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Abstract: In this paper, we have explored Noether symmetries for the Lagrangian corresponding to
the Lemaitre-Tolman-Bondi (LTB) spacetime metric via a Rif tree approach. Instead of the frequently
used method of directly integrating the Noether symmetry equations, a MAPLE algorithm is used to
convert these equations to the reduced involutive form (Rif). The interesting feature of this algorithm
is that it provides all possible metrics admitting different dimensional Noether symmetries. These
metrics are given in the form of branches of a tree, known as a Rif tree. These metrics are used to
solve the determining equations and the explicit form of symmetry vector fields are found, giving 4,
5, 6, 7, 8, 9, 11, and 17-dimensional Noether algebras. To add some physical implications, Einstein’s
field equations are used to find the stress-energy tensor for all the explicitly known metrics, and the
parameters appearing in the metrics are used to find bounds for different energy conditions.

Keywords: LTB metric; Noether symmetries; energy conditions; conservation laws
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1. Introduction

The theory of general relativity is one of the most fundamental and accurate theories
of gravity in modern physics. The beauty of this theory arises from its fabulous simplicity
in describing gravitation in terms of geometry. Mathematically, this phenomenon can be
interpreted by a statement that general relativity is based on the Einstein field equations
(EFEs), which represent a system of ten non-linear partial differential equations, describing
gravitation as a result of the interaction between spacetime geometry and the presence
of mass and energy in its region. Due to their highly nonlinear nature, finding the exact
solutions to EFEs is a difficult problem. However, a limited number of solutions to these
equations are found in literature, using some symmetry restrictions [1]. These symmetries
are defined in terms of a specific type of vector field, known as Killing vector fields (KVFs),
which satisfy the condition [2]:

LV gµν = gµν,λVλ + gµλVλ
,ν + gνλVλ

,µ = 0. (1)

In the above equation, L denotes the Lie derivative operator, V is a KVF, and gµν is the
metric tensor, where µ and ν vary from 0 to 3. Killing vector fields predict the conservation
of energy of a physical system for it being invariant under time translation, while the
conservation of linear and angular momenta respectively for a physical system is invariant
under spatial translations and rotations in a spacetime.

Sometimes, conformal transformations are found to be helpful to find the conservation
laws which are not obtained with the help of KVFs. For example, the conservation of
energy does not appear as a time like KVF in the well-known Friedmann metric, but it
can be recovered by applying some appropriate conformal transformation to this metric
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and then finding its Killing symmetries. Equivalently, one may directly find the conformal
vector fields (CVFs) of the metric, defined by [2]:

LV gµν = gµν,λVλ + gµλVλ
,ν + gνλVλ

,µ = 2α(xa)gµν, (2)

where α is a smooth map of spacetime coordinates. A CVF is called a homothetic vector
field (HVF) if α is constant. For different spacetime metrics, these three symmetries are
thoroughly discussed in literature [3–16].

For every spacetime metric given by ds2 = gµνdxµdxν, the corresponding Lagrangian
is defined as L = gµν

dxµ

ds
dxν

ds , where L = L(s, xa, ẋa), s denotes the arc length parameter and
a dot over xa represents its derivative with respect to s. A vector field V = ξ∂s + Va∂xa

with its first prolongation V[1] = V + Va
,s∂ẋa , where Va

,s = DsVa − ẋaDsξ, defines a Noether
symmetry of the Lagrangian L provided that a gauge function F(s, xa) exists satisfying
the condition:

V[1]L + (Dsξ)L = DsF. (3)

In the above equation, Ds = ∂s + ẋa∂xa ; ξ and Va are functions of s and the space-
time coordinates xa. Like the above-defined spacetime symmetries, Noether symmetry is
also used as a tool for finding exact solutions to EFEs and their classification. Noether
symmetries are the symmetries of a Lagrangian corresponding to a spacetime metric and
are of great importance on account of their link with conservation laws via Noether’s
theorem [17]. For a Noether symmetry V, the associated conservation law is given by:

I = ξL + (Va − ẋaξ)
∂L
∂ẋa − F. (4)

Apart from their major role in the classification of the exact solutions of EFEs, Noether
symmetries are also helpful in solving complicated differential equations. In particular,
these symmetries play an important role in reducing the order of ordinary differential
equations, while in the case of partial differential equations they reduce the number of
independent variables. Noether symmetries are also used in the linearization of nonlinear
differential equations [18–20].

Some well-known relations between Noether and spacetime symmetries include:
(i) Every KVF is a Noether symmetry but there may exist some Noether symmetries which
are not KVFs, (ii) A vector field V is an HVF for a spacetime metric if and only if V + 2αs∂s
is a Noether symmetry for the associated Lagrangian [21], where α signifies the homothety
constant. A Noether symmetry that is not associated with an HVF and is different from a
KVF is called a proper Noether symmetry. As for the conformal symmetries are concerned,
they are not generally related to Noether symmetries except for the case of flat metric
possessing 15 CVFs such that this set of 15 CVFs is properly contained in the set of 17
Noether symmetries for these spacetimes. Like spacetime symmetries, Noether symmetries
are also explored for the Lagrangians associated with some spacetime metrics, the details
can be seen in [22–29].

