
Citation: Wu, C.; Yang, L.; Zhang, C.

Uncertain Stochastic Optimal Control

with Jump and Its Application in a

Portfolio Game. Symmetry 2022, 14,

1885. https://doi.org/10.3390/

sym14091885

Academic Editor: Sergei D.

Odintsov

Received: 16 August 2022

Accepted: 6 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Uncertain Stochastic Optimal Control with Jump and Its
Application in a Portfolio Game
Chengyu Wu 1,†, Lu Yang 2,*,† and Chengke Zhang 3,†

1 School of Management, Guangdong University of Technology, Guangzhou 510520, China
2 School of Management, Guangdong Polytechnic Normal University, Guangzhou 510665, China
3 School of Economics and Commence, Guangdong University of Technology, Guangzhou 510520, China
* Correspondence: yanglu@mail2.gdut.edu.cn
† These authors contributed equally to this work.

Abstract: This article describes a class of jump-uncertain stochastic control systems, and derives an
Itô–Liu formula with jump. We characterize an optimal control law, that satisfies the Hamilton–Jacobi–
Bellman equation with jump. Then, this paper deduces the optimal portfolio game under uncertain
stochastic financial markets with jump. The information of players is symmetrical. The financial
market is constituted of a risk-free asset and a risky asset whose price process is subjected to the
jump-uncertain stochastic Black–Scholes model. The game is formulated by two utility maximization
problems, each investor tries to maximize his relative utility, which is the weighted average of
terminal wealth difference between his terminal wealth and that of his competitor. Finally, the
explicit expressions of equilibrium investment strategies and value functions for the constant absolute
risk-averse and constant relative risk-averse utility function are derived by using the dynamic
programming principle.

Keywords: jump-uncertain stochastic differential equation; the optimal equation of jump-uncertain
stochastic process; portfolio game under symmetry information; power utility; exponential utility

1. Introduction

In the real world, non-decisive information is everywhere. The emergence of infor-
mation or events is affected by various accidental and unpredictable factors. Indecisive
information includes objective indecisive information and subjective indecisive informa-
tion. Objective indecisive information is random information. The effective tool to deal
with random information is probability theory. In real life, there is another kind of sub-
jective non-decisive information, namely fuzzy information. The effective tool for this
kind of problem is fuzzy mathematics theory. Liu [1] first proposed the concept of the
fuzzy set. So far, fuzzy mathematics has gradually become an important method to deal
with subjective non-decisive information. In order to strictly measure the possibility of
fuzzy events by mathematical methods, Zadeh [2] put forward the concepts of possibility
measure and fuzzy variable, and developed a set of possibility theories. Later, scholars
found that possibility theory can solve practical problems, then introduced the concept of
necessity measure and dual part necessity measure. However, these two measures lack
self-duality. Therefore, Liu [3] put forward the concept of credibility measure which solved
the above problems in 2002, and then systematically put forth the credibility theory laid
out in Liu [4], which further developed the fuzzy mathematics theory.

However, the complexity of the world makes the events we face uncertain in various
forms. The uncertainty behaves neither like randomness nor like fuzziness was shown to do
in many cases. In the real world, some information or knowledge is usually represented by
human linguistic expressions like “about 1 km”, “roughly 10 kg”, and so on. To distinguish
this phenomenon from randomness and fuzziness, an uncertainty theory was invented
by Liu [5] and refined in 2009 based on normality, monotonicity, self-duality, countable
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subadditivity, and product measure axioms. It is especially suitable for the lack of historical
data or unreliable historical data in which the required data are given subjectively by
people, and it can be competent for all work of fuzzy mathematics, so it has been widely
recognized and applied. Liu [6] first introduced the uncertain differential equation into
the financial discipline, constructed the uncertain stock model, and derived its European
option pricing formula. Later, Zhu [7] studied uncertain optimal control with application
to a portfolio selection model.

