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Abstract: In this paper, we study the existence and multiplicity of solutions for the discrete Dirichlet
boundary value problem of the Kirchhoff type, which has a symmetric structure. By using the critical
point theory, we establish the existence of infinitely many solutions under appropriate assumptions
on the nonlinear term. Moreover, we obtain the existence of infinitely many positive solutions via
the strong maximum principle. Finally, we take two examples to verify our results.
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1. Introduction

Let N be a positive integer and denote with [1, N] the discrete set {1, . . . , N}. In this
paper, we consider the following discrete boundary value problem of the Kirchhoff type:−(a + b

N+1
∑

k=1
|∆uk−1|2)∆2uk−1 = λ f (k, uk), k ∈ [1, N],

u0 = uN+1 = 0,
(1)

where a, b are two positive constants, and ∆ is the forward difference operator defined
by ∆uk = uk+1 − uk. ∆2 = ∆(∆) and f (k,×) ∈ C(R,R) for any k ∈ [1, N] and λ ∈ R+.
Problem (1) has a symmetric structure in the variable uk; that is, if we replace uk−1 with uk+1,
and replace uk+1 with uk−1 in (1), then (1) is invariant since ∆2uk−1 = uk+1 + uk−1 − 2uk.

In the past two decades, there has been a lot of interest in the study of difference
equations, such as in biology, economics, and other research fields [1–5]. Most results about
the boundary value problems of difference equations are proved by using the method
of upper and lower solutions as well as fixed-point methods; see [6–10] for more details.
In 2003, Guo and Yu [11] discussed the second-order difference equation by using criti-
cal point theory, and they obtained the existence of periodic and subharmonic solutions.
Since then, many researchers have studied difference equations via critical point theory, in-
cluding boundary value problems [12–18], periodic solutions [19,20] as well as homoclinic
solutions [21–24] and heteroclinic solutions [25].

Problem (1) is the discrete analogue of the following Kirchhoff-type problem:{
−(a + b

∫
Ω |∇u|2dx)∆u = λ f (x, u), in Ω,

u = 0, on ∂Ω.
(2)

As to problem (2), Zou and He [26] established the existence of infinitely many positive solutions
by using variational methods. In the case of λ = 1 in problem (2), Cheng and Wu [27] studied
the two existence results, including at least one or no positive solution via variational methods.
In 2016, Tang and Cheng [28] studied the existence of ground state sign-changing solutions
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when λ = 1 in problem (2) by applying the non-Nehari manifold method. As for Kirchhoff’s
changes and related applications, we refer the reader to [29,30] and the references therein.

Problem (2) is related to the stationary case of a nonlinear wave equation such as

utt − (a + b
∫

Ω
|∇u|2dx)∆u = f (x, u),

which was proposed by Kirchhoff [31] as an extension of the classical D’Alembert’s wave
equation by considering the effects of the changes in the length of the string during
the vibrations.

As for the discrete case, when the parameter λ = 1 in problem (1) and f satisfies
various assumptions, Yang and Liu [32] studied the existence of at least one nontrivial
solution via variational methods and critical groups. A class of partial discrete Kirchhoff-
type problems was discussed by Long and Deng [33] via invariant sets of descending
flow and minimax methods, and some results on the existence of sign-changing solutions,
positive solutions, and negative solutions were obtained.

To the best of our knowledge, although most of the previous works have been ded-
icated to boundary value problems, few have been studied in the discrete problems
of the Kirchhoff type. Inspired by the above results, we intend to investigate the mul-
tiplicity of solutions for the discrete Kirchhoff-type problem with a Dirichlet boundary
value condition by applying critical point theory.

2. Preliminaries

Let X be a reflexive real Banach space and Iλ : X → R be a function satisfying
the following structure hypothesis:

(Λ) Iλ(u) = Φ(u)− λΨ(u) for all u ∈ X, where Φ, Ψ : X → R are two functions of class
C1 on X, and Φ is coercive, i.e., lim

‖u‖→∞
Φ(u) = +∞ and λ ∈ R+.

Provided that infX Φ < r, put

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

)
−Ψ(u)

r−Φ(u)

and
γ = lim inf

r→+∞
ϕ(r), δ = lim inf

r→(infX Φ)+
ϕ(r).