In this paper, we consider the most general LTB metric and explore the Noether
symmetries of its associated Lagrangian. Instead of the frequently used method of directly
integrating the determining equations, which is time-consuming and does not provide
a complete classification, we follow a recently proposed approach that is based on a
computer algorithm (Rif algorithm), developed in MAPLE using the “Exterior” package.
The interesting feature of the Rif algorithm is that it analyzes the Noether symmetry
equations and imposes certain conditions on the metric functions under which the system
of Noether symmetry equations has a non-trivial solution. Such restrictions are given in
terms of branches of a tree, known as a Rif tree. After that one needs to solve the symmetry
equations under these restrictions. In this way, one gets all possible metrics along with
their Noether symmetries of different dimensions, giving a complete classification of the
spacetime under consideration.
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2. Determining Equations and Rif Tree

The LTB metric can be written in the form [30–32]:

ds2 = −dt2 + A2(t, r) dr2 + B2(t, r) (dθ2 + sin2 θ dφ2) (5)

with three minimum KVFs, given by V(1) = sin φ∂θ + cot θ cos φ∂φ, V(2) = − cos φ∂θ +
cot θ sin φ∂φ and V(3) = ∂φ. In case when A and B depend only on the variable t, the above
metric represents the Kantowski-Sachs spacetime [33] admitting an additional KVF ∂r.
Thus the present study also classifies the Kantowski-Sachs metric according to its Noether
symmetries. The Lagrangian associated with the above metric is given by:

L = − ṫ2 + A2(t, r) ṙ2 + B2(t, r) (θ̇2 + sin2 θφ̇2) (6)

and the corresponding geodesic equations are:

ẗ + AA,t ṙ2 + BB,t θ̇2 + BB,t sin2 θ φ̇2 = 0,

r̈ +
2A,t

A
ṫṙ +

A,r

A
ṙ2 − BB,r

A2 θ̇2 − BB,r sin2 θ

A2 φ̇2 = 0,

θ̈ +
2B,t

B
ṫθ̇ +

2B,r

B
ṙθ̇ − sin θ cos θ φ̇2 = 0,

φ̈ +
2B,t

B
ṫφ̇ +

2B,r

B
ṙφ̇ + 2 cot θθ̇ φ̇ = 0, (7)

where dot represents derivative with respect to affine parameter s. We use the expression
V[1] = V + Va

,s∂ẋa with V = ξ∂s + Va∂xa and Va
,s = DsVa − ẋaDsξ in Equation (3) to get:[

ξ∂s + Va∂xa + (DsVa − ẋaDsξ)∂ẋa
]
L + (Dsξ)L = DsF. (8)

Substituting Ds = ∂s + ẋa∂xa in the above equation, we obtain:[
ξ∂s + Va∂xa + {(∂s + ẋa∂xa)Va − ẋa(∂s + ẋa∂xa)ξ}∂ẋa

]
L + (∂s + ẋa∂xa)ξL = (∂s + ẋa∂xa)F (9)

Using the expression for the Lagrangian given in Equation (6) in the above equation
and simplifying it, we have:

V0(2AA,t ṙ2 + 2BB,t θ̇
2 + 2BB,t sin2 θφ̇2)+ V1(2AA,r ṙ2 + 2BB,r θ̇2 + 2BB,r sin2 θφ̇2)

− 2V0
,s ṫ− 2V0

,t ṫ2 + 2ξ,s ṫ2 + 2ξ,t ṫ3 + 2V1
,s A2ṙ + 2V1

,r A2ṙ2 − 2ξ,s A2ṙ2 − 2ξ,r A2ṙ3 + 2V2
,s B2θ̇

+ 2V2
,θ B2θ̇2 − 2ξ,sB2θ̇2 − 2ξ,θ B2θ̇3 + 2V3

,s B2 sin2 θφ̇ + 2V3
,φB2 sin2 θφ̇2 − 2ξ,sB2 sin2 θφ̇2

− 2ξ,φB2 sin2 θφ̇3 − ξ,s ṫ2 + ξ,s A2ṙ2 + ξ,sB2θ̇2 + ξ,sB2 sin2 θφ̇2 − ξ,t ṫ3 + ξ,t A2 ṫṙ2 + ξ,tB2 ṫθ̇2

+ ξ,tB2 sin2 θ ṫφ̇2 − ξ,r ṫ2ṙ + ξ,r A2ṙ3 + ξ,rB2ṙθ̇2 + ξ,rB2 sin2 θṙφ̇2 − ξ,θ ṫ2θ̇ + ξ,θ A2ṙ2θ̇