However, the stock price may jump at scheduled or unscheduled times on account
of economic crisis, war, announcements of economic statistics, announcements of mon-
etary policy, and the release of major corporate events, etc. often leading to sharp jump
fluctuations in securities prices. Sometimes this jump is very harmful. For example, the
unpredictability and acuteness of jump in the return of financial assets will often lead to
sudden huge losses or even bankruptcy of investment institutions or individuals. More
serious jump events will lead to the collapse of stock market and even affect social stability
(such as the U.S. stock market crisis in 1929 and 1987, the Asian financial crisis in 1998,
the U.S. subprime mortgage crisis in 2007, the financial crisis in 2009, the 2019-nCoV and
global inflation in 2021). These factors should be taken into account in the stock price models.
Yao [8] first proposed a type of uncertain differential equation driven by both canonical process
and renewal process. Yu [9] constructed an uncertain stock model with jumps. Deng [10]
presented and dealt with an uncertain optimal control of linear quadratic models with jump
by considering the effects of jumps on the optimal policies which is an extension of the model
proposed by Zhu [7].

Because randomness and Liu uncertainty simultaneously appear in the financial mar-
ket, we begin to consider the uncertain stochastic systems with jump. To describe this
phenomenon, the concepts of chance distribution, expected value, and variance of uncertain
random variables were introduced by Liu [11]. To deal with complex mathematical systems
with uncertainty and randomness, Liu [11] designed opportunity theory, and Liu [12] de-
fined opportunity theory as a mathematical methodology composed of uncertainty theory
and probability theory. Uncertain stochastic analysis is a branch of pure mathematics
that studies the integral and differential of uncertain stochastic processes. Fei [13] con-
sidered a class of uncertain backward stochastic differential equations driven by both an
m-dimensional Brownian motion and a d-dimensional canonical process with uniform
Lipschitzian coefficients. Fei [14] first described a class of uncertain stochastic control
systems with Markov switching, and derived an Itô–Liu formula for Markov-modulated
processes. Gao and Wu [15] studied the optimal investment strategy problem for a defined
contribution pension fund under the jump-uncertain theory framework. Matenda and
Chikodza [16] presented and examined uncertain stochastic differential equations and their
important characteristics. Liu et al. [17] proposed a computational approach for value
at the risk of uncertain random variables. Moreover, an uncertain stochastic differential
equation with jump is a differential equation driven by a Brownian motion, a canonical Liu
process, and a jump process. Based on the uncertain stochastic differential equation with
jump, this paper suggests a stock model with jump for Itô–Liu financial markets. In the
real world, there are many systems whose state processes follow uncertainty stochastic
processes with jump. Hence, this paper presents an uncertain stochastic optimal control
problem with jump. Based on the jump-uncertain stochastic stock model proposed by
Matenda and Chikodza [16], using the ideas of jump-uncertain optimal control and un-
certain stochastic optimal control in Deng and Zhu [18] and Fei [14], this paper gives the
optimal principle of optimal control for a jump-uncertain stochastic system and deduces
the optimal equation. In the real financial market, institutional investors not only pay
attention to their own performance, but also tend to compare their performance with that of
competitors. Take insurance as an example. Investors often choose the insurance companies
that rank high to buy insurance. Therefore, insurance companies should not only strive
to maximize their terminal wealth, but also widen the wealth gap with other insurance
companies and enhance competitiveness. In order to increase their own investment perfor-
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mance, institutional investors play games and compete with each other, resulting in the
interaction of investment strategies. At the same time, the differential game theory can
study the financial decision-making problem well, and the financial model constructed by
it can effectively describe the competition and strategic interaction between institutional
investors. There are many articles on the portfolio game under the stochastic system, such
as [19–21] and so on. The current portfolio literature under uncertain stochastic systems
or uncertain systems with jump seems to ignore the study of optimal interactive decision-
making of investors. Therefore, this paper studies the portfolio game problem under the
jump-uncertain stochastic systems by using the equation of optimal.

The rest of this paper is structured as follows. Section 2 gives some necessary elemen-
tary concepts and theorems about jump-uncertain stochastic theory, proposes an uncertain
stochastic optimal control problem with jump, and derives the principle of optimality
through Bellman’s dynamic programming principle. Then, as its applications, the portfolio
game under the uncertain stochastic financial markets with jump is introduced by using the
equation of optimality for the constant absolute risk averse (CARA) and constant relative
risk averse (CRRA) utility functions in Section 3. Concluding remarks are presented in
Section 4.

