node ultimately represents the dimension of the vector, d >> t
yi Representation vector of node vi
Y Node representation vector matrix

In the real world, networks can be represented as graph structures, such as social
networks, citation networks, etc. In real networks, nodes usually have a series of attribute
information, which forms vectors related to nodes. For example, in social networks,
a node represents a user, and the user’s relevant attribute information may include gender,
age, address, friends, etc. Therefore, in the research on network representation learning,
an network with rich attribute information in nodes is called an attribute network. An
attribute network can be interpreted in a symbolic way as follows: given a network
G = (V, E, A), where V = {v1, v2, · · · , vn} is the set of nodes in the network, the number
of nodes is n; E =

{
eij
}

is the set of neighboring edges between nodes in the network;
A = {a1, a2, · · · , am} is the set of node attributes; and the number is m. The proximity
of attributes between each node pair

(
vi, vj

)
is determined by the similarity between the

attribute vector xi of the node vi and the attribute vector xj of the node vj .

Symmetry 2022, 14, 1840 6 of 18

The purpose of attribute network representation learning is to use the network struc-
ture and node attribute information to learn a mapping function on a given attribute
network and map the nodes in the network to a low-dimensional vector space so that the
nodes with similar structures and attributes are close to each other in the low-dimensional
space, and then use machine learning methods to solve the downstream tasks in network
analysis, such as node clustering and link prediction. The attribute network represents the
learning process, as shown in Figure 2. The adjacency matrix and attribute matrix of the
attribute network are combined to learn the final representation vector of nodes. The low-
dimensional representation vector is applied in the machine learning algorithm to solve
the downstream tasks of network analysis, such as node clustering and link prediction.
To use a symbolic expression to explain attribute network representation learning, for a
given attribute network, learn the mapping function f : vi → vj ∈ Yd and i ∈ V, where the
mapping is associated with the structure and attribute information of each node, where d is
the dimension of the final representation vector of nodes.

Figure 2. Attribute network represents learning process. Combined with the network structure and
attribute information, the low dimensional representation vector of nodes is learned, and the machine
learning algorithm is used to solve the downstream tasks of network analysis. In the figure, circular
dots represent network nodes, and square lattices of different colors beside nodes represent different
attribute information.

The first-order proximity in a network is the local pairwise proximity between two
vertices. For two vertices vi and vj , if there is a directly connected edge between the two
vertices, there is first-order proximity between the vertices vi and vj , and the weight eij of
the edge is the first-order proximity of the two vertices; otherwise, there is no first-order
proximity between the two vertices.

In the real network, the direct connection between the two vertices observed only
accounts for a small proportion. Even though the two vertices are very similar in nature,
they are not directly connected, then the first-order proximity is zero, these vertices will be
lost in the similarity measurement. Therefore, single first-order proximity is not enough
to preserve the network structure. High-order proximity is used to describe the similarity
of neighborhood network structure between vertices, which complements the first-order
proximity and retains the global structure of the network. If Ni = (ei,1, ei,2, · · · , ei,n) denotes
the first-order proximity between vertex vi and vj all other vertices, then the higher-order
proximity of vertices vi and vj is determined by the similarity of Ni and Nj.

3.2. Representation Learning Method for Dual Autoencoders

The method proposed in this paper is based on dual autoencoders for attribute net-
work representation learning (DANRL), which deeply excavates the internal relationship
between structure and node attributes and uses a dual-channel autoencoder to learn the
network structure and attribute information (the autoencoder of structure and the autoen-
coder of attribute). One channel autoencoder uses the adjacency matrix of the network
to calculate the edge weight between nodes, adopts the multi-hop attention mechanism
to capture the high-order neighbor information of nodes, and learns the local and global
structure of the network, and obtains the structure representation vector. The other channel
autoencoder uses the node attribute matrix and adjacency matrix to design a low-pass

Symmetry 2022, 14, 1840 7 of 18

Laplace filter. Based on the network structure, the attribute information of neighboring
nodes in the neighborhood of the target node is iteratively aggregated to obtain the at-
tribute representation vector. The dual autoencoders fully learn the network structure and
attribute information and then, through adaptive fusion, input the decoder to reconstruct
and obtain the reconstruction matrix. This method constructs a training set by selecting
highly similar or dissimilar node pairs and monitors the joint loss function training encoder
of the structural autoencoder and attribute autoencoder. Its overall framework is shown
in Figure 3.

Figure 3. The DANRL framework. (a) represents the autoencoder of the structure, and the structure
embedding representation vector is obtained. (b) represents the attribute autoencoder part, and the
attribute embedding representation vector is obtained. The vectors learned by the dual autoencoders
are adaptively fused, and the reconstructed matrix is output after reconstruction by the decoder.

3.2.1. Data Processing

The network structure is complex; some nodes do not have first-order proximity, but they
have similar network structures, and the attribute information of nodes involves many types
of data. Moreover, there are some nodes with missing and incomplete attribute information,
etc. Therefore, this paper first preprocesses the node structure and attribute information.

