Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α
Abstract
:1. Introduction
2. Methods
3. Results and Discussions
Fourier Series Expansion and Integral Representation
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corcino, C.; Corcino, R. Approximations of Genocchi polynomials of complex order. Asian-Eur. J. Math. 2021, 14, 2150083. [Google Scholar] [CrossRef]
- Corcino, C.; Corcino, R. Asymptotics of Genocchi polynomials and higher order Genocchi polynomials using residues. Afr. Mat. 2020, 31, 781–792. [Google Scholar] [CrossRef]
- Araci, S.; Acikgoz, M. Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications. Adv. Differ. Equ. 2018, 2018, 67. [Google Scholar] [CrossRef]
- Bayad, A.; Kim, T. Identities for Apostol-type Frobenius–Euler polynomials resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 2016, 23, 164–171. [Google Scholar] [CrossRef]
- Urieles, A.; Ramírez, W.; Ortega, M.J.; Bedoya, D. Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2020, 2020, 534. [Google Scholar] [CrossRef]
- Alam, N.; Khan, W.A.; Ryoo, C.S. A Note on Bell-Based Apostol-Type Frobenius–Euler Polynomials of Complex Variable with Its Certain Applications. Mathematics 2022, 10, 2109. [Google Scholar] [CrossRef]
- Luo, Q.M. Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol–Euler polynomials. Math. Comp. 2009, 78, 2193–2208. [Google Scholar] [CrossRef]
- Bayad, A. Fourier expansions for Apostol-Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Math. Comp. 2011, 2011, 2219–2221. [Google Scholar] [CrossRef]
- Corcino, C.; Corcino, R. Fourier expansions for higher-order Apostol-Genocchi, Apostol-Bernoulli and Apostol–Euler polynomials. Adv. Differ. Equ. 2020, 2020, 346. [Google Scholar] [CrossRef]
- Corcino, C.; Corcino, R. Fourier Series for the Tangent Polynomials, Tangent-Bernoulli and Tangent-Genocchi Polynomials of Higher Order. Axioms 2022, 11, 86. [Google Scholar] [CrossRef]
- Corcino, C.; Corcino, R.; Casquejo, J. Fourier Expansion, Integral Representation and Explicit Formula at Rational Arguments of the Tangent Polynomials of Higher-Order. Eur. J. Pure Appl. Math. 2021, 14, 1457–1466. [Google Scholar] [CrossRef]
- Churchill, R.V.; Brown, J.W. Complex Variable and Applications, 8th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Kim, D.S.; Kim, T. A note on higher-order Bernoulli polynomials. J. Inequal. Appl. 2013, 2013, 111. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corcino, C.; Corcino, R.; Casquejo, J. Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α. Symmetry 2022, 14, 1860. https://doi.org/10.3390/sym14091860
Corcino C, Corcino R, Casquejo J. Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α. Symmetry. 2022; 14(9):1860. https://doi.org/10.3390/sym14091860
Chicago/Turabian StyleCorcino, Cristina, Roberto Corcino, and Jeremar Casquejo. 2022. "Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α" Symmetry 14, no. 9: 1860. https://doi.org/10.3390/sym14091860
APA StyleCorcino, C., Corcino, R., & Casquejo, J. (2022). Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α. Symmetry, 14(9), 1860. https://doi.org/10.3390/sym14091860