A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface
Abstract
:1. Introduction
2. Simulation Methodology
3. Results and Discussion
3.1. Effect of Different Pillar Spacing
3.2. Effect of the Droplet Radius
3.3. Components Critical Velocity Prediction Model
4. Conclusions
- The capillary pressure and the Laplace pressure should be considered in the calculation of the critical velocity of the C-W transition of the droplet. Furthermore, a critical velocity prediction model was proposed based on the mechanical equilibrium system including the capillary pressure and the Laplace pressure. The model can predict the critical velocity more accurately and be applied across scales.
- The correlation between the simulation at the nanoscale and the evaluation of the macroscopic symmetrical protrusion surface properties were presented. This correlation can be used to guide the parameters set in the MD simulation.
- This study established a method to directly evaluate the wettability of a surface based on the results of the MD simulation and has practical application value for the design and research of superhydrophobic surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.M.; Reinhoudt, D.; Crego-Calama, M. What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces. Chem. Soc. Rev. 2007, 38, 1350–1368. [Google Scholar] [CrossRef] [PubMed]
- Geyer, F.; D’Acunzi, M.; Sharifi-Aghili, A.; Saal, A.; Gao, N.; Kaltbeitzel, A.; Sloot, T.; Berger, R.; Butt, H.J.; Vollmer, D. When and how self-cleaning of superhydrophobic surfaces works. Sci Adv 2020, 6, eaaw9297. [Google Scholar] [CrossRef] [PubMed]
- Reyssat, M.; Pépin, A.; Marty, F.; Chen, Y.; Quéré, D. Bouncing transitions on microtextured materials. EPL 2006, 74, 306–312. [Google Scholar] [CrossRef]
- Yasmeen, S.; Yoon, J.; Moon, C.H.; Khan, R.; Gaiji, H.; Shin, S.; Oh, I.; Lee, H. Self-Formation of Superhydrophobic Surfaces through Interfacial Energy Engineering between Liquids and Particles. Langmuir 2021, 37, 5356–5363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, X.; Wu, X.; Min, J.C. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. Int. J. Heat Mass Transf. 2020, 158, 119997. [Google Scholar] [CrossRef]
- Morita, K.; Kimura, S.; Sakaue, H. Hybrid System Combining Ice-Phobic Coating and Electrothermal Heating for Wing Ice Protection. Aerospace 2020, 7, 102. [Google Scholar] [CrossRef]
- Dalili, N.; Edrisy, A.; Carriveau, R. A review of surface engineering issues critical to wind turbine performance. Renew. Sust. Energ. Rev. 2009, 13, 428–438. [Google Scholar] [CrossRef]
- Bergin, M.H.; Ghoroi, C.; Dixit, D.; Schauer, J.J.; Shindell, D.T. Large Reductions in Solar Energy Production Due to Dust and Particulate Air Pollution. Env. Sci. Tech. Let. 2017, 4, 339–344. [Google Scholar] [CrossRef]
- Bartolo, D.; Bouamrirene, F.; Verneuil, É.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. EPL 2006, 74, 299–305. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces. Langmuir 2008, 24, 6262–6269. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, Y.J.; Li, X.Q.; Sun, W. Theoretical analysis of droplet transition from Cassie to Wenzel state. Chin. Phys. B 2015, 24, 116801. [Google Scholar] [CrossRef]
- Shi, S.; Lv, C.; Zheng, Q. Drop Impact on Two-Tier Monostable Superrepellent Surfaces. ACS Appl. Mater. Interfaces 2019, 11, 43698–43707. [Google Scholar] [CrossRef] [PubMed]
- Malla, L.K.; Patil, N.D.; Bhardwaj, R.; Neild, A. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface. Langmuir 2017, 33, 9620–9631. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Z.; Zhou, A.; Zhou, J.Z.; Chen, L.; Yu, Y.S. Droplet impact on pillar-arrayed non-wetting surfaces. Soft Matter 2021, 17, 5932–5940. [Google Scholar] [CrossRef]
- Lv, S.H.; Yang, Z.; Duan, Y.Y. Retraction kinetics of impacting nanodroplets on hydrophobic surfaces: A molecular dynamics simulation study. J. Mol. Liq. 2021, 341, 116936. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Ambrosia, M.S.; Ha, M.Y.; Balachandar, S. The effect of pillar surface fraction and pillar height on contact angles using molecular dynamics. Appl. Surf. Sci. 2013, 282, 211–216. [Google Scholar] [CrossRef]
- Wang, L.W.; Zhang, R.; Zhang, X.W.; Hao, P.F. Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid. Nanofluid. 2017, 21, 61. [Google Scholar] [CrossRef]
- Di, J.W.; Yang, Z.; Duan, Y.Y. Molecular dynamics simulation of nanosized water droplet spreading on chemically heterogeneous surfaces. Langmuir 2019, 9, 125105. [Google Scholar] [CrossRef]