For attribute networks, the adjacency matrix records the first-order proximity of the
nodes in the network, while the first-order proximity can only reflect the local structure
of the network, and some nodes may have similar neighborhood structures but do not
have directly connected edges. For example, in social-network communities where people
have common neighbors, they are not necessarily connected. In other words, the feature
information obtained by first-order proximity alone is not enough. In this paper, the column
vector of the adjacency matrix is used to encode the structural information of the nodes
as the local structure of the network, and the second-order neighbor information of the
network is encoded using a multi-hop attention-weighted summation.

Node attribute information usually involves many data types, and these data do not
have size and order differences, and there is no direct connection between each attribute,
so this paper encodes the attribute information uniquely and then splices the encoded
representation of each attribute into the attribute vector representation of the node. For
example, for any node vi, its attribute representation vector is ai, aij represents the attribute
encoded vector corresponding to the node vi, and ⊕ represents the splicing. Then:

ai = ai1 ⊕ ai2 ⊕ ai3 ⊕ . . .⊕ aim (5)

For the problem of missing or incomplete attribute information, traditional methods
include using statistics to fill in the missing data with the mean or plural or adding a random
perturbation mechanism to add perturbations to the input samples with the probability to

Symmetry 2022, 14, 1840 8 of 18

randomly set the missing attribute information of some nodes to zero as the input vector.
These methods are simple and intuitive, but they do not consider the structural information
of the nodes, and there are biases in network information fusion. Therefore, in this paper,
we combine the first-order proximity of the node structure and the node attribute matrix
and fill the nodes with missing attribute information according to the first-order neighbor
nodes of the target nodes.

3.2.2. Structural Autoencoder

To capture the highly nonlinear structural information, an unsupervised network
representation learning module designed by the structural autoencoder is based on the
reconstruction of the adjacency matrix task. Since it is necessary to capture both local and
global highly nonlinear structural information of the network, this paper uses a graph
attention mechanism to learn the importance weights between nodes and their neighbors
to achieve the aggregation of weighted message-passing mechanisms.

An unsupervised network representation learning module designed by a structural
autoencoder based on the task of reconstructing the adjacency matrix. Since it is necessary
to capture both local and global highly nonlinear structural information of the network,
this paper uses a multi-hop attention mechanism to learn the importance of weights
among its neighbors to achieve the aggregation of weighted message-passing mechanisms.
The geometric distances of nodes in the peripheral Euclidean space of the embedding space
are also calculated, and the geometric distances are sorted to add the information of nodes
that are geometrically close to each other to the aggregation operation.

First, the importance of learning neighboring nodes using the graph attention layer:

eij = attn
(

yM
i , yM

j

)
= σ

(
µ ·
[
W(1)xM

i ⊕W(1)xM
j

])
(6)

where attn(·) is the attention layer, µ and W(1) are the parameters to be learned, ⊕ denotes
vector splicing, and eij denotes the importance of the features of node vj to node vi. To make
the importance weight coefficients easily comparable across nodes, we normalize eij with
the softmax function:

γij = So f tmax
j

(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

=
exp

(
ReLU

(
µ ·
[
W(1)xM

i ||W(1)xM
j

]))
∑k∈Ni

exp
(
ReLU

(
µ ·
[
W(1)xM

i ||W(1)xM
k

])) (7)

In addition to capturing information about the proximity nodes of the target node,
to also capture information about nodes that are not directly connected to an edge, we
diffuse the graph using multi-hop attention, a process that computes the attention scores of
multi-hop neighbors based on the matrix M:

M =
k

∑
i=0

θiMi where
k

∑
i=0

θi = 1 and θi > 0 (8)

where θi is the attention weight decay factor and Mi describes the path length from one
node to another and increases the acceptance domain of nodes, i.e., nodes that are geo-
metrically close to each other in the peripheral Euclidean space. We define a differential
twist function for node distance and node proximity “distance” in the peripheral Euclidean
space as follows:

ρ =
1

n(n− 1) ∑
i 6=j

dM
(
xi, xj

)
dε

(
xi, xj

) =
1

n(n− 1) ∑
i 6=j

dM
(
xi, xj

)√
n
∑

i=1

(
xi − xj

)2
(9)

where dM
(
xi, xj

)
represents the distance measure of proximity in non-Euclidean space,

and dε

(
xi, xj

)
represents the distance of nodes in peripheral Euclidean space. ρ represents

Symmetry 2022, 14, 1840 9 of 18

the “trade-off” between the two distances, and the smaller ρ means the “trade-off” be-
tween non-Euclidean and Euclidean is small, which better preserves the node proximity
information and geometrically similar node information.

Finally, the neighboring features in the acceptance domain of the nodes are weighted
and summed:

YM
i = ∑

k∈M

(
γik · YM

k + γiε · YM
ε

)
(10)

after adaptive decoding, the structural embedding representation is obtained.