Obviously, γ ≥ 0 and δ ≥ 0. In the sequel, we agree to regard 1
γ (or 1

δ ) as +∞ when
γ = 0 (or δ = 0).

Moreover, recalling Theorem 2.5 of [34], we have the following lemma used to investi-
gate problem (1).

Lemma 1. Assuming that the condition (Λ) holds, one has the following:

(a) If γ < +∞, then for each λ ∈ (0, 1
γ ), the following alternatives hold:

(α1) Iλ possesses a global minimum;

(α2) There is a sequence {un} of critical points (local minima) of Iλ, such that
lim

n→+∞
Φ(un) = +∞.

(b) If δ < +∞, then for each λ ∈ (0, 1
δ ), the following alternatives hold:

(β1) T is a global minimum of Φ, which is a local minimum of Iλ;
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(β2) There is a sequence {un} of pairwise distinct critical points (local minima)
of Iλ, with lim

n→+∞
Φ(un) = infX Φ, which weakly converges to a global

minimum of Φ.

Now we consider the N-dimensional Banach space S ={u : [0, N + 1] → R : u0 =
uN+1 = 0} and define the norm as follows:

||u|| :=

(
N+1

∑
k=1
|∆uk−1|2

) 1
2

.

From ([35], Lemma 2.2), we have the following inequality:

max
k∈[1,N]

|uk| ≤
(N + 1)

1
2

2
||u||, ∀u ∈ S. (3)

Let

Φ(u) :=
a
2

N+1

∑
k=1
|∆uk−1| 2 +

b
4

(
N+1

∑
k=1
|∆uk−1| 2

)2

,

Ψ(u) :=
N

∑
k=1

F(k, uk) and Iλ(u) := Φ(u)− λΨ(u) (4)

where F(k, ξ) :=
∫ ξ

0 f (k, t)dt for every (k, t) ∈ [1, N]×R. Owing to Φ, Ψ ∈ C1(S,R), Iλ is
also a class of C1(S,R). Using the summation by parts method and the boundary condition,
one has

I′(u)(v) = lim
t→0

I(u + tv)− I(u)
t

= a
N+1

∑
k=1

∆uk−1∆vk−1 +

(
b

N+1

∑
k=1
|∆uk−1| 2

)
N+1

∑
k=1

∆uk−1∆vk−1 − λ
N

∑
k=1

f (k, uk)vk

=

(
a + b

N+1

∑
k=1
|∆uk−1| 2

)
N+1

∑
k=1

∆uk−1∆vk−1 − λ
N

∑
k=1

f (k, uk)vk

= −
(

a + b
N+1

∑
k=1
|∆uk−1| 2

)
N

∑
k=1

∆2uk−1vk − λ
N

∑
k=1

f (k, uk)vk

= −
N

∑
k=1

[(
a + b

N+1

∑
k=1
|∆uk−1| 2

)
∆2uk−1 + λ f (k, uk)

]
vk

for any u, v ∈ S.
Thus, u is a critical point of I on S if and only if u is a solution of problem (1).

Now we have reduced the existence of a solution for problem (1) to the existence of a critical
point of I on S.

Finally, we point out the following two lemmas used to obtain positive solutions
for our problem. The first is the following strong maximum principle.

Lemma 2. Fix u ∈ S, such that either

uk > 0 or − (a + b
N+1

∑
k=1
|∆uk−1|2)∆2uk−1 ≥ 0

for each k ∈ [1, N]. Then, either u ≡ 0 or uk > 0 for each k ∈ [1, N].
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Proof. Let uj = min
k∈[1,N]

uk. If uj > 0, then uk > 0 for each k ∈ [1, N], and the conclusion

follows. If uj ≤ 0, then we have

−(a + b
N+1

∑
j=1
|∆uj−1|2)∆2uj−1 ≥ 0.

Owing to a, b > 0, one has ∆2uj−1 ≤ 0. Considering the fact that uj is the minimum,
we obtain uj+1 = uj−1 = uj. If j + 1 = N + 1, we have uj = 0. Otherwise, j + 1 ∈ [1, N].
Replacing j with j + 1, we get uj+2 = uj+1. Continuing this process N + 1− j times, we
have uj = uj+1 = · · · = uN = uN+1 = 0. In the same way, we also get uj = uj−1 = · · · =
u1 = u0 = 0. Thus, we prove that u ≡ 0, and the proof is complete.