+ ξ,θ B2θ̇3 + ξ,θ B2 sin2 θθ̇φ̇2 − ξ,φ ṫ2φ̇ + ξ,φ A2ṙ2φ̇ + ξ,φB2θ̇2φ̇ + ξ,φB2 sin2 θφ̇3

= F,s + ṫF,t + ṙF,r + θ̇F,θ + φ̇F,φ

(10)
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Comparing the coefficients of ṫ, ṙ, θ̇, φ̇, ṫ2, ṙ2, θ̇2, φ̇2, ṫ3, ṙ3, θ̇3, φ̇3, ṫṙ2, ṫθ̇2, ṫφ̇2, ṫ2ṙ,
ṙθ̇2, ṙφ̇2, ṫ2θ̇, ṙ2θ̇, θ̇φ̇2, ṫ2φ̇, ṙ2φ̇, θ̇2φ̇ and the terms independent of ṫ, ṙ, θ̇, φ̇, we obtain the
following Noether symmetry equations.

F,s = ξ,t = ξ,r = ξ,θ = ξ,φ = 0, (11)

2V0
,t = ξ,s, (12)

2A,tV0 + 2A,rV1 + 2AV1
,r = Aξ,s, (13)

2B,tV0 + 2B,rV1 + 2BV2
,θ = Bξ,s, (14)

2B,tV0 + 2B,rV1 + 2B cot θV2 + 2BV3
,φ = Bξ,s, (15)

V0
,r − A2V1

,t = 0, (16)

V0
,θ − B2V2

,t = 0, (17)

V0
,φ − B2 sin2 θV3

,t = 0, (18)

A2V1
,θ + B2V2

,r = 0, (19)

A2V1
,φ + B2 sin2 θV3

,r = 0, (20)

V2
,φ + sin2 θV3

,θ = 0, (21)

2V0
,s = −F,t, (22)

2A2V1
,s = F,r, (23)

2B2V2
,s = F,θ , (24)

2B2 sin2 θV3
,s = F,φ. (25)

In order to find the explicit form of Noether symmetry generators, we need to solve
the above equations. Because of their highly non-linear nature, these equations cannot be
solved generally. In literature, such systems of equations are solved by imposing some
conditions on A and B, with no proper criteria for imposing these conditions. This method
is usually referred to as the direct integration technique. In this method, there is always
a chance of losing some important spacetime metrics and hence it does not provide a
complete classification of the spacetime under consideration. Here we follow a different
approach to solve these equations. We analyze these equations by the Rif algorithm that
gives a list of all possible metrics admitting different dimensional Noether algebras. The
Rif algorithm was first introduced by Reid et al. [34] for converting a nonlinear system of
differential equations to a simplified form (reduced involutive form ) by performing a finite
number of differentiations and algebraic operations. The reduced involutive form of the
system contains all the integrability conditions of the system and satisfies the constant-rank
condition. To start the procedure, the system of differential equations is considered along
with a matrix giving a complete ranking of the derivatives appearing in the system. After
that, some differentiation and algebraic operations are carried out to simplify the system
until it has all the integrability conditions included, with no more differential or algebraic
redundancies. Though it is a quite lengthy procedure, the MAPLE command “rifsimp”
and the “Exterior” package can be used to do all these calculations easily. There are many
advantages of this algorithm, the most important being its role in reducing the complexity
of the system and extracting the information about the number of its solutions, without
solving it. The MAPLE command “caseplot” is used to see the output of the Rif algorithm
graphically. This graph is always in the form of a tree, known as a Rif tree or classification
tree. Performing these steps for the Noether symmetry Equations (11)–(25), we obtain the
Rif tree given in Figure 1.
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Figure 1. Rif Tree.

The expressions for the nodes (pivots) p1, p2, ..., p10 of the above tree are given by:

p1 = B,r p2 = B,t A,r − B,r A,t

p3 = B,t p4 = B,ttB,r − B,tB,tr

p5 = B,tt(B,r)2 − (B,t)2B,rr p6 = A,r

p7 = A,r A,tt − A,t A,tr p8 = A,t

p9 = A,tt(A,r)2 − (A,t)2 A,tt p10 = A,tt

(26)

It is to be mentioned here that in the Rif tree, the symbols = and <> tell about
whether the corresponding pivot vanishes or it is non-zero. For example, p1 and p2 both
are non-zero in branch 1, giving the conditions B,r 6= 0 and B,t A,r − B,r A,t 6= 0 on the
metric functions. Similarly, different conditions are imposed on A and B by the remaining
branches. We have used these restrictions on A and B, and solved Equations (11)–(25) for
all 14 branches of the Rif tree. There are some branches in the tree which give rise to more
than one metric with different dimensional Noether algebras. As a result, it is concluded
that the possible dimensions of Noether algebras for the Lagrangian under consideration
are 4, 5, 6, 7, 8, 9, 11, and 17. Depending upon the dimension of Noether algebra, we have
summarized our results in the forthcoming sections. We have also compared our results
with those obtained by the direct integration technique in Ref. [35] and it is observed that
the Rif tree approach produces some new physically realistic metrics, not given by the
direct integration technique.