3.2.3. Attribute Autoencoder

The attribute autoencoder is a network representation learning module that captures
highly nonlinear attribute information of nodes. In the attribute learning process, the en-
coder performs feature mapping of the original node attributes of the network and uses a
Laplace smoothing filter to mitigate the high-frequency noise in the node attributes and ob-
tains the embedded representation of the node attributes. The structure representation and
attribute representation are adaptively fused to achieve interactive learning and consistency
between them, and the reconstruction of the node attribute matrix is completed.

To measure the smoothness of the attribute vector x in the graph, firstly, calculate the
Rayleigh entropy of the graph Laplacian matrix L(L = D−M) and the attribute vector x:

R(L, x) =
xTLx
xTx

(11)

and
xTLx = xTDx− xTMx
= ∑

i
x2(vi)di −∑

i
∑
j

Mijx(vi)x(vi)

= 1
2

(
∑
i

x2(vi)di − 2 ∑
i

∑
j

Mijx(vi)x
(
vj
)
+ ∑

j
x2(vj

)
dj

)
= 1

2 ∑
i

∑
j

Mij
(
xi − xj

)2

(12)

It follows that neighboring nodes should have similar values, and the more similar they
are, the smoother they are. The result of Rayleigh entropy is the eigenvalue L. The solution
to x in R(L, x) corresponds to the eigenvector of L.

The conventional Laplace smoothing filter is defined as:

H = I− kL (13)

The filtered attribute vector x̃ is:

x̃ = Hx = (I− kL)x =
n

∑
i=1

(1− kλi)piµi =
n

∑
i=1

pi
′
µ
′
i (14)

where µi is the eigenvector of L and pi is the coefficient of the eigenvector. The attribute
vector matrix after t-layer Laplacian filtering is as follows: X̃ = H

t
X.

In the actual network analysis task, a symmetric normalized graph Laplace matrix is
used, where D̃ and L̃ are the degree matrix and the Laplace matrix concerning the matrix M̃.

M̃ = I + M (15)

L̃ = D̃−
1
2 LD̃−

1
2 (16)

Thus, the Laplace matrix is:
H = I− kL̃ (17)

Symmetry 2022, 14, 1840 10 of 18

For the choice of k values, let the L̃ maximum eigenvalues be λm, k = 1/λm. In the
evaluation task and result analysis section, we show the effect of different k values on the
experimental results.

In this paper, the similarity of attribute information between each pair of nodes in the
attribute matrix after smoothing and filtering is calculated by cosine similarity, and then
the similarity information between the nodes is stored as follows:

SX
ij = CosSim

(
X̃
)
=

xixT
j

|x̃i|
∣∣x̃j
∣∣ (18)

To analyze the distribution of common attributes between different nodes, we first
determine whether there are directly connected edges between node pairs based on the
adjacency matrix obtained from the original network, and then we multiply the corre-
sponding attribute encoding vectors in the attribute matrix to determine the common
attributes between two nodes. This part of the encoder, like the structural encoder, consists
of multilayer nonlinear functions.

3.3. Model Optimization

In this paper, the optimization objective function of the model is defined as the joint
optimization of the reconstruction error of the structural autoencoder and the attribute
autoencoder, and the optimization loss function is as follows:

Lloss = Lstr + Lattr = min

(
n

∑
1

∥∥∥yM
i − yi

∥∥∥2

2
+

m

∑
1

∥∥∥yX
i − yi

∥∥∥2

2

)
(19)

Based on the above interpretation of the model components, a description of the
DANRL algorithm is obtained as shown in Algorithm 1.

Algorithm 1: The algorithm of DANRL.

Input: Attribute network G = (V, E, A),adjacency matrix M,attribute matrix X, filter layers t;
Output: Node representation matrix Y;
1. Calculate neighbor node importance weight eij from (6);
2. Normalized from (7);
3. for n = 2, 3, . . . , n
4. Calculate Euclidean distance and twist ρ from (9);
5. end for;
6. Obtain node structure embedded representation yM

i ;

7. Obtain Laplacian
∼
L from (16);

8. k← 1/λm;
9. Get filter matrix H from (17);
10. Get the smoothed attribute matrix X̃ from (14);
11. Calculate node attribute similarity matrix SX

ij from (18);
12. Obtain node attribute embedded representation yX

i ;
13. for epoch = 1, 2, . . . , custom do
14. Update encoder parameters;
15. Calculate the joint optimization loss function;
16. end for;

4. Experiments and Results Analysis

In this paper, extensive experiments were conducted to verify the superiority of DANRL
by experimenting on four real network datasets and comparing them with traditional network
representation learning methods and methods that incorporate node attribute information.

Experimental environment: Intel(R)Core(TM)i7-7700 CPU @ 3.6 GHz 3.6GH, GeForce
GTX 1060Ti; Python 3.7.3, PyTorch 1.3.1.

Symmetry 2022, 14, 1840 11 of 18

4.1. Experimental Dataset

We performed statistics on the four datasets involved in this paper, and the results are
shown in Table 2. The datasets are described in detail as follows.