Let

F+(k, t) =
∫ t

0
f
(
k, s+

)
ds, (k, t) ∈ [1, N]×R,

where s+ = max{0, s}. Now we define Iλ
+ = Φ− λΨ+, where Ψ+(u) =

N
∑

k=1
F+(k, uk) and Φ

is defined as before. Similarly, the critical points of Iλ
+ are the solutions of the following problem:−(a + b

N+1
∑

k=1
|∆uk−1|2)∆2uk−1 = λ f (k, uk

+), k ∈ [1, N],

u0 = uN+1 = 0.
(5)

Lemma 3. If f (k, 0) ≥ 0 for each k ∈ [1, N], then all the non-zero critical points of Iλ
+ are positive

solutions of problem (1).

Proof. From Lemma 2, it follows that all solutions of problem (5) are either zero or positive.
Then, problem (1) admits positive solutions when problem (5) admits non-zero solutions.
Therefore, the conclusion holds.

3. Main Results

Let

H∞ := lim sup
t→+∞

N
∑

k=1
F(k, t)

t4 and H0 := lim sup
t→0+

N
∑

k=1
F(k, t)

t2 .

Our main results are the following theorems.

Theorem 1. Assume that there exist two real sequences {an} and {bn}, with bn > 0 and
lim

n→+∞
bn = +∞, such that

|an| <

( 2a× bn
2

b(N + 1)
+

4bn
4

(N + 1)2 +
a2

4b2

) 1
2

− a
2b


1
2

, ∀n ∈ N (6)

and

G∞ := lim inf
n→+∞

N
∑

k=1
max
|t|≤bn

F(k, t)−
N
∑

k=1
F(k, an)

2bn
2
[

a(N + 1) + 2b× bn
2
]
− an2(N + 1)2(a + b× an2)

<
H∞

b(N + 1)2 . (7)

Then, for each λ ∈
(

b
H∞ , 1

(N+1)2G∞

)
, problem (1) admits an unbounded sequence of solutions.
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Proof. Fix λ ∈
(

b
H∞ , 1

(N+1)2G∞

)
, and let S, Φ, Ψ, and Iλ be defined as in Section 2. Con-

sidering the fact that critical points of Iλ are solutions of problem (1), we will use Lemma 1
part (α) to prove our conclusion. Obviously, (Λ) holds. Thus, the conclusion holds provided
that γ < +∞ and Iλ is unbounded from below. To this end, write

ωn :=
2bn

2
[

a(N + 1) + 2b× bn
2
]

(N + 1)2

for every n ∈ N. From (3),

||u|| ≤ 2√
N + 1

( (N + 1)2ωn

4b
+

a2(N + 1)2

16b2

) 1
2

− a(N + 1)
4b


1
2

,

then |uk| ≤ bn for every k ∈ [1, N], and for each n ∈ N, one has

ϕ(ωn) ≤ (N + 1)2

N
∑

k=1
max
|t|≤bn

F(k,t)−
N
∑

k=1
F(k,uk)

2bn
2[a(N+1)+2b×bn

2]−(N+1)2

[
a
2

N+1
∑

k=1
|∆uk−1| 2+ b

4

(
N+1
∑

k=1
|∆uk−1| 2

)2] . Now, for each

n ∈ N, the sequence {αn} taken from S is given by (αn)k := an for every k ∈ [1, N], (αn)0 =
(αn)N+1 = 0. Moreover, Φ(αn) = an

2(a + b× an
2), and from (6), we have Φ(αn) < ωn.

Therefore, we obtain

ϕ(ωn) ≤ (N + 1)2

N
∑

k=1
max
|t|≤bn

F(k, t)−
N
∑

k=1
F(k, an)

2bn
2
[

a(N + 1) + 2b× bn
2
]
− an2(N + 1)2(a + b× an2)

.

Hence, from (7), γ ≤ lim inf
n→+∞

ϕ(ωn) ≤ (N + 1)2G∞ < +∞ follows.

