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Abstract: Let G be a connected graph and g be a non-negative integer. A vertex set S of graph G is
called a g-extra cut if G− S is disconnected and each component of G− S has at least g + 1 vertices.
The g-extra connectivity of G is the minimum cardinality of a g-extra cut of G if G has at least one
g-extra cut. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the strong product G1 � G2 is defined
as follows: its vertex set is V1 × V2 and its edge set is {(x1, x2)(y1, y2)| x1 = x2 and y1y2 ∈ E2; or
y1 = y2 and x1x2 ∈ E1; or x1x2 ∈ E1 and y1y2 ∈ E2}, where (x1, x2), (y1, y2) ∈ V1 ×V2. In this paper,
we obtain the g-extra connectivity of the strong product of two paths, the strong product of a path
and a cycle, and the strong product of two cycles.

Keywords: conditional connectivity; g-extra connectivity; strong product; paths; cycles

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). The minimum degree of G is
denoted by δ(G). A vertex cut in G is a set of vertices whose deletion makes G disconnected.
The connectivity κ(G) of the graph G is the minimum order of a vertex cut in G if G is not
a complete graph; otherwise κ(G) = |V(G)| − 1. Usually, the topology structure of an
interconnection network can be modeled by a graph G, where V(G) represents the set of
nodes and E(G) represents the set of links connecting nodes in the network. Connectivity
is used to measure the reliability the network, while it always underestimates the resilience
of large networks.

To overcome this deficiency, Harary [1] generalized the concept of the classical con-
nectivity κ(G) as follows. Let P be a graph-theoretic property. A vertex set S ⊆ V(G)
is a P-cut if G − S is disconnected and each component of G − S has property P . The
conditional connectivity κ(G;P) is the minimum cardinality of a P-cut if G has at least one
P-cut. Later, Fàbrega and Fiol [2] introduced the concept of g-extra connectivity, which
is a kind of conditional connectivity. Let g be a non-negative integer. If the vertex set
S ⊆ V(G) satisfies G− S is disconnected and each component of G− S has at least g + 1
vertices, then S is called a g-extra cut. If G has at least one g-extra cut, then the g-extra
connectivity of G, denoted by κg(G), is the the minimum cardinality of a g-extra cut. Other-
wise, define κg(G) = ∞. If S is a g-extra cut in G with order κg(G), then we call S a κg-cut.
Since κ0(G) = κ(G) for any connected graph G that is not a complete graph, the g-extra
connectivity can be seen as a generalization of the traditional connectivity. The authors
in [3] pointed out that there is no polynomial-time algorithm for computing κg for a general
graph. Consequently, much of the work has been focused on the computing of the g-extra
connectivity of some given graphs, see [3–20] for examples.

Graph product is used to produce large graphs from small ones. There are many kinds
of products, such as Cartesian product, direct product, strong product and lexicographic
product. The Cartesian product of two graphs G1 and G2, denoted by G1�G2, is defined on
the vertex sets V(G1)×V(G2), and (x1, y1)(x2, y2) is an edge in G1�G2 if and only if one
of the following is true: (i) x1 = x2 and y1y2 ∈ E(G2); (ii) y1 = y2 and x1x2 ∈ E(G1).
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For two graphs G1 and G2, the strong product G1 � G2 is defined as follows: its vertex
set is V(G1)× V(G2) and its edge set is {(x1, x2)(y1, y2)| x1 = x2 and y1y2 ∈ E(G2); or
y1 = y2 and x1x2 ∈ E(G1); or x1x2 ∈ E(G1) and y1y2 ∈ E(G2)}, where (x1, x2), (y1, y2) ∈
V(G1)×V(G2).

Špacapan [21] proved that for any nontrivial graphs G1 and G2, κ(G1�G2) = min
{κ(G1)|V(G2)|, κ(G2)|V(G1)|, δ(G1�G2)}. Lü, Wu, Chen and Lv [22] provided bounds
for the 1-extra connectivity of the Cartesian product of two connected graphs. Tian and
Meng [23] determined the exact values of the 1-extra connectivity of the Cartesian product
for some class of graphs. In [24], Chen, Meng, Tian and Liu further studied the 2-extra
connectivity and the 3-extra connectivity of the Cartesian product of graphs.