3. 4-Dimensional Noether Algebra

The minimum dimension of Noether algebra for the spacetime under consideration
is 4. This Noether algebra contains the minimum three KVFs of these spacetimes, given in
the previous section, along with a trivial Noether symmetry V(0) = ∂s. This 4-dimensional
Noether algebra is obtained for the metrics of branches 2, 3, and 8.

4. 5-Dimensional Noether Algebra

There are some branches whose constraints, while using to solve Equations (11)–(25),
give rise to metrics possessing one additional symmetry along with four minimum Noether
symmetries. In Table 1, we present all these metrics and their extra symmetry (denoted by
V(4)), which is purely a KVF. All the metrics in this section are Kantowski-Sachs metrics.
The metrics 5a and 5c of Ref. [35] are specific forms of our metrics 5a and 5e respectively.
The metric 5c reduces to the metric 5b of Ref. [35] when we take a1 = 1

2 , a3 = − 1
2 and

a2 = 1. Moreover, the metrics 5f and 5g are the same as the metrics 5d and 5e of Ref. [35].
However, the metrics labeled by 5b and 5d are extra metrics that were not listed in Ref. [35].
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Table 1. Metrics Admitting five Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetry

5a A = A(t), B = B(t), V(4) = ∂r ,
7 where A,t 6= 0, B,tt 6= 0 and BB,ttt − B,tB,tt 6= 0

5b A = A(t), B = a1ea2t + a3e−a2t, V(4) = ∂r ,
7 where A,t 6= 0, a2 6= 0

5c A 6= a1ea2t + a3e−a2t, B = a1ea2t − a3e−a2t, V(4) = ∂r ,
7 where a2 6= 0

5d A = A(t), B = a1t + a2, V(4) = ∂r ,
7 where A 6= B, A,t 6= 0 and a1 6= 0

5e A = A(t), B = const., V(4) = ∂r ,
12 where (AA,t),tt 6= 0 and AA,ttt − A,t A,tt 6= 0,

5f A =
√

a1t2 + 2a2t + 2a3, B = const, V(4) = ∂r ,
12 where a1 6= 0

5g A =
√

2a1t + 2a2, B = const, V(4) = ∂r ,
12 where a1 6= 0

5. 6-Dimensional Noether Algebra

Like the case of five Noether symmetries, there are many branches of the Rif tree that
produce metrics with two additional symmetries along with the four minimum Noether sym-
metries. These two extra symmetries are denoted by V(4) and V(5) and are listed in Table 2. For
metric 6a, V(4) is a Noether symmetry corresponding to HVF, and V(5) is a KVF. For the metrics
6b–6h, V(4) is a proper Noether symmetry, and V(5) is a KVF, while the metric 6i, both V(4) and
V(5) are proper Noether symmetries. The metrics 6a and 6b are respectively the same as the
metrics 6c and 6d of Ref. [35]. The metrics 6e and 6g reduce to the metrics 6b and 6a of Ref. [35]
for some specific value of B. Moreover, the metrics 6c, 6d, 6f, 6h, and 6i are extra metrics that
were not found in Ref. [35] by using the direct integration technique.

Table 2. Metrics Admitting Six Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