Now, we prove that Iλ is unbounded from below. Firstly, assuming that H∞ < +∞
and owing to λ > b

H∞ , we can fix ε > 0, such that H∞ − b
λ > ε. Thus, let {cn} be a real

sequence, with lim
n→+∞

cn = +∞, such that

(H∞ − ε)cn
4 <

N

∑
k=1

F(k, cn) < (H∞ + ε)cn
4, ∀n ∈ N.

For each n ∈ N, let {βn} be defined by (βn)k := cn for every k ∈ [1, N], (βn)0 =
(βn)N+1 = 0. Clearly, {βn} ∈ S. Therefore, we have

Iλ(βn) = Φ(βn)− λΨ(βn)

= cn
2
(

a + b× cn
2
)
− λ

N

∑
k=1

F(k, cn)

< cn
2
(

a + b× cn
2
)
− λ(H∞ − ε)cn

4

= a × cn
2 + [b− λ(H∞ − ε)]cn

4.

Thus, lim
n→+∞

Iλ(βn) = −∞.

Next, assuming that H∞ = +∞, and taking L > 0 such that L > b
λ , we also put

a real sequence {cn} with lim
n→+∞

cn = +∞, such that

N

∑
k=1

F(k, cn) > L× cn
4, ∀n ∈ N.
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Proving as before and selecting {βn} in S as above, one has

Iλ(βn) < a × cn
2 + (b− λ× L)cn

4.

Hence, lim
n→+∞

Iλ(βn) = −∞.

Therefore, we prove that γ < +∞ and Iλ is unbounded from below in both cases.
Bearing in mind Lemma 1 part (α), the proof is complete.

Theorem 2. Assume that there exist two real sequences {dn} and {en}, with en > 0 and
lim

n→+∞
en = 0, such that

|dn| <

( 2a× en
2

b(N + 1)
+

4en
4

(N + 1)2 +
a2

4b2

) 1
2

− a
2b


1
2

, ∀n ∈ N (8)

and

G0 := lim inf
n→+∞

N
∑

k=1
max
|t|≤en

F(k, t)−
N
∑

k=1
F(k, dn)

2en2[a(N + 1) + 2b× en2]− dn
2(N + 1)2

(
a + b× dn

2
) <

H0

a(N + 1)2 . (9)

Then, for each λ ∈
(

a
H0 , 1

(N+1)2G0

)
, problem (1) admits a sequence of non-zero solutions that

converge to zero.

Proof. Let S, Φ, Ψ, and Iλ be defined as above and fix λ ∈
(

a
H0 , 1

(N+1)2G0

)
. Now our goal

is to use Lemma 1 part (β) to prove our conclusion as above. Clearly, (Λ) holds. Write

ωn :=
2en

2[a(N + 1) + 2b× en
2]

(N + 1)2

for every n ∈ N. Owing to (3), if

|u| ≤ 2√
N + 1

( (N + 1)2ωn

4b
+

a2(N + 1)2

16b2

) 1
2

− a(N + 1)
4b


1
2

,

then |uk| ≤ en for every k ∈ [1, N] and n ∈ N, and we have

ϕ(ωn) ≤ (N + 1)2

N
∑

k=1
max
|t|≤en

F(k, t)−
N
∑

k=1
F(k, uk)

2en2[a(N + 1) + 2b× en2]− (N + 1)2

[
a
2

N+1
∑

k=1
|∆uk−1| 2 + b

4

(
N+1
∑

k=1
|∆uk−1| 2

)2
] .

For each n ∈ N, let {γn} be defined by (γn)k := dn for every k ∈ [1, N], (γn)0 =
(γn)N+1 = 0. Obviously, {γn} ∈ S. Thus, one has

ϕ(ωn) ≤ (N + 1)2

N
∑

k=1
max
|t|≤en

F(k, t)−
N
∑

k=1
F(k, dn)

2en2[a(N + 1) + 2b× en2]− dn
2(N + 1)2

(
a + b× dn

2
) .

Hence, by taking (9) into account, δ ≤ lim inf
n→+∞

ϕ(ωn) ≤ (N + 1)2G0 < +∞ follows.
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Our aim is to verify if the global minimum of Φ is different from the local minimum
of Iλ. As a matter of fact, it is easy to see that the global minimum of Φ is 0, and Φ = 0
if and only if uk = 0 for every k ∈ [1, N]. Therefore, our task is reduced to proving that 0 is
not a local minimum of Iλ.