2. Preliminary

For convenience, we give some useful concepts first. Let Γ be a nonempty set and
L is a σ- algebra; each element Λ ∈ L is called an event. The relevant definitions and
properties of uncertain measureM, probability space (Γ,L,M), and uncertain variable ξ
can be referred to in Liu [5]. For concepts and properties of the uncertain random variable,
refer to Fei [14], and for concepts and properties of the jump-uncertain variables, refer to
Deng and Zhu [10]. In addition, this paper gives the notation of jump-uncertain random
variables which are mainly involved.

We now give the concept of expected value for the jump-uncertain random variable.

Definition 1. Let ξ be an uncertain random variable. Then the expected value is defined by
E[ξ] = EP[EU [ξ]], where the operators EP and EU stand for probability expectation and uncertain
expectation, respectively.

Definition 2. (Jump Itô–Liu integral) Assume X(t) = (Y(t), Z(t)) is a jump-uncertain stochastic
process, for any partition of closed interval [a, b] with a = t1 < t2 < · · · < tN+1 = b, the mesh
is written as ∆ = max

1<i<N
|ti+1 − ti|. Then the jump Itô–Liu integral of X(t) with respect to

(W(t), C(t), N(t)) is defined as follows:

∫ b

a
X(s)d(W(t), C(t), N(t))

= lim
∆→0

N

∑
i=1

[
Y(ti)

(
Wti+1 −Wti

)
+ Z(ti)

(
Cti+1 − Cti

)
+
(

Nti+1 − Nti

)]
.

In this case, X(t) is called jump Itô–Liu integrable. In particular, when Y(t) ≡ 0, X(t) it is
called a jump Liu integrable.

Definition 3. Let W(t), C(t) and N(t) be a one-dimensional Brownian motion, a one-dimensional
canonical process, and a V jump-uncertain process with parameters r1 and r2, respectively. f (X(t), t),
g1(X(t), t), g2(X(t), t) and g3(X(t), t) are some given functions. Consequently, X(t) is

dX(t) = f (X(t), t)dt + g1(X(t), t)dW(t) + g2(X(t), t)dC(t) + g3(X(t), t)dN(t), (1)

a jump-uncertain stochastic differential equation.
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Theorem 1. If the coefficients of jump-uncertain stochastic differential Equation (1) satisfies

| f (t, x)− g1(t, y)|+ |g1(t, x)− g1(t, y)|+ |g2(t, x)− g2(t, y)|+ |g3(t, x)− g3(t, y)|
6 L(1 + |x− y|), ∀x, y ∈ R, t > 0,

where L is a constant, and then Equation (1) has a unique solution.

Proof of Theorem 1. Similar to the discussion in [14], we omit it here.

The optimal control model of jump-uncertain stochastic system is given as
dx(t) = f [t, x(t), u(t)]dt + g1[t, x(t), u(t)]dC(t)

+g2[t, x(t), u(t)]dW(t) + g3[t, x(t), u(t)]dN(t),

x(0) = x0,

(2)

with initial condition x0. The performance index function is

J(t, x) = E
{∫ T

0
g[t, x(t), u(t)]dt + Q(x(T))

}
, (3)

where f [t, x(t), u(t)] and gi[t, x(t), u(t)], i = 1, 2, 3 are differentiable, g[t, x(t), u(t)] > 0 and
Q(x(T)) > 0 are instantaneous utility function and terminal utility functional.

The so-called jump-uncertain stochastic optimal control problem means that the player
looks for an optimal control strategy under the jump-uncertain stochastic dynamic system
which is driven by Equation (2), to optimize the payment function (3).

Next, we explore jump uncertain stochastic optimal control problem. First, we derive
the principle of optimality.

Theorem 2. (Principle of optimality) For any (t, x) ∈ [0, T]× Rn, we have

V(t, x) = inf
u∈U

E[g(t, x(t), u(t))∆t + V(t + ∆t, x + ∆x) + o(∆t)], (4)

where x(t) + ∆x(t) = xt+∆t.