Brešar and Špacapan [25] determined the edge-connectivity of the strong products of
two connected graphs. For the connectivity of the strong product graphs, Špacapan [26]
obtained Theorem 1 in the following. Let Si be a vertex cut in Gi for i = 1, 2, and let Ai
be a component of Gi − Si for i = 1, 2. Following the definitions in [26], I = S1 × V2 or
I = V1 × S2 is called an I-set in G1 � G2, and L = (S1 × A2) ∪ (S1 × S2) ∪ (A1 × S2) is
called an L-set in G1 � G2.

Theorem 1 ([26]). Let G1 and G2 be two connected graphs. Then every minimum vertex cut in
G1 � G2 is either an I-set or an L-set in G1 � G2.

Motivated by the results above, we will study the g-extra connectivity of the strong
product graphs. In the next section, we introduce some definitions and lemmas. In
Section 3, we will give the g-extra connectivity of the strong product of two paths, the
strong product of a path and a cycle, and the strong product of two cycles. Conclusion will
be given in Section 4.

2. Preliminary

For graph-theoretical terminology and notations not defined here, we follow [27]. Let
G be a graph with vertex set V(G) and edge set E(G). The neighborhood of a vertex u in
G is NG(u) = {v ∈ V(G) | v is adjacent to the vertex u}. Let A be a subset of V(G), the
neighborhood of A in G is NG(A) = {v ∈ V(G)\A | v is adjacent to a vertex in A}. The
subgraph induced by A in G is denoted by G[A]. We use Pn to denote the path with order
n and Cn to denote the cycle with order n.

Let G1 and G2 be two graphs. Define two natural projections p1 and p2 on V(G1)×
V(G2) as follows: p1(x, y) = x and p2(x, y) = y for any (x, y) ∈ V(G1) × V(G2). The
subgraph induced by {(u, y)|u ∈ V(G1)} in G1 � G2, denoted by G1y, is called a G1-
layer in G1 � G2 for each vertex y ∈ V(G2). Analogously, the subgraph induced by
{(x, v)|v ∈ V(G2)} in G1 � G2, denoted by xG2, is called a G2-layer in G1 � G2 for each
vertex x ∈ V(G1). Clearly, a G1-layer in G1 � G2 is isomorphic to G1, and a G2-layer in
G1 � G2 is isomorphic to G2.

Let S ⊆ V(G1 � G2). For any x ∈ V(G1), denote S ∩V(xG2) by xS, and analogously,
for any y ∈ V(G2), denote S ∩V(G1y) by Sy. Furthermore, we use xS = V(xG2) \ xS and
Sy = V(G1y) \ Sy. By almost the same argument as the proof of the second paragraph of
Theorem 3.2 in [26], we can obtain the following lemma. For completeness, we also address
the proof here.

Lemma 2 ([26]). Let G be the strong product G1 � G2 of two connected graphs G1 and G2, and let
g be a non-negative integer. Assume G has g-extra cuts and S is a κg-cut of G.

(i) If xS 6= ∅ for some x ∈ V(G1), then |xS| ≥ κ(G2).
(ii) If Sy 6= ∅ for some y ∈ V(G2), then |Sy| ≥ κ(G1).

Proof. (i) Suppose xS 6= ∅ for some x ∈ V(G1). Note that this is obviously true if
xS = V(xG2). If xS is not contained in one component of G− S, then clearly the induced
subgraph G[xS] is not connected, and hence |xS| ≥ κ(G2). If xS is contained in one
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component of G− S, then choose an arbitrary fixed vertex (x, y) from xS. Let H1 be the
component of G− S such that xS ⊆ V(H1) and let H2 = G− S∪V(H1). Since S is a κg-cut,
we find that the vertex (x, y) ∈ xS has a neighbor (x1, y1) ∈ V(H2). Since (x1, y1) ∈ V(H2),
we find that (x, y1) ∈ xS, moreover, for any (x, u) ∈ xS, we find that (x, u) is not adjacent
to (x, y1), otherwise, (x, u) would be adjacent to (x1, y1), which is not true since those two
vertices are in different components of G− S. Thus if R = xS \ {(x, y1)}, then p2(R) is a
vertex cut in G2 and one component of G2− p2(R) is {y1}. Thus |xS| = |R|+ 1 ≥ κ(G2) + 1.
Analogously, we can get |Sy| ≥ κ(G1) if (ii) holds. �

3. Main Results

Let H be a subgraph of G1 � G2. For the sake of simplicity, we use x H instead of
xV(H) to represent V(H) ∩V(xG2) for any x ∈ V(G1) and Hy to represent V(H) ∩V(G1y)

for any y ∈ V(G2). Since κg(P1 � Pn) = 1 for g ≤ b n−1
2 c − 1 and κg(P2 � Pn) = 2 for

g ≤ 2b n−1
2 c − 1, we assume m, n ≥ 3 in the following theorem.

Theorem 3. Let g be a non-negative integer and G = Pm � Pn, where m, n ≥ 3. If g ≤
min{nbm−1

2 c − 1, mb n−1
2 c − 1}, then κg(G) = min{m, n, d2

√
g + 1 e+ 1}.

Proof. Denote Pm = x1x2 . . . xm and Pn = y1y2 . . . yn. Let S1 = V(Pm)× {yb n−1
2 c+1} and

S2 = {xbm−1
2 c+1} ×V(Pn). Since g ≤ min{nbm−1

2 c − 1, mb n−1
2 c − 1}, we verify that S1 and

S2 are two g-extra cuts of G. Thus κg(G) ≤ min{m, n}. If d2
√

g + 1 e+ 1 ≥ min{m, n},
then κg(G) ≤ min{m, n, d2

√
g + 1 e+ 1}. If d2

√
g + 1 e+ 1 < min{m, n}, then let S3 =

(J1 × K2) ∪ (J1 × J2) ∪ (K1 × J2), where J1 = {xd√g+1 e+1}, K1 = {x1, x2, . . . , xd
√

g+1 e},
J2 = {yd g+1

d
√

g+1 e
e+1
} and K2 = {y1, y2, . . . , yd g+1

d
√

g+1 e
e}. It is routine to verify that S3 is

a g-extra cut of G. By |S3| = d
√

g + 1 e + d g+1
d
√

g+1 e
e + 1 = d2

√
g + 1 e + 1, we have

κg(G) ≤ d2
√

g + 1 e+ 1. Therefore, κg(G) ≤min{m, n, d2
√

g + 1 e+ 1} holds.

Now, it is sufficient to prove κg(G) ≥min{m, n, d2
√

g + 1 e+ 1}. Assume S is a κg-cut
of G. We consider two cases in the following.
Case 1. xS 6= ∅ for all x ∈ V(Pm), or Sy 6= ∅ for all y ∈ V(Pn).

Assume xS 6= ∅ for all x ∈ V(Pm). By Lemma 2.1, |S| = ∑x∈V(Pm) |xS| ≥ κ(Pn)|V(Pm)|
= m. Analogously, if Sy 6= ∅ for all y ∈ V(Pn), then |S| = ∑y∈V(Pn) |Sy| ≥ κ(Pm)|V(Pn)| = n.
Case 2. There exist a vertex xa ∈ V(Pm) and a vertex yb ∈ V(Pn) such that xa S = Syb = ∅.

By the assumption xa S = Syb = ∅, we know V(xa G2) and V(G1yb) are contained
in a component H′ of G − S. Let H be another component of G − S. Let p1(V(H)) =
{xs+1, xs+2, . . . , xs+k} and p2(V(H)) = {yt+1, yt+2, . . . , yt+h}. Without loss of generality,
assume s + k < a and t + h < b. Clearly, |V(H)| ≤ kh. Since S is a κg-cut, we have
NG(V(H)) = S and |V(H)| ≥ g + 1. If we can prove |NG(V(H))| ≥ k + h + 1, then
κg(G) = |S| = |NG(V(H))| ≥ k + h + 1 ≥ 2