- Hiratsuka, M.; Emoto, M.; Konno, A.; Ito, S. Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation. Micromachines 2019, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Kurt, K.; Gary, S.G. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086. [Google Scholar] [CrossRef]
- Fan, J.C.; Wang, F.C.; Chen, J.; Zhu, Y.B.; Lu, D.T.; Liu, H.; Wu, H.A. Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Roy. Soc. Open Sci. 2018, 5, 180076. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Nie, Q.C.; Fang, H.S. Many-body dissipative particle dynamics simulation of Newtonian and non-Newtonian nanodroplets spreading upon flat and textured substrates. Appl. Surf. Sci. 2020, 519, 146250. [Google Scholar] [CrossRef]
- de Ruijter, M.J.; Blake, T.D.; De Coninck, J. Dynamic Wetting Studied by Molecular Modeling Simulations of Droplet Spreading. Langmuir 1999, 15, 7836–7847. [Google Scholar] [CrossRef]
- Theodorakis, P.E.; Amirfazli, A.; Hu, B.; Che, Z.Z. Droplet Control Based on Pinning and Substrate Wettability. Langmuir 2021, 37, 4248–4255. [Google Scholar] [CrossRef]
- Li, Z.; Liao, K.; Liao, F.Y.; Xiao, Q.X.; Jiang, F.; Zhang, X.R.; Liu, B.; Sun, C.Y.; Chen, G.J. Wetting and Spreading Behaviors of Nanodroplets: The Interplay Among Substrate Hydrophobicity, Roughness, and Surfactants. J. Phy. Chem. C 2016, 120, 15209–15215. [Google Scholar] [CrossRef]
- Maroo, S.C.; Chung, J.N. Nano-Droplet Impact on a Homogenous Surface Using Molecular Dynamics. In Proceedings of the ASME 2008 3rd Energy Nanotechnology International Conference Collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences, Jacksonville, FL, USA, 5 June 2008; pp. 113–121. [Google Scholar]
- Nair, A.R.; Sathian, S.P. A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM). J. Chem. Phys. 2012, 137, 084702. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Hu, H.B.; Chen, L.B.; Bao, L.Y.; Huang, S.H. Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces. Chin. Phys. B 2014, 23, 074702. [Google Scholar] [CrossRef]
- Hu, A.J.; Liu, D. 3D simulation of micro droplet impact on the structured superhydrophobic surface. Int. J. Multiphas. Flow 2022, 147, 103887. [Google Scholar] [CrossRef]
- Dash, S.; Alt, M.T.; Garimella, S.V. Hybrid surface design for robust superhydrophobicity. Langmuir 2012, 28, 9606–9615. [Google Scholar] [CrossRef]
- Thanh-Vinh, N.; Isao, S. Maximum Pressure Caused by Droplet Impact is Dependent on the Droplet Size. In Proceedings of the IEEE 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 23 June 2019; pp. 813–816. [Google Scholar]
- Dae, H.K.; Sang, J.L. Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces. Appl. Phys. Lett. 2012, 100, 171601. [Google Scholar] [CrossRef]
- Koishi, T.; Kenji, Y.; Shigenori, F.; Toshikazu, E.; Zeng, X.C. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci. USA 2009, 106, 8435–8440. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Spinks, D. Measurement of the speed of sound in ethanol/water mixtures. Ultrasound Med. Biol. 2001, 27, 289–291. [Google Scholar] [CrossRef]
- Khojasteh, D.; Kazerooni, M.; Salarian, S.; Kamali, R. Droplet impact on superhydrophobic surfaces: A review of recent developments. J. Ind. Eng. Chem. 2016, 42, 1–14. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday. Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
Case | Pillar Width r (Å) | Pillar Spacing d (Å) | ||
---|---|---|---|---|
1 | 10.8 Å | 9.0 Å | 0.29 | 160 |
2 | 10.8 Å | 12.6 Å | 0.21 | 155 |
3 | 10.8 Å | 16.2 Å | 0.16 | 152 |
4 | 10.8 Å | 19.8 Å | 0.12 | 151 |
5 | 10.8 Å | 23.5 Å | 0.09 | 150.5 |
Case | Number of Atoms | Droplet Radius R (Å) |
---|---|---|
6 | 200 | 24 |
7 | 400 | 31 |
8 | 600 | 37 |
9 | 800 | 41 |
10 | 2000 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, Y.; Cui, S.; Li, X.; Zhou, Z.; Tian, X. A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface. Symmetry 2022, 14, 1891. https://doi.org/10.3390/sym14091891
Wu Z, Li Y, Cui S, Li X, Zhou Z, Tian X. A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface. Symmetry. 2022; 14(9):1891. https://doi.org/10.3390/sym14091891
Chicago/Turabian StyleWu, Zhulong, Yingqi Li, Shaohan Cui, Xiao Li, Zhihong Zhou, and Xiaobao Tian. 2022. "A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface" Symmetry 14, no. 9: 1891. https://doi.org/10.3390/sym14091891
APA StyleWu, Z., Li, Y., Cui, S., Li, X., Zhou, Z., & Tian, X. (2022). A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface. Symmetry, 14(9), 1891. https://doi.org/10.3390/sym14091891