Proof of Theorem 2. Similar to Theorem 3.4 in Deng and Zhu [18] and Theorem 2 in
Fei [14], we omit it here.

Let C1,2([0, T]× Rn) denote all functions V(t, x) on a finite horizon [0, T] that are
continuously differentiable about t, and continuously twice differentiable about x. If
V(t, x) ∈ C1,2([0, T]× Rn), define operators LV(t, x), by

LV(t, x) =
∂V
∂t

+
∂V
∂x

f +
1
2

∂2V
∂x2 g2

2 +
3− r1 − r2

4
g3

∂V
∂x

. (5)

In what follows, we give the optimal equation of the optimal control problem.

Theorem 3. V(t, x) is a solution of the following Hamilton–Jacobi–Bellman(HJB) equation

inf
u∈U
{LV(t, x) + g[t, x(t), u(t)]} = 0, (6)

with the terminal condition V(T, x) = Q(T, x(T)).

Before giving the proof of Theorem 3, we give the following Lemma 1.
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Lemma 1. Denote ξ = bς + dη + cw, where ς = ∆C(t), η = ∆V(t), w = ∆W(t) and
b, d, c ∈ R. Let ς, η and w are independent. For any real number a, we have

E
[

aξ + ξ2
]
=

ad(3− r1 − r2)

4
∆t + c2∆(t). (7)

Proof of Lemma 1. To begin with, we have

aξ + ξ2

= a(bς + dη + cw) + (bς + dη + cw)2

= a(bς + dη + cw) + b2ς2 + d2η2 + c2w2 + 2bςdη + 2dηcw + 2bςcw

> a(bς + dη + cw) + c2w2 + 2bςdη + 2dηcw + 2bςcw.

(8)

Because ς,η, w and w2 are independent of each other, we get

E
[

a(bς + dη + cw) + c2w2 + 2bςdη + 2dηcw + 2bςcw
]

= abE[ς] + adE[η] + acE[w] + c2E
[
w2
]
+ 2bdE[ς]E[η] + 2cdE[w]E[η] + 2bdE[ς]E[w].

It follows from the Definition 6 in [6] that E(ς) = 0. According to the Definition 3.3
in [10], E(η) = (3−r1−r2)

4 ∆t is obtained. Then the Equation (8) becomes

E
[

aξ + ξ2
]
>

ad(3− r1 − r2)

4
∆t + c2∆(t). (9)

At the same time

aξ + ξ2 = a(bς + dη + cw) + (bς + dη + cw)2

= a(bς + dη + cw) + b2ς2 + d2η2 + c2w2 + 2bςdη + 2dηcw + 2bςcw

=
(

abς + b2ς2
)
+
(

adη + d2η2
)
+
(

acw + c2w2
)
+ 2bςdη + 2dηcw + 2bςcw,

where ς,η, w, abς + b2ς2, adη + d2η2 and acw + c2w2 are independent, so we get

E
[

aξ + ξ2
]
= E

[
abς + b2ς2

]
+ E

[
adη + d2η2

]
+ E

[
acw + c2w2

]
+2bdE(ς)E(η) + 2cdE(η)E(w) + 2bcE(ς)E(w).

According to the Theorem 3.4 in [18], we get E
[
abς + b2ς2] = o(∆(t)) and

E
[
adη + d2η2] 6 ad(3−r1−r2)

4 ∆t. From the properties of standard Brownian motion, we

have E
[
acw + c2w2] = E

[(
1
2 a + cw

)2
− 1

4 a2
]
= c2∆(t). Hence we can get

E
[

aξ + ξ2
]
6

ad(3− r1 − r2)

4
∆t + c2∆(t). (10)

Combining inequality (9) and inequality (10), the Equation (7) was obtained.

The proof of Theorem 3 is given below.