Citation networks: Citeseer, Pubmed, and Cora all belong to citation networks. In cita-
tion networks, network nodes represent papers, and connected edges represent citation
relationships between papers. Node labels are the research topics of papers, i.e., classi-
fication results, and node attributes represent the attribute features of each paper, such
as keywords, year of publication, and research keywords. The Citeseer dataset classifies
papers into six categories: Agents, AI, DB, IR, ML, and HCI; The Pubmed dataset comes
from 19,717 papers on diabetes in the Pubmed database, and this dataset classifies papers
into three categories; the Cora dataset consists of papers related to machine learning, and in
this dataset, papers are classified into seven categories.

The Wiki dataset is a network of nodes as web pages, the links between different nodes
are hyperlinks in the web pages, and the textual information on the web pages is processed
similarly to the textual information in other datasets to extract attributes.

Table 2. Statistics of datasets.

Dataset Node Edge Attribute Lable

Citeseer 3312 4714 3703 6
Pubmed 19,717 44,338 500 3

Cora 2708 5429 1433 7
Wiki 2405 17,981 4973 17

4.2. Comparison Algorithm and Parameter Setting

In this paper, the DANRL algorithm is compared with eight representative net-
work representation learning methods, including three traditional algorithms (Deepwalk,
Node2vec, LINE) and five algorithms that combine attribute information (TADW, DANE,
AANE, GAE, VGAE). 10% of the dataset is taken as the test set, 10% as the validation
set, and the remaining 80% as the training set, and the training samples are adaptively
reselected every time the threshold is updated. The comparison algorithm is divided into
two groups:

(1) Traditional structure-based network representation learning methods. These al-
gorithms only consider the structural information of the network and do not combine
network attribute information for node representation learning. Deepwalk and Node2vec
algorithms, use random wandering to generate sequences of nodes and then input the se-
quences to the skip-gram model to learn the potential node representation vectors. LINE is
a representation learning method that uses first-order similarity and second-order similarity
to preserve the local and global structure information of the representation learning method.

(2) Attribute network representation learning methods. The difference between these
methods and the traditional structure-based representation learning methods is that the
attribute information of the nodes is also considered, and the similarity between the
structure of the original network and the attribute information is maintained when learning
the vector representation. Examples include the TADW method, which was the first to
combine external information (textual information), the DANE method, which focuses
on nonlinear information about structure and attributes, and the VGAE method, which
uses the combined attribute similarity of a variational autoencoder to reconstruct the
network structure.

In this paper, the node representation vectors learned by the two major classes of meth-
ods described above are used for the node clustering task, thus evaluating the effectiveness
of the methods. In the algorithm that requires random wandering, the number of wander-
ing nodes is set to 80, the step size to 10, and the window size to 10. The regularization
term coefficient of TADW is 0.1, and the embedding dimension of all algorithms is set to
256. The parameters of the DANRL algorithm for different data sets are set in Table 3.

Symmetry 2022, 14, 1840 12 of 18

Table 3. Parameter settings of different datasets.

Dataset t lr

Cora 8 1× 10−3

Citeseer 3 3× 10−3

Pubmed 35 1× 10−4

Wiki 1 1× 10−3

4.3. Evaluation Tasks and Analysis of Results

In this paper, we measure the DANRL algorithm performance through a common
downstream task of network analysis, the node clustering task. Node clustering is an
unsupervised method in which nodes are grouped into clusters, and we calculate the
accuracy of node clustering by comparing the obtained label results with the true labels,
and normalized mutual information (NMI) is used to measure the similarity of the clus-
tering results, which takes values in the range of [0, 1], with larger accuracy and NMI
values indicating better clustering results. The node-clustering task is used to evaluate the
effect of the results of node embedding on subsequent, e.g., network analysis tasks such
as community detection, to obtain a comparison between the labeled results and the true
labels to calculate the accuracy of node clustering. Specifically:

ACC =

n
∑

i=1
δ(si, map(ri))

n
(20)

where ri is the label after clustering, si is the true label of the data, n is the total number of
data, and δ is the comparison indicator function.

δ(x, y) =
{

1 · · · i f x = y
0 · · · otherwise

(21)

The standardized mutual information (NMI) is used to measure the similarity of
clustering results, and is one of the important indicators for community detection. Its value
is in teh range of [0, 1], and a larger value indicates that the clustering results are more
similar, as defined below:

NMI(X, Y) = −2
∑
x

∑
y

p(x, y) log p(x,y)
p(x)p(y)

∑
i

p(xi) log p(xi) + ∑
j

p
(
xj
)

log p
(
xj
) (22)

where X denotes the true label of the data, Y denotes the label after the clustering algorithm,
NMI(X, Y) denotes the similarity between the computed result and the actual label; p(x, y)
denotes the joint probability distribution between X and Y, and p(x), p(y) denote the
edge distribution.