6a A = (a1t + 2a2)
1−a3 V(4) = s∂s +

t∂t
2 + (a3r+a4)∂r

2

1 B = (a3r + a4)
1

a3 V(5) = ∂t

6b A = A(r), B = B(r), V(4) = − s
2 ∂t, F = t

5 where A 6= B,r V(5) = ∂t

6c A = const., B = B(r), V(4) = − s
2 ∂t, F = t

5 where B,r 6= 0, B,rr 6= 0 and BB,rrr − B,r B,rr 6= 0 V(5) = ∂t

6d A = const., B = a1ea2r + a3e−a2r , V(4) = − s
2 ∂t, F = t

5 where a2 6= 0 V(5) = ∂t

6e A = A(r), B = B(t), V(4) =
s

2A ∂r , F =
∫

Adr
6 where A,r 6= 0, B,t 6= 0, B,tt 6= 0 and BB,ttt − B,tB,tt 6= 0 V(5) =

1
A ∂r

6f A = A(r), B = a1ea2t + a3e−a2t, V(4) =
s

2A ∂r , F =
∫

Adr
6 where A,r 6= 0, a2 6= 0 and 4a2

2a1a3 − 1 6= 0 V(5) =
1
A ∂r

6g A = const., B = B(t), V(4) =
s
2 ∂r , F = r

7 where B,t 6= 0, B,tt 6= 0, and BB,ttt − B,tB,tt 6= 0 V(5) = ∂r

6h A = const., B = a1ea2t + a3e−a2t, V(4) =
s
2 ∂r , F = r

7 where a2 6= 0 and 4a2
2a1a3 − 1 6= 0 V(5) = ∂r

6i A = a1t− f (r), B = const., V(4) = − s
2 ea1r∂t +

s
2A ea1r∂r ,

9 where a1 6= 0 and f ′′ 6= 0 F = ea1rt +
∫

f (r)ea1rdr
V(5) = − s

2 e−a1r∂t − s
2A e−a1r∂r ,

F = e−a1rt−
∫

f (r)e−a1rdr
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6. 7-Dimensional Noether Algebra

During the process of integrating the determining equations, we found three different
metrics possessing three additional symmetries along with the four minimum Noether
symmetries. In Table 3, we present all these metrics and their additional three symmetries,
denoted by V(4), V(5) and V(6). For metrics 7a and 7b, V(4) is a proper Noether symmetry,
V(5) is a Noether symmetry corresponding to an HVF, and V(6) gives a KVF. For metric
7c, V(4) is a Noether symmetry corresponding to an HVF, while V(5) and V(6) are KVFs.
Moreover, all three additional symmetries for metric 7d are KVFs. Here, the metrics 7b and
7c are respectively the same as the metrics 7d and 7f of Ref. [35]. Moreover, the metric 7d
recovers five metrics labeled by 7a, 7b, 7c, 7e, and 7g in Reference [35]. However, metric 7a
is an extra metric obtained by the Rif tree approach.

Table 3. Metrics Admitting Seven Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

7a A = f (r)B, B = a1t + a2, V(4) =
s2

2 ∂s +
sB
2a1

∂t, F =
∫

Bdt
a1

6 where f ′ 6= 0 and a1 6= 0, V(5) = s∂s +
B

2a1
∂t

V(6) =
B
A ∂r ,

7b A = B = a1t + a2, V(4) =
s2

2 ∂s +
sB
2a1

∂t, F = −
∫

Bdt
a1

7 where a1 6= 0, V(5) = s∂s +
B

2a1
∂t

V(6) = ∂r ,

7c A = (a1t + a2)
a3−2a4

a3 V(4) = s∂s +
a1t+a2

2α ∂t
7 B = a1t + a2 V(5) = r∂r

a3 6= 0 V(6) = ∂r

7d A = a1ea2t + a3e−a2t, B = const., V(4) = m cos(mr)∂t − A,t
A sin(mr)∂r ,

12 where a2 6= 0 V(5) = −m sin(mr)∂t − A,t
A cos(mr)∂r ,

V(6) = ∂r ,
where m = 2a2

√
a1a3

7. 8-Dimensional Noether Algebra

In this section, we present the metrics admitting four additional symmetries along
with the four minimum ones. These four extra symmetries are denoted by V(4), ...,V(7) in
Table 4, along with the exact form of the metrics. For the metrics 8a–8d, V(4) corresponds to
a HVF, V(5) is a KVF, while V(6) and V(7) are proper Noether symmetries. For the metric
8e, V(4) and V(5) are KVFs, while V(6) and V(7) represent proper Noether symmetries. The
metrics 8c and 8d are the same as the metrics 8a and 8b of reference [35], while the metrics
8a, 8b, and 8e are extra metrics that were not listed in Ref. [35].

Table 4. Metrics Admitting Eight Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

8a A = const., B = a1t + a2r, V(4) = s∂s +
t
2 ∂t +

r
2 ∂r,

4 where a1 6= 0, a2 6= 0 and a2
1 − a2

2 + 1 6= 0 V(5) = − a2
a1

∂t + ∂r ,
V(6) = − s

2 ∂t +
a1s
2a2

∂t, F = t + a1
a2

r
V(7) =

s2

2 ∂s + s t
2 ∂t + s r

2 ∂r, F = −t2+r2

2

8b A = const., B = a1r + a2, V(4) = s∂s +
t
2 ∂t +

B
2a1

∂r,
5 where a1 6= 0 V(5) = ∂t,

V(6) = − s
2 ∂t, F = t

V(7) =
s2

2 ∂s + s t
2 ∂t + s B

2a1
∂r, F = 1

a1
(a1

r2

2 + a2r)− t2

2
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Table 4. Cont.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