Proof of Theorem 3. Similar to the Theorem 5.1 in [10], by using the Taylor series expan-
sion, we get

V(t + ∆t, x + ∆x) = V(t, x) + Vt(t, x)∆t + Vx(t, x)∆x +
1
2

Vtt(t, x)∆t2

+
1
2

Vxx(t, x)∆x2 + Vtx(t, x)∆x∆t + o(∆t).
(11)
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Substituting Equation (11) into Equation (6) yields

0 = inf
u∈U

E[g(t, x(t), u(t))∆t + Vt(t, x)∆t + Vx(t, x)∆x

+
1
2

Vtt(t, x)∆t2 +
1
2

Vxx(t, x)∆x2 + Vtx(t, x)∆x∆t + o(∆t).
(12)

Suppose ξ̄ is a jump stochastic uncertain variable such that ∆x = ξ̄ + f ∆t. It follows
from Equation (12) that

0 = inf
u∈U
{g(t, x(t), u(t))∆t + Vt(t, x)∆t + Vx(t, x) f ∆t

+E
[
(Vx(t, x) + Vxx(t, x) f ∆t + Vtx(t, x)∆t)ξ̄ +

1
2

Vxx(t, x)ξ̄2
]
+o(∆t)}

= inf
u∈U

[g(t, x(t), u(t))∆t + Vt(t, x)∆t + Vx(t, x) f ∆t

+E
(

a1ξ̄ + b1ξ̄2
)
+ o(∆t)

]
,

(13)

where a1 = Vx(t, x) + Vxx(t, x) f ∆t + Vtx(t, x)∆t, b1 = 1
2 Vxx(t, x). According to the jump-

uncertain stochastic differential Equation (2), ξ̄ = ∆x − f ∆t = g1(t, x(t), u(t))dW(t) +
g2(t, x(t), u(t))dC(t)+ g3(t, x(t), u(t))dN(t) is a jump-uncertain stochastic variable. Lemma 1
implies that Equation (13) becomes

0 = inf
u∈U

[g(t, x(t), u(t))∆t + Vt(t, x)∆t + Vx(t, x) f ∆t

+
1
2

Vxx(t, x)g2
2∆t + Vx(t, x)g3

(3− r1 − r2)

4
∆t + o(∆t)

]
.

(14)

Dividing Equation (14) by ∆t, and letting ∆t→ 0, we can obtain the result (6). The The-
orem 3 is proved.

3. Jump-Uncertain Stochastic Financial Market
3.1. Financial Market
3.1.1. Model Formulation

Let (Ω,F , {Ft}t∈[0,T],P) be a complete filtered probability space with a filter {Ft}t∈[0,T]
satisfying the usual conditions.

3.1.2. Asset Price Process

We consider a financial market composed of one bond and one stock, where the
risk-free money market account for dynamics

dS0(t) = rS0(t)dt, S0(0) = 1,

where r is risk-free interest rate. The price of the stock S(t) satisfies the following jump-
uncertain stochastic differential equation, that is jump-uncertain B-S model (see [16]),

dS(t) = S(t)[µdt + σ1dW(t) + σ2dC(t) + λdN(t)], S(0) = s0,

where µ is appreciation of the stock price. σ1 and σ2 represent the volatility of stock price in
the stochastic process and the volatility of the stock price in uncertain process, respectively,
λ represents the volatility of the jump process, N(t), W(t) and C(t) are independent
jump-uncertain processes, Brownian motion, and canonical Liu processes.

3.1.3. Investors’ Wealth Process

The proportions of money invested in the cash and stock at time t of investor k,
k ∈ {1, 2} are denoted by Xπk

k (t)− πk(t) and πk(t), respectively. In addition, there are no
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transaction costs or taxes in the market, and short buying is also allowed. Then, the wealth
Xπk

k (t) of the investor k is as follows
dXπk

k (t) =
(
Xπk

k (t)− πk(t)
)dS0(t)

S0(t)
+ πk(t

dS(t)
S(t)

= r
(
Xπk

k − πk(t)
)
(t)dt + πk(t)[µdt + σ1dW(t) + σ2dC(t) + λdN(t)],

Xπk
k (0) = xk0 > 0,

where xk0 represents the initial wealth of investor k.

