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Abstract: Using the data for upper record values, the interval estimation for the scale parameter
of two-parameter exponential distribution is presented. In addition, two methods for the joint
confidence region of two parameters are proposed. In terms of confidence region area, the simulation
comparison of two methods of the confidence region is performed in this paper. The criterion of
minimum confidence region area is used to obtain the optimal method of the confidence region.
To illustrate our proposed interval estimation methods, one biometrical example is used and the
corresponding confidence interval length and confidence region area are also calculated. Our research
topic is related to the asymmetrical probability distributions and applications across disciplines.
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1. Introduction

In lifetime test experiments and reliability analysis, the exponential distribution is
widely used in modelling the lifetime data. Wu [1] proposed a modified one-stage multiple
comparison procedure for comparing exponential location parameters with the control
when the scale parameters are unequal (under heteroscedasticity). Please see Johnson
and Kotz [2], Bain [3], Lawless and Singhal [4] and Zelen [5] for other applications of
exponential distributions. Other than exponential distributions, Shafiq et al. [6] identified
an effective statistical distribution called the modified Kies Frechet (MKIF) model for
examining COVID-19 mortality rates in Canada and the Netherlands. El-Khatib and
Hatemi-J [7] suggested formulas to make the valuation of options and the underlying
hedging strategies during financial crisis more precise. Alzaatreh et al. [8] presented a new
distribution called Weibull–Pareto distribution and the properties of this distribution are
obtained and illustrated by some real data sets.

Now we start to define the upper record value data as follows: let X1, . . . , Xn be a
random sample from a two-parameter exponential distribution. We treated Xj as an upper
record value if Xj > Xl for all l < j. The observed time point for the first upper record value
is denoted as U(0) = 1. Then the observed time point for the nth upper record value is
denoted as U(n), where U(n) = min

{
k : Xk > XU(n−1)

}
. Then

{
XU(0), XU(1), . . . , XU(n)

}
is called the sequence of upper record values of the original sequence {X1, . . . , Xn}. An
analogous definition of lower record values is obtained by changing the sign of ‘>’ to the
sign of ‘<’. In this study, we were only concerned with the case of upper record values.
However, all results should be applicable to the case of lower record values. Record values
data appeared in many real life applications, such as life-tests, weather, sports, economics,
and so on. In the last two decades, many authors had studied the statistical inference based
on the record values. (See for example, Al-Hussaini and Ahmad [9].) For simplicity, we
denote the sequence of upper record values

{
XU(0), XU(1), . . . , XU(n)

}
as {R0, R1, . . . , Rn}.

Since some statistical properties of exponential distribution depend on their two
parameters, the development of the confidence region for two parameters is necessary.
Asgharzadeh et al. [10] proposed interval estimation for the Pareto distribution using
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record values. For the inverse Weibull distribution, Jana and Bera [11] proposed the
interval estimation of multicomponent stress–strength reliability. Wu [12] proposed the
Bayesian interval estimation for the two-parameter exponential distribution based on the
right type II censored sample. Wu [13] proposed the Bayesian interval estimation for the
two-parameter exponential distribution using the progressive type II censored sample. In
this research, we would like to propose the confidence interval of the scale parameter for
two-parameter exponential distribution using the upper record value data. Two methods of
joint confidence region for two parameters are also proposed. The Monte Carlo simulation
method is used to assess the performance of all interval estimation results in terms of the
length of the confidence interval or the area of the confidence region. At last, we give a
biometrical example to illustrate the proposed methods.

2. Interval Estimation and Confidence Region for Two Parameters

At first, we consider a random variable X following a two-parameter exponential
distribution with scale parameter θ and location parameter µ. Its probability density
function (pdf) is given by:

f (x) =
1
θ

exp[−(x− µ)/θ], x ≥ µ, µ > 0, θ > 0.

Its cumulative distribution function (cdf) is given by F(x) = 1− exp(− x−µ
θ ).

Consider the sequence of upper record values {R0, R1, . . . , Rn} following the two-
parameter exponential distribution. From Arnold et al. [14], the joint pdf of {R0, R1, . . . , Rn} is:

f {r0, r1, . . . , rn} = f (rn)
n−1

∏
i=0

f (ri)

1− F(ri)
=

1
θn+1 exp[−(rn − µ)/θ], r0 ≥ µ.

The log-likelihood function can be obtained as:

L(µ, θ) = −(n + 1) ln θ − (rn − µ)/θ.