8c A = A(r), B = a1t + a2, V(4) = s∂s +
B

2a1
∂t +

∫
Adr

2A ∂r,
6 where A,r 6= 0 and a1 6= 0 V(5) =

1
A ∂r,

V(6) =
s

2A ∂r, F =
∫

Adr

V(7) =
s2

2 ∂s +
sB
2a1

∂t +
s
∫

Adr
2A ∂r, F =

∫
Bdt
a1

+
∫
(A
∫

Adr)dr

8d A = const., B = a1t + a2, V(4) = s∂s +
B

2a1
∂t +

r
2 ∂r,

7 where a1 6= 0 V(5) = ∂r,
V(6) =

s
2 ∂r, F = r

V(7) =
s2

2 ∂s +
sB
2a1

∂t +
sr
2 ∂r, F = −

∫
Bdt
a1

+ r2

2

8e A = a1t + a2r, B = const., V(4) = a1ea1r∂t − a1
A ea1r∂r,

10 where a1 6= 0 and a2 6= 0 V(5) = −a1e−a1r∂t − a1
A e−a1r∂r,

V(6) = − s
2 ea1r∂t +

s
2A ea1r∂r, F = ea1rt + a2

∫
rea1rdr

V(7) = − s
2 e−a1r∂t − s

2A e−a1r∂r, F = e−a1rt− a2
∫

re−a1rdr

8. 9-Dimensional Noether Algebra

Five branches of the Rif tree, labeled 6, 7, 11, 13, and 14 produce metrics possessing
five additional symmetries along with the four minimum ones. In Table 5, we summarize
the results of these five cases by listing the exact form of metrics and their additional
symmetries. For metrics 9a and 9b, V(4) is a proper Noether symmetry and the remaining
four are KVFs. For the remaining three metrics 9c–9e, V(4), V(5) and V(6) are KVFs, while
V(7) and V(8) denote proper Noether symmetries. The metrics 9a and 9b of Ref. [35] are
respectively the special forms of the metrics 9b and 9a found here and the metrics 9c, 9d,
and 9e are respectively the same as the metrics 9d, 9e, and 9c of Ref. [35].

Table 5. Metrics Admitting Nine Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

9a A = A(r), B = a1ea2t + a3e−a2t, V(4) =
s

2A ∂r, F =
∫

Adr
6 where A,r 6= 0 and a2 6= 0 V(5) =

1
A ∂r

4a2
2a1a3 − 1 = 0 V(6) = sin θ sin φ∂t +

B,t
B cos θ sin φ∂θ +

B,t
B csc θ cos φ∂φ

V(7) = − sin θ cos φ∂t − B,t
B cos θ cos φ∂θ +

B,t
B csc θ sin φ∂φ

V(8) = − cos θ∂t +
B,t
B sin θ∂θ

9b A = const., B = a1ea2t + a3e−a2t, V(4) =
s
2 ∂r, F = r

7 where a2 6= 0 V(5) = ∂r

4a2
2a1a3 − 1 = 0 V(6), V(7) and V(8) are same as given in 9a

9c A = A(r), B = const., V(4) =
∫

Adr∂t +
t
A ∂r,

11 where A,r 6= 0 V(5) = ∂t +
1
A ∂r ,

V(6) = ∂t,
V(7) = − s

2 ∂t, F = t
V(8) =

s
2A ∂r, F =

∫
Adr

9d A = a1t + a2, B = const., V(4) = a1ea1r∂t − a1
A ea1r∂r

13 where a1 6= 0, V(5) = −a1e−a1r∂t − a1
A e−a1r∂r

V(6) = ∂r

V(7) = − s
2 ea1r∂t +

s
2A ea1r∂r, F = A

a1
ea1r

V(8) = − s
2 e−a1r∂t − s

2A e−a1r∂r, F = A
a1

e−a1r
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Table 5. Cont.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

9e A = const., B = const., V(4) = r∂t + t∂r
14 V(5) = ∂t

V(6) = ∂r
V(7) = − s

2 ∂t, F = t
V(8) =

s
2 ∂r, F = r

9. 11-Dimensional Noether Algebra

There arise two metrics, given by branches 4 and 7 possessing 11-dimensional Noether
algebra. Out of these eleven, four are the minimum Noether symmetries and the extra
seven symmetries are listed in Table 6. For metric 11a, V(4) represents a Noether symmetry
corresponding to an HVF, and V(5) denotes a KVF. All the remaining symmetries are proper
Noether symmetries. All the additional symmetries for metric 11b are KVFs. The metric
11b reduces to the metric possessing eleven Noether symmetries, given in Ref. [35], when
we take a1 = 1

2 , a3 = − 1
2 and a2 = 1, while the metric 11a is an extra metric which was not

found by using direct integration technique.