3.2. The Equilibrium Investment Strategies for CARA and CRRA Utility Functions

A non-zero-sum jump-uncertain stochastic differential game model with two investors
who are competing with each other is established.

Denote Z(πk ,πm)
k (t) = Xk(t)− λkXm(t), and it readily follows that

dZ(πk ,πm)
k (t) = dXk(t)− λkdXm(t)

=
[
rZπk

k (t) + (µ− r)(πk(t)− λkπm(t))
]
dt

+(πk(t)− λkπm(t))[σ1dW(t) + σ2dC(t) + λdN(t)],

(15)

with Z(πk ,πm)
k (0) = xk0 − λkxm0.

For convenience, Z(πk ,πm)
k (t) is abbreviated as zk. Investor k has a utility function

denoted as Uk : R+ → R, where Uk is assumed to be increasing, strictly concave, and
satisfies Inada conditions, i.e.,

U′k(0+) = lim
z→0+

U′k(zk) = +∞, U′′k (+∞) = lim
z→∞

U′k(zk) = 0.

Definition 4. (Admissible strategy). Equilibrium investment strategies π1(t) and π2(t) are said
to be admissible if the following conditions are satisfied:

(i) π1(t) and π2(t) are all Ft− measurable,
(ii) E

∫ T
0 ‖πk(t)‖2dt < ∞,

(iii) jump-uncertain stochastic differential Equation (15) has a unique solution
{

Zπk
k (t)

}
t∈[0,T]

for all (t, zk) ∈ O := [0, T]×R.

Assume that the set of all admissible strategies is denoted by Πk, k = 1, 2.
Similar to [16,19], we assume that the objective of investor k is to maximize the

expected utility of his performance relative to his competitor at the terminal time T. That is,
the optimization problems of investor k are

sup
πk∈Πk

E
[
Uk

(
Xπk

k (T)− λkXπ∗m
m (T)

) ∣∣∣Z(πk ,π∗m)
k (t) = zk

]
, (16)

for m 6= k ∈ {1, 2}, λk ∈ [0, 1] measures the sensitivity of investor k to the performance of
his competitor.

According to [21], the problem of (16) can be transformed into the following non-zero-
sum game problem:

Problem 1. Find a Nash equilibrium (π∗1 , π∗2 ) ∈ (Π1, Π2) such that

E
[
U1

(
Xπ1

1 (T)− λ1Xπ∗2
2 (T)

)]
6 E

[
U1

(
Xπ∗1

1 (T)− λ1Xπ∗2
2 (T)

)]
,

E
[
U2

(
Xπ2

2 (T)− λ2Xπ∗1
1 (T)

)]
6 E

[
U2

(
Xπ∗2

2 (T)− λ2Xπ∗1
1 (T)

)]
.
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For Z(πk ,πm)
k (t), where 0 6 t 6 T and m 6= k ∈ {1, 2}

W(πk ,π∗m)
k (t, zk) =

∆
sup

πk∈Πk

E
[
Uk

(
Xπk

k (T)− λkXπ∗m
m (T)

)]
,

is the value function.

Theorem 4. (Verification Theorem) Let Jk(t, zk) ∈ C1,2(O) be a function that satisfies a quadratic
growth condition, i.e., there exists M > 0 such that |Jk(t, zk)| 6 M

(
1 + |zk|2

)
, for all (t, zk) ∈

O(k = 1, 2). For convenience, we abbreviate Jk(t, zk) , Jk, define

A(πk ,π∗m) Jk
∆
=

∂Jk
∂t

+ [rzk + (µ− r)(πk(t)− λkπ∗m(t))]
∂Jk
∂zk

+
3(3− r1 − r2)

4
(πk(t)− λkπ∗m(t))λ

∂Jk
∂zk

+
1
2
(πk(t)− λkπ∗m(t))

2σ2
1

∂2 Jk

∂z2
k

,

where

π∗k = arg max
πk∈Πk

{
∂Jk
∂t

+ [rzk + (µ− r)(πk(t)− λkπ∗m(t))]
∂Jk
∂zk

+
3(3− r1 − r2)

4
(πk(t)− λkπ∗m(t))λ

∂Jk
∂zk

+
1
2
(πk(t)− λkπ∗m(t))

2σ2
1

∂2 Jk

∂z2
k

}
.