The node clustering task accuracy and NMI experimental results are shown in Table 4,
where the bolded values are the results of the algorithm DANRL in this paper, the under-
lined ones are the optimal results, and “−” indicates no experimental results. Because the
NMI results of node2vec and LINE algorithms for clustering tasks on the Wiki dataset
are poor, they are not presented, and the NMI results of the AANE algorithm on the
Pubmed and Wiki datasets are unstable, so they are not compared. For the Cora dataset,
the precision of the DANRL algorithm is 0.775, which is 7.3% better than the 0.702 of the
suboptimal DANE algorithm. For the Wiki dataset, the precision and NMI of the optimal
results are 0.473 and 0.499, respectively, which are slightly higher than the 0.468 and 0.497
of the DANRL algorithm, but the DANRL algorithm is close to the optimal results. For the
Citeseer dataset, the DANRL accuracy and NMI are 0.705 and 0.458, which are signifi-
cantly higher than the suboptimal results of 0.479 and 0.422 in other algorithms, with an
improvement of nearly 23% and 3%. This proves that the algorithm in this paper has better
performance on the clustering task.

Symmetry 2022, 14, 1840 13 of 18

Table 4. Experimental results of node clustering.

Method
Cora Citeseer Pubmed Wiki

ACC NMI ACC NMI ACC NMI ACC NMI

Deepwalk 0.482 0.328 0.326 0.088 0.543 0.105 0.388 0.223
Node2vec 0.647 0.356 0.451 0.101 0.664 0.127 0.379 −

LINE 0.479 0.433 0.391 0.225 0.661 0.387 0.409 −

TADW 0.599 0.443 0.455 0.290 0.511 0.244 0.311 0.118
DANE 0.702 0.630 0.479 0.422 0.694 0.308 0.473 0.499
AANE 0.445 0.161 0.447 0.143 0.451 − 0.432 −
GAE 0.616 0.490 0.367 0.223 0.631 0.248 0.377 0.374

VGAE 0.554 0.407 0.377 0.281 0.627 0.333 0.444 0.299

DANRL 0.775 0.695 0.705 0.458 0.709 0.326 0.468 0.497

Figure 4 is a visualized line graph of the accuracy results of the DANRL algorithm
and other algorithms for the node clustering task on different datasets. The vertical axis
represents the clustering accuracy (ACC), the horizontal axis represents the different four
datasets, and the dark gray dash indicates the algorithm in this paper. It can be found
that on the Citeseer dataset, the clustering accuracy of the DANRL method is much higher
compared to the other algorithms. The accuracy results are highest on the Cora dataset and
not so high on the Wiki dataset, but compared to other representation learning algorithms,
the results of this paper’s method are highest on this dataset, indicating that network
attribute information is of different importance for different network structures, and that is
not the case that the more attributes are combined the better.

Figure 4. Node clustering comparison algorithm ACC values.

Figure 5 shows the visualization results of the node-clustering NMI evaluation metrics
on all network data, where the dark red color represents the results of the DANRL algorithm
proposed in this paper. The model architecture of the dual autoencoders proposed in this
paper, where the structure and node attributes learn interactively and constrain each other,
shows advantages in different networks, and although some of the network results are not
optimal, they are close to the best results.

Figure 6 shows the experimental results for different k values. The left graph clusters
ACC metrics and the right graph shows clustering NMI metrics. In the left panel, the vertical
axis indicates the clustering accuracy, and the horizontal axis indicates different k values.
The ACC metrics of Cora and Citeseer networks are optimal when k = 2/3, and the
difference between the results on Pubmed and Wiki networks and k = 4/5 is not very
obvious, but from k = 1 to k = 2/3 and k = 4/5 , ACC is optimal at the place closest
to the inverse of the maximum eigenvalue of each network (i.e., k = 2/3). In the right
panel, the vertical axis is the clustered NMI values, the horizontal axis is the different k

Symmetry 2022, 14, 1840 14 of 18

values, and the four colors are the four data sets. At k = 2/3, most of the histograms are
the highest, and only the light green and dark blue results do not differ much at different k
values, proving that the low-pass filter designed in this paper is an improvement over the
traditional convolution operation.

Figure 5. Node clustering comparison algorithm’s NMI values.

Figure 6. Experimental results for different k values.

Table 5 shows the average running time of the DANRL algorithm compared with other
algorithms, where the bolded values are the results of the algorithm DANRL proposed in
this paper. Deepwalk is chosen for the traditional representation learning method, and three
methods are chosen for combining attribute information: TADW, GAE, and VGAE. The
average running time of the DANRL algorithm for one epoch on the Cora dataset is
0.4602 s, compared to the running time of the TADW algorithm of 0.8546 s, the running
time of the GAE algorithm of 0.5554 s, and the VGAE algorithm’s running time of 0.5063 s,
which is much shorter. For the relatively large dataset Pubmed, the running time of the
DANRL algorithm is 17.4906 s, which is shorter than the running time of all four of the
other methods. While the Wiki dataset is small and has a lot of attribute information,
Deepwalk does not consider the node attributes, so the running time is the shortest at
1.4997 s. In summary, the results show that the efficiency of the methods in this paper
is better.

Table 5. Comparison of average running time between DANRL and other algorithms.