Table 6. Metrics Admitting Eleven Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

11a A = const., V(4) = s∂s +
t
2 ∂t +

r
2 ∂r

4 B = a1t + a2r V(5) = −
a2
a1

∂t + ∂r

where a1 6= 0, a2 6= 0 V(6) =
s2

2 ∂s +
st
2 ∂t +

sr
2 ∂r , F = −t2+r2

2
and a2

1 − a2
2 + 1 = 0 V(7) = −sa1 sin θ sin φ∂t + sa2 sin θ sin φ∂r

+ s
B cos θ sin φ∂θ +

s
B csc θ cos φ∂φ, F = 2B sin θ sin φ

V(8) = sa1 sin θ cos φ∂t − sa2 sin θ cos φ∂r
− s

B cos θ cos φ∂θ +
s
B csc θ sin φ∂φ, F = −2B sin θ cos φ

V(9) = sa1 cos θ∂t − sa2 cos θ∂r +
s
B sin θ∂θ , F = −2B cos θ

V(10) = − s
2 ∂t +

a1s
2a2

∂r , F = t + a1
a2

r

11b A = a1ea2t + a3e−a2t, V(4) = sin θ sin φer(∂t − a2 B
A ∂r) +

a2 A
B er(cos θ sin φ∂θ + csc θ cos φ∂φ)

7 B = a1ea2t − a3e−a2t V(5) = sin θ sin φe−r(∂t +
a2 B
A ∂r) +

a2 A
B e−r(cos θ sin φ∂θ + csc θ cos φ∂φ)

where a2 6= 0 V(6) = − sin θ cos φer(∂t − a2 B
A ∂r)− a2 A

B er(cos θ cos φ∂θ − csc θ sin φ∂φ)

and 4a2
2a1a3 + 1 = 0 V(7) = − sin θ cos φe−r(∂t +

a2 B
A ∂r)− a2 A

B e−r(cos θ cos φ∂θ − csc θ sin φ∂φ)

V(8) = − cos θer(∂t − a2 A
B ∂r) +

a2 A
B sin θer∂θ

V(9) = − cos θe−r(∂t +
a2 B
A ∂r) +

a2 A
B sin θe−r∂θ

V(10) = ∂r

10. 17-Dimensional Noether Algebra

Branch 5 of the Rif tree gives rise to a metric possessing 17-dimensional Noether
algebra. Out of seventeen symmetries, four are the minimum ones, while thirteen additional
symmetries, V(4), ..., V(16), along with the exact form of metric coefficients are listed in
Table 7. Here V(4) is a Noether symmetry corresponding to a HVF, given by t

4 ∂t +
B

4B,r
∂r;

V(5), ..., V(9) are proper Noether symmetries, while V(10), ..., V(16) are KVFs.
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Table 7. Metrics Admitting Seventeen Noether Symmetries.

Metric No./Branch No. Metric Coefficients Additional Symmetries and Gauge Function

17a A = B,r , B = B(r) V(4) = s∂s +
t
2 ∂t +

B
2B,r

∂r ,

5 where B,r 6= 0 V(5) =
s2

2 ∂s +
st
2 ∂t +

sB
2B,r

∂r , F = B2−t2

2 ,

V(6) = − s
2 ∂t, F = t,

V(7) =
s

B,r
sin θ sin φ∂r +

s
B (cos θ sin φ∂θ + csc θ cos φ∂φ), F = 2B sin θ sin φ,

V(8) = − s
B,r

sin θ cos φ∂r − s
B (cos θ cos φ∂θ − csc θ sin φ∂φ) F = −2B sin θ cos φ,

V(9) = − s
B,r

cos θ∂r +
s
B sin θ∂θ F = −2B cos θ,

V(10) = ∂t

V(11) = sin θ sin φ(B∂t +
t

B,r
∂r) +

t
B (cos θ sin φ∂θ + csc θ cos φ∂φ),

V(12) = − sin θ cos φ(B∂t +
t

B,r
∂r)− t

B (cos θ cos φ∂θ − csc θ sin φ∂φ),

V(13) = −B cos θ∂t − t
B,r

cos θ∂r +
t
B sin θ∂θ ,

V(14) =
sin θ sin φ

B,r
∂r +

1
B (cos θ sin φ∂θ + csc θ cos φ∂φ),

V(15) = −
sin θ cos φ

B,r
∂r − 1

B (cos θ cos φ∂θ − csc θ sin φ∂φ),

V(16) = − cos θ
B,r

∂r +
sin θ

B ∂θ .

11. Summary and Discussion

We have explored Noether symmetries of the Lagrangian associated with the LTB
metric by using a new approach, based on a MAPLE algorithm, which provided a number
of metrics possessing different Noether algebras with dimensions 4, 5, 6, 7, 8, 9, 11, and
17. After comparing our results with those obtained by the direct integration technique, it
is concluded that this new approach produces some new LTB metrics admitting different
dimensional Noether algebras which were not listed in the previous study using the direct
integration technique.

For all the explicitly known metrics obtained during our classification, one can find
the stress-energy tensor which determines the source of matter. Without specifying any
specific matter, the non-zero components of the stress-energy tensor for the metric (5) are:

T00 = − 1
A3B2

[
A(B,r)2 − A3(B,t)2 − 2A2BA,tB,t − 2BA,rB,r − A3 + 2ABB,rr

]
,

T11 = − 1
B2

[
2A2BB,tt + A2(B,t)2 − (B,r)2 + A2],

T22 = − B
A3

[
A3B,tt + A2 A,tB,t + A2BA,tt + A,rB,r − AB,rr

]
,

T33 = sin2 θT22,

T01 = 2
AB [A,tB,r − AB,tr].