(1) Suppose that

−∂Jk(t, zk)

∂t
− sup

πk∈Πk

{
A(πk ,π∗m) Jk(t, zk)

}
> 0,

Jk(T, zk) > Uk(zk),

then Jk > Wk.
(2) for (π∗k , π∗m) ∈ (Πk, Πm), it follows that

−∂Jk(t, zk, l, v)
∂t

−A(θ∗k ,θ∗m) Jk(t, zk, l, v) = 0,

and the jump-uncertain stochastic differential Equation (15) admits a unique solution, then Jk = Wk,
(π∗k , π∗m) are equilibrium strategies.

Proof of Theorem 4. This proof is similar to [22] of Theorem 1, we omit it here.

3.2.1. Equilibrium Solution for the Exponential Utility Function

Because the exponential utility function was proposed, it has been widely used in
the optimization pricing and other fields. It not only has excellent properties such as
additive/smoothness, but also can well describe its utility changes in the case of large
fluctuations in wealth. This section discusses how the investors are CARA agents, i.e., each
agent has an exponential utility function, and we can obtain the explicit value function and
equilibrium strategies for each investor.

Assume that each investor has an exponential utility function, i.e.,

Uk(zk) = −
eκkzk

κk
,

where κk > 0 is the risk aversion coefficient of investor k.
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Next, we give the equilibrium investment strategies and value functions of the non-
zero-sum game for jump-uncertain stochastic systems under exponential utility, as shown
in the following Theorem 5.

Theorem 5. The equilibrium investment strategies and value functions take the form

π∗1 (t) =
(µ− r) + 3(3−r1−r2)

4 λ

σ2
1

(
1

κ1 f1(t)
+

λ1

κ2 f2(t)

)
,

π∗2 (t) =
(µ− r) + 3(3−r1−r2)

4 λ

σ2
1 (1− λ2λ1)

(
λ2

κ1 f1(t)
+

1
κ2 f2(t)

)
,

Jk(zk) = −
eκk [zk fk(t)+Pk(t)]

κk
e−βt,

where

fk(t) = er(T−t), Pk(t) =
κkm

β

(
e

β
κk
(T−t) − 1

)
, m =

1
2

(
(µ− r) + 3(3−r1−r2)

4 λ
)2

σ2
1 κk

.

Proof of Theorem 5. The HJB equation that satisfies the jump-uncertain stochastic differ-
ential game of Problem 1 is

0 =
∂Jk
∂t

+ sup
πk∈Πk

{
[rzk + (µ− r)(πk(t)− λkπ∗m(t))]

∂Jk
∂zk

+
3(3− r1 − r2)

4
(πk(t)− λkπ∗m(t))λ

∂Jk
∂zk

+
1
2
(πk(t)− λkπ∗m(t))

2σ2
1

∂2 Jk

∂z2
k

}
.

(17)

By using the first-order conditions of (17), we have

πk(t)− λkπ∗m(t) = −
(µ− r) ∂Jk

∂zk
+ 3(3−r1−r2)

4 λ ∂Jk
∂zk

σ2
1

∂2 Jk
∂z2

k

. (18)

Substituting (18) into (17), we obtain

∂Jk
∂t

+ rzk
∂Jk
∂zk
− 1

2

(
(µ− r) ∂Jk

∂zk
+ 3(3−r1−r2)

4 λ ∂Jk
∂zk

)2

σ2
1

∂2 Jk
∂z2

k

= 0. (19)

To solve the Equation (19), we conjecture that

Jk(zk) = −
eκk [zk fk(t)+Pk(t)]

κk
e−βt,

where β is utility discount rate.
Then we obtain

∂Jk
∂t

= Jkκk
[
zk ḟk(t) + Ṗk(t)

]
− Jkβ,

∂Jk
∂zk

= κk fk(t)Jk,
∂2 Jk

∂z2
k
= κ2

k f 2
k (t)Jk. (20)

Inserting (20) into (17) and simplifying gives

zk
[

ḟk(t) + r fk(t)
]
+ Ṗk(t)−

β

κk
− 1

2

(
(µ− r) + 3(3−r1−r2)

4 λ
)2

σ2
1 κk

= 0,
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with the boundary condition fk(T) = 0 and Pk(T) = 0.
Thus, we have to solve the following ordinary differential equations

ḟk(t) + r fk(t) = 0,

Ṗk(t)−
β

κk
Pk(t)−

1
2

(
(µ− r) + 3(3−r1−r2)

4 λ
)2

σ2
1 κk

= 0.