Cora Citesser Pubmed Wiki

Deepwalk 0.6298 1.2638 32.7469 1.4997
TADW 0.8546 1.6376 30.5875 53.3486
GAE 0.5554 0.9978 22.9045 17.2567

VGAE 0.5063 0.9056 20.0006 16.4976
DANRL 0.4602 0.8547 17.4906 18.6905

Symmetry 2022, 14, 1840 15 of 18

4.4. Model Variants

To verify the effectiveness of the method proposed in this paper, the variant model was
set up with the same parameter settings as shown in Table 3, and the experimental results
are shown in Table 6, where the bolded values are the results of the method proposed
in this paper. For the Citeseer dataset, the accuracy of the dual autoencoders is 0.705,
and the accuracies of the variant models are 0.699 and 0.692, and the model in this paper is
improved by nearly 1 percentage point. For the Cora and Pubmed datasets, the accuracy of
only the structure encoder (i.e., M) is 0.666 and 0.506, respectively, and the results are much
worse than the accuracy of the dual encoders, 0.775 and 0.709, but the accuracy of only the
attribute encoder (i.e., X) is 0.753 and 0.673, and the results are better than those of the other
variant model, indicating that the network structure and attribute information for different
datasets have different levels of importance. Compared with the first two model variants,
the accuracies are 0.775, 0.705, and 0.709 on the three data sets, which are all improved and
prove the superiority of the model in this paper.

Table 6. Model variant.

Model
ACC

Cora Citeseer Pubmed

Structure-only (M) 0.666 0.699 0.506
Attribute-only (X) 0.753 0.692 0.673

Str + Attribute (M + X) 0.775 0.705 0.709

Figure 7 is a histogram of the clustering accuracy (ACC) of the variant model versus
the model in this paper. The vertical axis is the accuracy value and the horizontal axis
is the dataset. The blue color is the result of this paper’s model, the light purple color
is variant 1, i.e., only the structural encoder, and the gray color is variant 2, i.e., only the
attribute encoder. From the bar height, we know that the results for the Citeseer dataset do
not differ much, and on the Pubmed and Cora datasets, the model of this paper reflects
a clear advantage. The reason is that the Citeseer dataset has a relatively small number of
nodes, but a large number of attributes and edges, and the hidden geometric structure and
attribute information appear for this problem.

Figure 7. Model variant results.

5. Conclusions

This paper proposes a dual autoencoder learning method for attribute network repre-
sentation. One channel autoencoder uses the multi-hop attention mechanism to capture
the high-order neighborhood information of the node, calculate the importance weight of
the node neighbors, and ensure the local and global structure of the network. The other

Symmetry 2022, 14, 1840 16 of 18

channel autoencoder adopts a low-pass filter to iteratively obtain the attribute information
of the neighbors in the node neighborhood based on the network structure. The dual
autoencoders ensure the learning of the structure and attribute respectively, and then the
adaptive fusion of structure embedding and attribute embedding ensures the interactivity
and mutual restriction between the two kinds of information, which makes up for the lack
of interactivity of the structure and attribute information in the current network repre-
sentation learning and the lack of joint learning node representation of the two kinds of
information. Th experiments on real datasets demonstrated the superiority of the method
in this paper for attribute network representation learning. In the future, we plan to investi-
gate the problem of hidden geometric structures (e.g., hierarchical structures) and attribute
information confrontation in attribute networks.

Author Contributions: Conceptualization, J.W.; methodology, J.W.; formal analysis, J.W.; writing—
review and editing, J.W.; writing—original draft preparation, Z.Z.; software, Z.Z.; validation, Z.Z.;
investigation, Z.Z.; resources, B.L.; data curation, M.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Hebei Natural Science Foundation (F2021205014), funded
by Science and Technology Project of Hebei Education Department (ZD2022139), supported by the
Natural Science Foundation of Hebei Province (F2019205303), supported by the Central Guidance
on Local Science and Technology Development Fund of Hebei Province (226Z1808G), funded by
The Introduction of Overseas Students in Hebei Province (C20200340), and supported by the Hebei
Normal University Science and Technology Fund Project (L2019Z10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, J.Y.; Liu, L.; Wei, W.Q.; Fan, J.X. Network representation learning: From preprocessing, feature extraction to node

embedding. ACM Comput. Surv. 2022, 55, 1–35. [CrossRef]
2. Amara, A.; Taieb, M.A.H.; Aouicha, M.B. Network representation learning systematic review: Ancestors and current development

state. Mach. Learn. Appl. 2021, 6, 100130. [CrossRef]
3. Xu, M.J. Understanding graph embedding methods and their applications. SIAM Rev. 2021, 63, 825–853. [CrossRef]
4. Li, B.; Pi, D. Network representation learning: A systematic literature review. Neural Comput. Appl. 2020, 32, 16647–16679.

[CrossRef]
5. Bai, L.; Yao, L.N.; Li, C.; Wang, X.Z.; Wang, C. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. Adv.

Neural Inf. Process. Syst. 2020, 33, 17804–17815.
6. Su, C.; Tong, J.; Zhu, Y.J.; Cui, P.; Wang, F. Network embedding in biomedical data science. Briefings Bioinform. 2020, 21, 182–197.