√
kh + 1 ≥ 2

√
g + 1 + 1 and the theorem

holds. Thus, we only need to show that |NG(V(H))| ≥ k + h + 1 in the remaining proof.
Let (xs+i, ydi

) be the vertex in xs+i H such that di is maximum for i = 1, . . . , k, and
let (xrj , yt+j) be the vertex in Hyt+j such that rj is maximum for j = 1, . . . , h. Denote
D = {(xs+1, yd1), . . . , (xs+k, ydk

)} and R = {(xr1 , yt+1), . . . , (xrh , yt+h)}. For the conve-
nience of counting, we will construct an injective mapping f from D ∪ R to NG(V(H) \
{(xs+k+1, ydk+1)}. Although D and R may have common elements, we consider the ele-
ments in D and R to be different in defining the mapping f below.

First, the mapping f on D is defined as follows.

f ((xs+i, ydi
)) = (xs+i, ydi+1) for i = 1, . . . , k.

Denote F1 = {(xs+1, yd1+1), . . . , (xs+k, ydk+1)}.
Second, for each vertex (xrj , yt+j) satisfying (xrj+1, yt+j) /∈ F1, define f ((xrj , yt+j)) =

(xrj+1, yt+j).
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If (xrj , yt+j) satisfies (xrj+1, yt+j) /∈ F1 for any j ∈ {1, . . . , h}, then we are done. Oth-
erwise, for each (xrj′ , yt+j′) satisfying (xrj′+1, yt+j′) ∈ F1, we give the definition as fol-
lows. By the definitions of D and R, we have (xrj′+1+i, yt+j′+j) /∈ V(H) for all i, j ≥ 0,
and {(xrj′ , yt+j′), . . . , (xrj′ , ydrj′ −s)} ⊆ R (see Figure 1 for an illustration). Now, we define

f ((xrj′ , yt+j′)) = (xrj′+1, yt+j′+1) and change the images of (xrj′ , yt+j′+1), . . . , (xrj′ , ydrj′ −s) to

(xrj′+1, yt+j′+2), . . . , (xrj′+1, ydrj′ −s+1), respectively. The images of f on R are well-defined.

Finally, we have an injective mapping f from D ∪ R to NG(V(H) \ {(xs+k+1, ydk+1)}.
Then κg(G) = |S| = |NG(V(H))| ≥ |D|+ |R|+ 1 ≥ k + h + 1 ≥ 2

√
kh + 1 ≥ 2

√
g + 1 + 1.

The proof is thus complete.

x1 xm

y1

yn

xs+1 xs+k xa

yb

H

xrj′

yt+1

yt+h

ydrj′−s

(xrj′+1, ydrj′−s+1)

yt+j′

Figure 1. An illustration for the proof of Theorem 3.

Since κg(C3 � Pn) = 3 for g ≤ 3b n−1
2 c − 1, we assume m ≥ 4 in the following theorem.

Theorem 4. Let g be a non-negative integer and G = Cm � Pn, where m ≥ 4, n ≥ 3. If
g ≤ min{nbm−2

2 c − 1, mb n−1
2 c − 1}, then κg(G) = min{m, 2n, d2

√
2(g + 1)e+ 2}.

Proof. Denote Cm = x0x1 . . . xm−1xm (where x0 = xm) and Pn = y1y2 . . . yn. The addition
of the subscripts of x in the proof is modular m arithmetic. Let S1 = V(Cm)× {yb n−1

2 c+1}
and S2 = {x0, xbm−2

2 c+1} ×V(Pn). Since g ≤ min{nbm−2
2 c − 1, mb n−1

2 c − 1}, it is routine to

check that S1 and S2 are two g-extra cuts of G. Thus κg(G) ≤min{m, 2n}. If d2
√

2(g + 1)e+
2 ≥ min{m, 2n}, then κg(G) ≤ min{m, 2n, d2

√
2(g + 1)e + 2}. If d2

√
2(g + 1)e + 2 <

min{m, 2n}, then let S3 = (J1 × K2) ∪ (J1 × J2) ∪ (K1 × J2), where J1 = {x0, xd
√