Using the same argument as in the proof of Theorem 1, we firstly assume that H0 <
+∞. Since λ > a

H0 , we fix ε > 0, such that H0 − a
λ > ε. Thus, we can take a real sequence

{rn} with lim
n→+∞

rn = 0, such that

(
H0 − ε

)
rn

2 <
N

∑
k=1

F(k, rn) <
(

H0 + ε
)

rn
2, ∀n ∈ N.

Moreover, by taking in S the sequence {µn} that, for each n ∈ N, is defined by
(µn)k := rn for every k ∈ [1, N], we have

Iλ(µn) = Φ(µn)− λΨ(µn)

= rn
2
(

a + b× rn
2
)
− λ

N

∑
k=1

F(k, rn)

< rn
2
(

a + b× rn
2
)
− λ

(
H0 − ε

)
rn

4

=
[

a− λ
(

H0 − ε
)]

rn
2 + b× rn

2.

Thus, Iλ(µn) < 0.
Next, assuming that H0 = +∞, we fix M > 0, such that M > a

λ ; we also put a real
sequence {rn} with lim

n→+∞
rn = 0, such that

N

∑
k=1

F(k, rn) > M× rn
2, ∀n ∈ N.

Choosing a real sequence {µn} from S in the same way as mentioned above, we have

Iλ(µn) < (a − λ×M)rn
2 + b× rn

4.

Therefore, Iλ(µn) < 0.
Hence, the conclusion follows from part (β) of Lemma 1.

By setting particular conditions, we obtain the following consequences. Let

G∞ := lim inf
t→+∞

N
∑

k=1
max
|ξ|≤t

F(k, ξ)

2t2[a(N + 1) + 2b× t2]
.

Proposition 1. Assume that

G∞ <
H∞

b(N + 1)2 . (10)

If f (k, 0) ≥ 0 for all k ∈ [0, N], then for each λ ∈
(

b
H∞ , 1

(N+1)2G∞

)
, problem (1) admits

an unbounded sequence of positive solutions.
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Proof. Let {bn} be a real positive sequence with lim
n→+∞

bn = +∞, such that

lim inf
n→+∞

N
∑

k=1
max
|t|≤bn

F(k, t)

2bn
2
[

a(N + 1) + 2b× bn
2
] <

1

b(N + 1)2 lim sup
n→+∞

N
∑

k=1
F(k, bn)

bn
4 .

Conditions (6) and (7) of Theorem 1 follow when we take sequence an = 0 for each
n ∈ N. Let

f+(k, t) =
{

f (k, t) if t > 0
f (k, 0) if t ≤ 0,

for each k ∈ [1, N]. From Lemma 3, our proof is complete.

Proposition 2. Assume that

lim inf
t→+∞

max
0≤θ≤t

∫ θ
0 h(s)ds

2t2[a(N + 1) + 2b× t2]
<

1

b(N + 1)2 lim sup
t→+∞

∫ t
0 h(s)ds

t4 . (11)

If h : [0,+∞) → R is a continuous function with h(0) = 0, and σ : [1, N] → R is
a non-negative and non-zero function. Then, for each

λ ∈ 1
N
∑

k=1
σk

 b(N + 1)2

lim sup
t→+∞

∫ t
0 h(s)ds

t4

,
1

lim inf
t→+∞

max
0≤θ≤t

∫ θ
0 h(s)ds

2t2[a(N+1)+2b×t2]

,

the problem −(a + b
N+1
∑

k=1
|∆uk−1|2)∆2uk−1 = λσkh(uk), k ∈ [1, N],

u0 = uN+1 = 0,

admits an unbounded sequence of positive solutions.

Proof. Let

f (k, t) =
{

σkh(t) if t ≥ 0
0 if t < 0

for each k ∈ [1, N] and t ∈ R. Therefore, we have f (k, 0) ≥ 0 for each k ∈ [1, N], and
the conclusion follows from Proposition 1.