[CrossRef]
7. Chen, L.; Xie, T.; Li, J.T.; Zheng, Z.B. Graph Enhanced Neural Interaction Model for recommendation. Knowl. Based Syst. 2022,

246, 108616. [CrossRef]
8. Wang, J.H.; Li, H.K.; Liang, L.N.; Zhou, Y. Community discovery algorithm of complex network attention model. Int. J. Mach.

Learn. Cybern. 2022, 13, 1619–1631 . [CrossRef]
9. Wang, J.H.; Yang, J.T.; He, Y.C. Research on semi-supervised community discovery algorithm based on new annealing. J. Eng.

2020, 12, 1149–1154. [CrossRef]
10. Wang, J.H.; Yang, J.T.; Shi, S.L. Semi-Supervised Community Discovery Algorithm Based on Node Similarity. In Proceedings of

the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, Dalian, China, 14–16 November
2019. [CrossRef]

11. Chai, B.F.; Wang, J.H.; Yu, J. A parameter selection method of the deterministic anti-annealing algorithm for network exploring.
Neurocomputing 2017, 226, 192–199. [CrossRef]

12. Sun, H.L.; He, F.; Huang, J.B.; Sun, Y.Z.; Li, Y.; Wang,C.Y.; He, L.; Sun, Z.; Jia, X. Network embedding for community detection in
attributed networks. ACM Trans. Knowl. Discov. Data 2020, 14, 1–25. [CrossRef]

13. Xu, W.H.; Y, K.H.; Li, W.T.; Ding, W.P. An emerging fuzzy feature selection method using composite entropy-based uncertainty
measure and data distribution. IEEE Trans. Emerg. Top. Comput. Intel. 2022 , 1–13. [CrossRef]

http://doi.org/10.1145/3491206
http://dx.doi.org/10.1016/j.mlwa.2021.100130
http://dx.doi.org/10.1137/20M1386062
http://dx.doi.org/10.1007/s00521-020-04908-5
http://dx.doi.org/10.1093/bib/bby117
http://dx.doi.org/10.1016/j.knosys.2022.108616
http://dx.doi.org/10.1007/s13042-021-01471-w
http://dx.doi.org/10.1049/joe.2019.1186
http://dx.doi.org/10.1109/ISKE47853.2019.9170279
http://dx.doi.org/10.1016/j.neucom.2016.11.050
http://dx.doi.org/10.1145/3385415
http://dx.doi.org/10.1109/TETCI.2022.3171784

Symmetry 2022, 14, 1840 17 of 18

14. Yuan, K.H.; Xu, W.H.; Li, W.T.; Ding, W.P. An incremental learning mechanism for object classificationbased on progressive fuzzy
three-way concept. Inf. Sci. 2022, 584, 127–147. [CrossRef]

15. Pan, G.S.; Yao, Y.; Tong, H.H.; Xu, F.; Lu, J. Unsupervised Attributed Network Embedding via Cross Fusion. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021; pp. 797–805. [CrossRef]

16. Bandyopadhyay, S.; Biswas, A.; Kara, H.; Murty, M.N. A multilayered informative random walk for attributed social network
embedding. Eur. Conf. Artif. Intell. 2020, 325, 1738–1745. [CrossRef]

17. Tong, N.; Tang, Y.; Chen, B.; Xiong, L.R. Representation learning using attention network and cnn for heterogeneous networks.
Expert Syst. Appl. 2021, 185, 115628. [CrossRef]

18. Chen, X.W.; Xu, W.H. Double-quantitative multigranulation rough fuzzy set based on logical operations in multi-source decision
systems. Int. J. Mach. Learn. Cybern. 2022, 13, 1021–1048. [CrossRef]

19. Xu, W.H.; Guo,Y.T. Generalized multigranulation double-quantitative decision-theoretic rough set. Knowl. Based Syst. 2016, 105,
190–205. [CrossRef]

20. Xu, W.H.; Li, W.T. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE
Trans. Cybern. 2016, 46, 366–379. [CrossRef]

21. Liao, L.Z.; He, X.N.; Zhang, H.W.; Chua, T. Attributed social network embedding. IEEE Trans. Knowl. Data Eng. 2018, 30,
2257–2270. [CrossRef]

22. Chen, J.; Zhong, M.; Li, J.X.; Wang, D.H.; Qian, T.Y; Tu, H. Effective Deep Attributed Network Representation Learning with
Topology Adapted Smoothing. IEEE Trans. Cybern. 2021, 52, 5935–5946. [CrossRef]

23. Wang, X.; Zhu, M.Q.; Bo, D.Y.; Cui, P.; Shi, C.; Pei, J. AM-GCN: Adaptive Multi-channel Graph Convolutional Networks.In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA,
6–10 July 2020; pp. 1243–1253. [CrossRef]

24. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 23–27 August 2014; pp. 701–710.
[CrossRef]

25. Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [CrossRef]

26. Zhang, D.K.; Yin, J.; Zhu, X.Q.; Zhang, C.Q. Network representation learning: A survey. IEEE Trans. Big Data 2018, 6, 3–28.
[CrossRef]