2(g+1)e+1},
K1 = {x1, x2, . . . , xd

√
2(g+1)e}, J2 = {yd 2(g+1)

d
√

2(g+1)e
e+1
} and K2 = {y1, y2, . . . , yd 2(g+1)

d
√

2(g+1)e
e}. It

is routine to verify that S3 is a g-extra cut of G. By |S3| = d
√

2(g + 1)e+ d 2(g+1)
d
√

2(g+1)e
e+

2 = d2
√

2(g + 1)e + 2, we have κg(G) ≤ d2
√

2(g + 1)e + 2. Therefore, κg(G) ≤ min
{m, 2n, d2

√
2(g + 1)e+ 2}.

Now, it is sufficient to prove κg(G) ≥min{m, 2n, d2
√

2(g + 1)e+ 2}. Assume S is a
κg-cut of G. We consider two cases in the following.
Case 1. xS 6= ∅ for all x ∈ V(Cm), or Sy 6= ∅ for all y ∈ V(Pn).

Assume xS 6= ∅ for all x ∈ V(Cm). By Lemma 2.1, |S| = ∑x∈V(Cm) |xS| ≥ κ(Pn)|V(Cm)|
= m. Analogously, if Sy 6= ∅ for all y ∈ V(Pn), then |S| = ∑y∈V(Pn) |Sy| ≥ κ(Cm)|V(Pn)| =
2n.
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Case 2. There exist a vertex xa ∈ V(Cm) and a vertex yb ∈ V(Pn) such that xa S = Syb = ∅.
By the assumption xa S = Syb = ∅, we know V(xa G2) and V(G1yb) are contained

in a component H′ of G − S. Let H be another component of G − S. Let p1(V(H)) =
{xs+1, xs+2, . . . , xs+k} and p2(V(H)) = {yt+1, yt+2, . . . , yt+h}. Without loss of generality,
assume s + k < a and t + h < b. Clearly, |V(H)| ≤ kh. Since S is a κg-cut, we have
NG(V(H)) = S and |V(H)| ≥ g + 1. If we can prove |NG(V(H))| ≥ k + 2h + 2, then
κg(G) = |S| = |NG(V(H))| ≥ k + 2h + 2 ≥ 2

√
2kh + 2 ≥ 2

√
2(g + 1) + 2 and the theorem

holds. Thus, we only need to show that |NG(V(H))| ≥ k + 2h + 2 in the remaining proof.
Let (xs+i, ydi

) be the vertex in xs+i H such that di is maximum for i = 1, . . . , k, and
let (xlj

, yt+j) and (xrj , yt+j) be the vertices in Hyt+j such that lj and rj are listed in the
foremost and in the last along the sequence (a + 1, . . . , m− 1, 0, 1, . . . , a− 1), respectively,
for j = 1, . . . , h. Denote D = {(xs+1, yd1), . . . , (xs+k, ydk

)}, L = {(xl1 , yt+1), . . . , (xlh , yt+h)}
and R = {(xr1 , yt+1), . . . , (xrh , yt+h)}. For the convenience of counting, we will construct an
injective mapping f from D ∪ L ∪ R to NG(V(H) \ {(xs, yd1+1), (xs+k+1, ydk+1)}. Although
D, L and R may have common elements, we consider the elements in D, L and R to be
different in defining the mapping f below.

First, the mapping f on D is defined as follows.

f ((xs+i, ydi
)) = (xs+i, ydi+1) for i = 1, . . . , k.

Denote F1 = {(xs+1, yd1+1), . . . , (xs+k, ydk+1)}.
Second, for each vertex (xrj , yt+j) satisfying (xrj+1, yt+j) /∈ F1, define f ((xrj , yt+j)) =

(xrj+1, yt+j).
If (xrj , yt+j) satisfies (xrj+1, yt+j) /∈ F1 for any j ∈ {1, . . . , h}, then we are done. Oth-

erwise, for each (xrj′ , yt+j′) satisfying (xrj′+1, yt+j′) ∈ F1, we give the definition as follows.
By the definitions of D and R, we have {(xrj′ , yt+j′), . . . , (xrj′ , ydrj′ −s)} ⊆ R. Now, we define

f ((xrj′ , yt+j′)) = (xrj′+1, yt+j′+1) and change the images of (xrj′ , yt+j′+1), . . . , (xrj′ , ydrj′ −s)

to (xrj′+1, yt+j′+2), . . . , (xrj′+1, ydrj′ −s+1), respectively. The mapping f on R is defined well .