Remark 1. If f : [1, N]× R → R is a non-negative function in Proposition 1, condition (10)
becomes

lim inf
t→+∞

N
∑

k=1
F(k, t)

2t2[a(N + 1) + 2b× t2]
<

1

b(N + 1)2 lim sup
t→+∞


N
∑

k=1
F(k, t)

t4

. (12)

Then, the conclusion follows from Proposition 1.

Remark 2. If h : [0,+∞)→ R+ is a continuous function with h(0) = 0 in Proposition 2, then
condition (11) shall be

lim inf
t→+∞

∫ t
0 h(s)ds

2t2[a(N + 1) + 2b× t2]
<

1

b(N + 1)2 lim sup
t→+∞

(∫ t
0 h(s)ds

t4

)
. (13)
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Then, the solutions are also positive from Proposition 2.

Remark 3. If we replace t→ +∞ with t→ 0+, we can also obtain the similar propositions and
remarks in Theorem 2 in the same way.

4. Examples

In this section, we present the following examples to illustrate our results.

Example 1. Let ε be an arbitrarily positive constant, and let

h(s) =
{

2s3[4 + 2ε + 4 sin(ε ln(s)) + ε cos(ε ln s)] if s > 0
0 if s = 0,

with σk = 1 for each k ∈ [1, N]. Then, we have

lim inf
t→+∞

∫ t
0 h(s) ds

2t2[a(N + 1) + 2b× t2]
= lim inf

t→+∞

t2[2 + ε + 2 sin(ε ln t)]
2a(N + 1) + 4b× t2 =

ε

4b

and

lim sup
t→+∞

∫ t
0 h(s) ds

t4 = 4 + ε.

It is easy to see that h(s) ≥ 0, and when ε is sufficiently small,

ε

4
<

4 + ε

(N + 1)2 .

Hence, condition (13) holds.

Then, from Remark 2, for each λ ∈ 1
N

(
b(N+1)2

4+ε , 4b
ε

)
, the problem −(a + b

N+1
∑

k=1
|∆uk−1|2)∆2uk−1 = 2λuk

3[4 + 2ε + 4 sin(ε ln uk) + ε cos(ε ln uk)], k ∈ [1, N],

u0 = uN+1 = 0,
admits an unbounded sequence of positive solutions.

Example 2. Let a, b, N be such that

b(N + 1)
2a

<
3 +
√

2
3−
√

2
. (14)

Then, for each λ ∈ 1
N

(
b(N+1)2

3+
√

2
, 2a(N+1)

3−
√

2

)
, the problem −(a + b

N+1
∑

k=1
|∆uk−1|2)∆2uk−1 = λ[6uk + uk(sin(ln uk) + 3 cos(ln uk))], k ∈ [1, N],

u0 = uN+1 = 0,
admits a non-zero sequence of positive solutions that converge to zero.

In fact, let

h(s) =
{

6s + s(sin(ln s) + 3 cos(ln s)) if s > 0
0 if s = 0,

with σk = 1 for each k ∈ [1, N]. We then have

lim inf
t→0+

∫ t
0 h(s)

2t2[a(N + 1) + 2b× t2]
= lim inf

t→0+

[
3 +
√

2 sin
(

π
4 + ln t

)]
2a(N + 1) + 4b× t2 =

3−
√

2
2a(N + 1)
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and

lim sup
t→0+

∫ t
0 h(s) ds

t2 = 3 +
√

2.

Therefore, from (14), one has

lim inf
t→0+

∫ t
0 h(s)ds

2t2[a(N + 1) + 2b× t2]
<

1

b(N + 1)2 lim sup
t→0+

∫ t
0 h(s)ds

t2 .

By applying Remark 3, our aim is achieved and the conclusion holds.

5. Conclusions

In recent years, Kirchhoff-type problems have been widely studied in the continuous
case, while few have been discussed in the discrete case. In this paper, we considered
the multiplicity of solutions for the discrete Kirchhoff-type problem with a Dirichlet bound-
ary value condition. In Section 2, we recalled critical point theory and showed some basic
lemmas. In Section 3, we proved the existence of infinitely many solutions for problem
(1) by using critical point theory. Moreover, we obtained the existence of infinitely many
positive solutions by means of the strong maximum principle.
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