(27)

For an anisotropic fluid source, Tab is of the form Tab = (ρ + p⊥)uaub + (p‖ −
p⊥)nanb + p⊥gab, where ρ, ua and nb are representing the energy density, four-velocity
and spacelike unit vector respectively, and p‖ and p⊥ are respectively the pressures par-
allel and perpendicular to nb. Also ubub = −1, nbnb = 1 and ubnb = 0 [36]. In par-
ticular, for the metric (5), the components of Tab being an anisotropic fluid are given by
T00 = ρ, T11 = A2 p‖, T22 = B2 p⊥, T33 = sin2 θT22, T01 = 0. Thus for the metrics represent-
ing anisotropic fluids, the off-diagonal component of stress-energy tensor vanishes and for
such metrics one can easily calculate the quantities ρ, p‖ and p⊥ as:

ρ = T00, p‖ =
T11
A2 , p⊥ =

T22

B2 . (28)

All the metrics obtained during our classification are anisotropic fluids with T01 = 0.
The physical soundness of such metrics can be checked by using the metric coefficients A
and B in Equation (28) and then using the resulting values of ρ, p‖ and p⊥ in the expressions
for some well known energy conditions, for example null energy condition (NEC, ρ + p‖ ≥
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0, ρ + p⊥ ≥ 0,), weak energy condition (WEC, ρ ≥ 0, ρ + p‖ ≥ 0, ρ + p⊥ ≥ 0), strong
energy condition (SEC, ρ + p‖ ≥ 0, ρ + p⊥ ≥ 0, ρ + p‖ + 2p⊥ ≥ 0) and dominant energy
condition (DEC, ρ ≥ 0, ρ ≥ |p‖|, ρ ≥ |p⊥|).

Some of our obtained metrics identically satisfy all the above-mentioned energy
conditions. For example, consider the metric 6i given by:

ds2 = −dt2 + (a1t− f (r))2 dr2 + (dθ2 + sin2 θ dφ2).

For this metric, the components of energy-momentum tensor given in (27) become T00 = 1,
T11 = −(a1t− f (r))2 and T22 = T33 = T01 = 0. Hence Equation (28) gives ρ = 1, p‖ = −1
and p⊥ = 0. As the energy density is positive, the metric is physically realistic. Moreover,
these values of ρ, p‖ and p⊥ also satisfy all energy conditions. Similarly, the metrics labeled
8c, 8d, 8e, 9c, 9d, 9e, 11a, and 17a are also physically realistic metrics with positive energy
density and satisfying all energy conditions. Out of these, metrics 11a and 17a represent
vacuum solutions with vanishing stress-energy tensors.

Some of the obtained metrics are physically realistic with ρ ≥ 0, however the energy
conditions for these metrics are conditionally satisfied. In Table 8, we present some of
such metrics. One can see that the energy density is positive for metrics 5e, 7a, 7b, and 7d,
giving physically realistic metrics. However, for the metrics 8a and 8b, we need to chose
the constants a1 and a2 such that a2

1 − a2
2 + 1 ≥ 0 and 1− a2

1 ≥ 0. The bound for energy
conditions for all these metrics are given in Table 8.

Table 8. Energy Conditions for Metrics.

Metric No. Physical Terms Energy Conditions

5e ρ = −p‖ = 1, p⊥ = − A,tt
A (1) NEC and WEC are satisfied if A,tt

A ≤ 1
(2) SEC is satisfied if A,tt

A < 0
DEC is satisfied if −1 ≤ A,tt

A ≤ 1

7a, 7b ρ =
3a2

1+1
B2 , p‖ = −

a2
1+1
B2 , p⊥ = − a2

1
B2 (1) NEC and SEC are satisfied if 2a2

1 + 1 ≥ 0
(2) WEC is satisfied if 3a2

1 + 1 ≥ 0 and 2a2
1 + 1 ≥ 0

(3) DEC is satisfied if 3a2
1 + 1 ≥ 0, 2a2

1 + 1 ≥ 0 and 4a2
1 + 1 ≥ 0

7d ρ = −p‖ = 1, p⊥ = −a2
2 (1) NEC, WEC and DEC are satisfied if 1− a2

2 ≥ 0
(2) SEC is failed

8a ρ =
a2

1−a2
2+1

B2 , p‖ =
a2

2−a2
1−1

B2 , p⊥ = 0 All energy conditions are satisfied if a2
1 − a2

2 + 1 > 0

8b ρ = −p‖ =
1−a2

1
B2 , p⊥ = 0 (1) All energy conditions are satisfied if 1− a2

1 ≥ 0
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