Third, for each vertex (xlj
, yt+j) satisfying (xlj−1, yt+j) /∈ F1, define f ((xlj

, yt+j)) =

(xlj−1, yt+j).
If (xlj

, yt+j) satisfies (xlj−1, yt+j) /∈ F1 for any j ∈ {1, . . . , h}, then we are done. Other-
wise, for each (xlj′

, yt+j′) satisfying (xlj′−1, yt+j′) ∈ F1. By the definitions of D and L, we
have {(xlj′

, yt+j′), . . . , (xlj′
, ydlj′ −s

)} ⊆ L. Now, we define f ((xlj′
, yt+j′)) = (xlj′−1, yt+j′+1)

and change the images of (xlj′
, yt+j′+1), . . . , (xlj′

, ydlj′ −s
) to (xrj′−1, yt+j′+2), . . . , (xlj′−1,

ydrj′ −s+1), respectively. The definition of f on L is complete.

Finally, we construct an injective mapping f from D ∪ L ∪ R to NG(V(H)\
{(xs, yd1+1), (xs+k+1, ydk+1)}. Then κg(G) = |S| = |NG(V(H))| ≥ |D|+ |L|+ |R|+ 2 ≥
k + 2h + 1 ≥ 2

√
2kh + 2 ≥ 2

√
2(g + 1) + 2. The proof is thus complete. �

Since κg(C3 � Cn) = 6 for g ≤ 3b n−2
2 c − 1, we assume m, n ≥ 4 in the following

theorem.

Theorem 5. Let g be a non-negative integer and G = Cm � Cn, where m, n ≥ 4. If g ≤
min{nbm−2

2 c − 1, mb n−2
2 c − 1}, then κg(G) = min{2m, 2n, d4

√
g + 1 e+ 4}.

Proof. Denote Cm = x0x1 . . . xm−1xm (where x0 = xm) and Cn = y0y1 . . . yn (where
y0 = yn). The addition of the subscripts of x in the proof is modular m arithmetic,
and the addition of the subscripts of y in the proof is modular n arithmetic. Let S1 =
V(Cm) × {y0, yb n−2

2 c+1} and S2 = {x0, xbm−2
2 c+1} × V(Cn). Since g ≤ min{nbm−2

2 c −
1, mb n−2

2 c − 1}, we can check that S1 and S2 are two g-extra cuts of G. Thus κg(G) ≤
min{2m, 2n}. If d4

√
g + 1 e+ 4 ≥ min{2m, 2n}, then κg(G) ≤ min{2m, 2n, d4

√
g + 1 e+

4}. If d4
√

g + 1 e + 4 < min{2m, 2n}, then let S3 = (J1 × K2) ∪ (J1 × J2) ∪ (K1 × J2),



Symmetry 2022, 14, 1900 6 of 8

where J1 = {x0, xd
√

g+1 e+1}, K1 = {x1, x2, . . . , xd
√

g+1 e}, J2 = {y0, yd g+1
d
√

g+1 e
e+1
} and

K2 = {y1, y2, . . . , yd g+1
d
√

g+1 e
e}. It is routine to verify that S3 is a g-extra cut of G. By

|S3| = 2d
√

g + 1e+ 2d g+1
d
√

g+1 e
e+ 4 = d4

√
g + 1e+ 4, we have κg(G) ≤ d4

√
g + 1 e+ 4.

Therefore, κg(G) ≤min{2m, 2n, d4
√

g + 1 e+ 4}.