27. Tang, J.; Qu, M.; Wang, M.Z.; Zhang, M.; Yan, J.; Mei, Q.Z. Line: Large-scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [CrossRef]

28. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [CrossRef]

29. Li, Z.; Wang, X.; Li, J.X; Zhang, Q.P. Deep attributed network representation learning of complex coupling and interaction. Knowl.
Based Syst. 2021, 212, 106618. [CrossRef]

30. Cui, P.; Wang, X.; Pei, J.; Zhu, W.W. A survey on network embedding. IEEE Trans. Knowl. Data Eng. 2018, 31, 833–852. [CrossRef]
31. Zhang, Z.; Yang, H.X.; Bu, J.J.; Zhou, S.; Yu, P.G.; Zhang, J.W.; Ester, M.; Wang, C. ANRL: Attributed Network Representation

Learning via Deep Neural Networks. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; Volume 18, pp. 3155–3161. [CrossRef]

32. Zhao, Z.Y.; Zhou, H.; Li, C.; Tang, J.; Zeng, Q.T. DeepEmLAN: Deep embedding learning for attributed networks. Inf. Sci. 2021,
543, 382–397. [CrossRef]

33. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
34. Hamilton, W.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30,

1025–1035.
35. Huang, X.; Song, Q.Q.; Li, Y.N.; Hu, X. Graph recurrent networks with attributed random walks. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 732–740. [CrossRef]

36. Park, C.; Kim, D.; Han, J.W.; Yu, H. Unsupervised attributed multiplex network embedding. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 5371–5378. [CrossRef]

37. Wu, Z.H.; Pan, S.R.; Chen, F.W.; Long, G.D.; Zhang, C.Q.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef]

38. Wang, Y.; Sun, Y.B.; Liu, Z.W.; Sarma, S.E.; Bronstein, M.M.; Solomom, J.M. Dynamic graph cnn for learning on point clouds.
ACM Trans. Graph. 2019, 38, 1–12. [CrossRef]

39. Pan, Y.; Hu, G.; Qiu, J.; Zhang, Y.; Wang, S.; Shao, D.; Pan, Z. FLGAI: A unified network embedding framework integrating
multi-scale network structures and node attribute information. Appl. Intell. 2020, 50, 3976–3989. [CrossRef]

40. Zhang, X.Y.; Li, J.R.; Mi, J.S. Dynamic updating approximations approach to multi-granulation interval-valued hesitant fuzzy
information systems with time-evolving attributes. Knowl. Based Syst. 2022, 238, 107809. [CrossRef]

41. Xu, W.H.; Yuan, K.H.; Li, W.T. Dynamic updating approximations of local generalized multigranulation neighborhood rough set.
Appl. Intell. 2022, 52, 9148–9173. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2021.10.058
http://dx.doi.org/10.1145/3437963.3441763
http://dx.doi.org/10.3233/FAIA200287
http://dx.doi.org/10.1016/j.eswa.2021.115628
http://dx.doi.org/10.1007/s13042-021-01433-2
http://dx.doi.org/10.1016/j.knosys.2016.05.021
http://dx.doi.org/10.1109/TCYB.2014.2361772
http://dx.doi.org/10.1109/TKDE.2018.2819980
http://dx.doi.org/10.1109/TCYB.2021.3064092
http://dx.doi.org/10.1145/3394486.3403177
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1109/TBDATA.2018.2850013
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1016/j.knosys.2020.106618
http://dx.doi.org/10.1109/TKDE.2018.2849727
http://dx.doi.org/10.5555/3304889.3305099
http://dx.doi.org/10.1016/j.ins.2020.07.001
http://dx.doi.org/10.1145/3292500.3330941
http://dx.doi.org/10.1609/aaai.v34i04.5985
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1007/s10489-020-01780-7
http://dx.doi.org/10.1016/j.knosys.2021.107809
http://dx.doi.org/10.1007/s10489-021-02861-x

Symmetry 2022, 14, 1840 18 of 18

42. Xu, W.H.; Yu, J.H. A novel approach to information fusion in multi-source datasets: A granular computing viewpoint. Inf. Sci.
2017, 378, 410–423. [CrossRef]

43. Wang, J.; Zhang, D.; Liang, L. A Classification Model with Cognitive Reasoning Ability. Symmetry 2022, 14, 1034. [CrossRef]
44. Wang, Y.S.; Yao, H.X.; Zhao, S.C. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2016.04.009
http://dx.doi.org/10.3390/sym14051034
http://dx.doi.org/10.1016/j.neucom.2015.08.104

	Introduction
	Related Work
	Network Representation Learning
	Auto-Encoder

	Attribute Network Representation with Dual Autoencoders
	Related Concepts
	Representation Learning Method for Dual Autoencoders
	Data Processing
	Structural Autoencoder
	Attribute Autoencoder

	Model Optimization

	Experiments and Results Analysis
	Experimental Dataset
	Comparison Algorithm and Parameter Setting
	Evaluation Tasks and Analysis of Results
	Model Variants

	Conclusions
	References