Inserting (20) into (18) and simplifying gives

πk(t)− λkπ∗m(t) =
(µ− r) + 3(3−r1−r2)

4 λ

κk fk(t)σ2
1

.

Then Theorem 5 is proved.

3.2.2. Equilibrium Solution for the Power Utility Function

In the portfolio of securities, each investor has his own degree of risk and preference
for return. The power utility function is an important and typical risk-aversion function.
Therefore, it is necessary to obtain the equilibrium investment strategy under the power
utility function.

Theorem 6. In the jump-uncertain stochastic portfolio game system under the power utility
function, the equilibrium investment strategies and value functions are

π∗1 (t) = −
(µ− r) + 3(3−r1−r2)

4 λ

σ2
1 (1− κ1κ2)

(
z1

(κ1 − 1)
+

κ1κ2

(κ2 − 1)

)
,

π∗2 (t) = −
(µ− r) + 3(3−r1−r2)

4 λ

σ2
1 (1− κ1κ2)

(
z1κ2

(κ1 − 1)
+

z2

(κ2 − 1)

)
,

Jk(zk) = e−βt zκk
k

κk
Ak(t),

where
Ak(t) = em(T−t),

m = κkr− β−

(
(µ− r) + 3(3−r1−r2)

4 λ
)

κk

2σ2
1 (κk − 1)

.

Proof of Theorem 6. Assume that the value function is

Jk(zk) = e−βt zκk
k

κk
Ak(t),

with boundary condition given by Ak(T) = 0. Further, the partial derivatives of Jk(zk) with
respect to t and zk are as follows

∂Jk
∂t

= −βe−βt zκk
k

κk
Ak(t) + e−βt zκk

k
κk

Ȧk(t),
∂Jk
∂zk

= e−βtzk
κk−1 Ak(t),

∂2 Jk

∂z2
k
= (κk − 1)e−βtzk

κk−2 Ak(t).
(21)

Plugging (21) into (17), after some simple calculations, we derive
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Ȧk(t) +

κkr− β−

(
(µ− r) + 3(3−r1−r2)

4 λ
)2

κk

2σ2
1 (κk − 1)

Ak(t) = 0. (22)

Equation (22) can be decomposed into the following equation

Ak(t) = em(T−t),

m = κkr− β−

(
(µ− r) + 3(3−r1−r2)

4 λ
)

κk

2σ2
1 (κk − 1)

.

Putting (21) into (18), we get

πk(t)− κkπ∗m(t) = −
(µ− r) + 3(3−r1−r2)

4 λ

σ2
1 (κk − 1)

zk.

Therefore, the proof is completed.

4. Conclusions

Based on the concepts of standard Brownian motion, canonical process, and the jump-
uncertain process, this paper provides an uncertain stochastic optimal control model with
jump. The principle of optimality and the equation of optimality for uncertain stochastic
optimal control with jump are obtained. As the applications of equation of optimality, two
investors’ game model was discussed. This paper formulates a framework where investors
have relative wealth concerns, i.e., investors derive utility not only from maximizing their
wealth but also from performing well relative to their peers. According to the dynamic
programming principle, the equilibrium strategies and value functions are analytically
derived. The results show that the equilibrium investment strategies under exponential
utility have nothing to do with the state of the system, but only with the parameters of the
system state, and the equilibrium investment strategies under power utility have something
to do with the state. The subjective uncertainty and objective randomness of investors will
appear in a system at the same time, so the equilibrium investment strategies will be more
realistic and better than the portfolio model under the stochastic system.
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