Now, it is sufficient to prove κg(G) ≥ min{2m, 2n, d4
√

g + 1 e+ 4}. Assume S is a
κg-cut of G. We consider two cases in the following.
Case 1. xS 6= ∅ for all x ∈ V(Cm), or Sy 6= ∅ for all y ∈ V(Cn).

Assume xS 6= ∅ for all x ∈ V(Cm). By Lemma 2.1, |S| = ∑x∈V(Cm) |xS| ≥
κ(Cn)|V(Cm)| = 2m. Analogously, if Sy 6= ∅ for all y ∈ V(Cn), then |S| = ∑y∈V(Cn) |Sy| ≥
κ(Cm)|V(Cn)| = 2n.
Case 2. There exist a vertex xa ∈ V(Cm) and a vertex yb ∈ V(Cn) such that xa S = Syb = ∅.

By the assumption xa S = Syb = ∅, we know V(xa G2) and V(G1yb) are contained
in a component H′ of G − S. Let H be another component of G − S. Let p1(V(H)) =
{xs+1, xs+2, . . . , xs+k} and p2(V(H)) = {yt+1, yt+2, . . . , yt+h}. Without loss of generality,
assume s + k < a and t + h < b. Clearly, |V(H)| ≤ kh. Since S is a κg-cut, we have
NG(V(H)) = S and |V(H)| ≥ g + 1. If we can prove |NG(V(H))| ≥ 2k + 2h + 4, then
κg(G) = |S| = |NG(V(H))| ≥ 2k + 2h + 4 ≥ 4

√
kh + 4 ≥ 4

√
g + 1 + 4 and the theorem

holds. Thus, we only need to show that |NG(V(H))| ≥ 2k + 2h + 4 in the remaining proof.
Let (xs+i, yti ) and (xs+i, ydi

) be the vertices in xs+i H such that ti and di are listed in
the foremost and in the last along the sequence (b + 1, . . . , n− 1, 0, 1, . . . , b− 1), respec-
tively, for i = 1, . . . , k, and let (xlj

, yt+j) and (xrj , yt+j) be the vertices in Hyt+j such that
lj and rj are listed in the foremost and in the last along the sequence (a + 1, . . . , m −
1, 0, 1, . . . , a− 1), respectively, for j = 1, . . . , h. Denote D = {(xs+1, yd1), . . . , (xs+k, ydk

)},
T = {(xs+1, yt1), . . . , (xs+k, ytk )}, L = {(xl1 , yt+1), . . . , (xlh , yt+h)} and R = {(xr1 , yt+1), . . . ,
(xrh , yt+h)}. For the convenience of counting, we will construct an injective mapping f
from D ∪ T ∪ L ∪ R to NG(V(H) \ {(xs, yd1+1), (xs, yt1−1), (xs+k+1, ydk+1), (xs+k+1, ytk−1)}.
Although D, T, L and R may have common elements, we consider the elements in D, T, L
and R to be different in defining the mapping f below.

First, the mapping f on D is defined as follows.

f ((xs+i, ydi
)) = (xs+i, ydi+1) for i = 1, . . . , k.

Denote F1 = {(xs+1, yd1+1), . . . , (xs+k, ydk+1)}.
Second, the mapping f on T is defined as follows.

f ((xs+i, yti )) = (xs+i, yti−1) for i = 1, . . . , k.

Denote F2 = {(xs+1, yt1−1), . . . , (xs+k, ytk−1)}.
Third, for each vertex (xrj , yt+j) satisfying (xrj+1, yt+j) /∈ F1, define f ((xrj , yt+j)) =

(xrj+1, yt+j).
If (xrj , yt+j) satisfies (xrj+1, yt+j) /∈ F1 for any j ∈ {1, . . . , h}, then we are done. Oth-

erwise, for each (xrj′ , yt+j′) satisfying (xrj′+1, yt+j′) ∈ F1, we define as follows. By the
definitions of D and R, we have {(xrj′ , yt+j′), . . . , (xrj′ , ydrj′ −s)} ⊆ R. Now, we define

f ((xrj′ , yt+j′)) = (xrj′+1, yt+j′+1) and change the images of (xrj′ , yt+j′+1), . . . , (xrj′ , ydrj′ −s)

to (xrj′+1, yt+j′+2), . . . , (xrj′+1, ydrj′ −s+1), respectively.

Fourth, for each vertex (xrj , yt+j) satisfying (xrj+1, yt+j) /∈ F2, define f ((xrj , yt+j)) =

(xrj+1, yt+j).
If (xrj , yt+j) satisfies (xrj+1, yt+j) /∈ F2 for any j ∈ {1, . . . , h}, then we are done. Oth-

erwise, for each (xrj′ , yt+j′) satisfying (xrj′+1, yt+j′) ∈ F2, we define as follows. By the
definitions of T and R, we have {(xrj′ , yt+j′), . . . , (xrj′ , ydtj′ −s)} ⊆ R. Now, we define
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f ((xrj′ , yt+j′)) = (xrj′+1, yt+j′−1) and change the images of (xrj′ , yt+j′−1), . . . , (xrj′ , ydtj′ −s)

to (xrj′+1, yt+j′−2), . . . , (xrj′+1, ydrj′ −s−1), respectively.

Note that the proof of four paragraphs above gives the definition of the mapping f on
R. In the following proof, we will give the definition of the mapping f on L.

Fifth, for each vertex (xlj
, yt+j) satisfying (xlj−1, yt+j) /∈ F1, define f ((xlj

, yt+j)) =

(xlj−1, yt+j).
If (xlj

, yt+j) satisfies (xlj−1, yt+j) /∈ F1 for any j ∈ {1, . . . , h}, then we are done. Oth-
erwise, for each (xlj′

, yt+j′) satisfying (xlj′−1, yt+j′) ∈ F1, we define as follows. By the
definitions of D and L, we have {(xlj′

, yt+j′), . . . , (xlj′
, ydlj′ −s

)} ⊆ L. Now, we define

f ((xlj′
, yt+j′)) = (xlj′−1, yt+j′+1) and change the images of (xlj′

, yt+j′+1), . . . , (xlj′
, ydlj′ −s

)

to (xrj′−1, yt+j′+2), . . . , (xlj′−1, ydrj′ −s+1), respectively.

Sixth, for each vertex (xlj
, yt+j) satisfying (xlj−1, yt+j) /∈ F2, define f ((xlj

, yt+j)) =

(xlj−1, yt+j).
If (xlj

, yt+j) satisfies (xlj−1, yt+j) /∈ F2 for any j ∈ {1, . . . , h}, then we are done. Oth-
erwise, for each (xlj′

, yt+j′) satisfying any (xtj′−1, yt+j′) ∈ F2, we define as follows. By
the definitions of L and T, we have {(xlj′

, yt+j′), . . . , (xlj′
, ydtj′ −s)} ⊆ L. Now, we define

f ((xlj′
, yt+j′)) = (xlj′−1, yt+j′−1) and change the images of (xlj′

, yt+j′−1), . . . , (xlj′
, ydtj′ −s) to

(xlj′−1, yt+j′−2), . . . , (xlj′−1, ydtj′ −s−1), respectively.

Finally, we construct an injective mapping f from D ∪ T ∪ L ∪ R to NG(V(H) \
{(xs, yd1+1), (xs, yt1−1), (xs+k+1, ydk+1), (xs+k+1, ytk−1)}. Then κg(G) = |S| = |NG(V(H))|
≥ |D|+ |T|+ |L|+ |R|+ 4 ≥ 2k + 2h + 4 ≥ 4

√
kh + 4 ≥ 4

√
g + 1 + 4. The proof is thus

complete. �

4. Conclusions

Graph products are used to construct large graphs from small ones. Strong product is
one of the most studied four graph products. As a generalization of traditional connectivity,
g-extra connectivity can be seen as a refined parameter to measure the reliability of inter-
connection networks. There is no polynomial-time algorithm to compute the g (≥ 1)-extra
connectivity for a general graph. In this paper, we determined the g-extra connectivity
of the strong product of two paths, the strong product of a path and a cycle, and the
strong product of two cycles. In the future work, we would like to investigate the g-extra
connectivity of the strong product of two general graphs.
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