Since the log-likelihood function is an increasing function of µ, the maximum like-
lihood estimator (MLE) for µ is given by µ̂M = r0. Substituting the MLE of µ into the
log-likelihood function and taking the derivative of the log-likelihood function with respect
to θ, then we have ∂

∂θ L(r0, θ) = − (n+1)
θ + rn−r0

θ2 .
Equating the above equation to zero, then the MLE of θ can be obtained as:

θ̂M =
rn − r0

n + 1
.

After the transformations of Yi = Ri−µ
θ , i = 0, 1, . . . , n, we can obtain a sequence

of upper record values Y0 < Y1 < · · · < Yn from a standard exponential distribu-
tion. Due to the property of being memoryless for exponential distribution, it is ap-
parent that the differences between two successive upper record values will be indepen-
dently and identically distributed (iid) from standard exponential distribution. That is,
Z0 = Y0, Z1 = Y1 − Y0, . . . , Zn = Yn − Yn−1 are independent identically distributed from
standard exponential distribution.

In order to build the interval estimation for parameters, two sets of pivotal quantities
are considered. The first set of pivotal quantities consists of h1(µ, θ) = 2Z0 = 2( R0−µ

θ )

and g1(θ) = 2
n
∑

i=1
Zi = 2(Yn − Y0) = 2 Rn−R0

θ . The distributions for these two pivotal

quantities are independently chi-squared distributed with 2 and 2n degrees of freedom,
respectively. We denote the chi-squared distribution with degrees of freedom v as χ2(ν)
and the F distribution with degrees of freedom v1 and v2 as F(v1,v2). Furthermore, the
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second set of pivotal quantities consists of h2(µ) =
h1/2

g1/(2n) = Z0/2
n
∑

i=1
Zi/(2n)

= n( R0−µ
Rn−R0

) and

g2(µ, θ) = 2
n
∑

i=0
Zi = 2Yn = 2 Rn−µ

θ . The distributions of these two pivotal quantities are

h2(µ) ∼ F(2, 2n) and g2(µ, θ) ∼ χ2(2(n + 1)). The distributions of all pivotal quantities
are not a function of parameters. Utilizing the pivotal quantity g1(θ), we can build the
confidence interval for the scale parameter θ as follows:

Proposition 1. Considering a sequence of upper record values denoted by R0, R1, . . . , Rn following
the two-parameter exponential distribution with parameters θ and µ, the (1− α) 100% confidence
intervals of the scale parameter θ is:2(Rn − R0)

χ2
α
2
(2n)

,
2(Rn − R0)

χ2
1− α

2
(2n)

,

where χ2
α
2
(2n) is the right-tailed α/2 percentile for chi-squared distribution with 2n degrees

of freedom.

Proof of Proposition 1. Since the distribution of the pivotal quantity g1(θ) is g1(θ) ∼ χ2(2n),
we have:

1− α =P(χ2
1− α

2
(2n) < g1(θ) < χ2

α
2
(2n))= P(

2(Rn − R0)

χ2
α
2
(2n)

< θ <
2(Rn − R0)

χ2
1− α

2
(2n)

).

Utilizing the first set of pivotal quantities h1(µ, θ) and g1(θ), we can construct the
confidence region of two parameters in Theorem 1 and it is called Method 1. �

Theorem 1. Considering a sequence of upper record values denoted by R0, R1, . . . , Rn following the
two-parameter exponential distribution with parameters θ and µ, the (1− α)100% joint confidence
region of two parameters θ and µ is given by:

µ ∈
(

R0 − χ2
1−
√

1−α
2

(2)
θ

2
, R0 − χ2

1+
√

1−α
2

(2)
θ

2

)
,

where θ ∈

 2(Rn−R0)

χ2
1−
√

1−α
2

(2n)
, 2(Rn−R0)

χ2
1+
√

1−α
2

(2n)

 and χ2
1−
√

1−α
2

(ν) and χ2
1+
√

1−α
2

(ν) represent the right-

tailed 1−
√

1−α
2 and 1+

√
1−α

2 percentile for the chi-squared distribution with ν degrees of freedom.

Proof of Theorem 1. Since the distributions of the first set of pivotal quantities are inde-
pendent and h1(µ, θ) ∼ χ2(2) and g1(θ) ∼ χ2(2n), we have

1− α =
√

1− α
√

1− α
= P(χ2

1+
√

1−α
2

(2) < h1(µ, θ) < χ2
1−
√

1−α
2

(2))× P(χ2
1+
√

1−α
2

(2n) < g1(θ) < χ2
1−
√

1−α
2

(2n))

= P(χ2
1+
√

1−α
2

(2) < h1(µ, θ) < χ2
1−
√

1−α
2

(2), χ2
1+
√

1−α
2

(2n) < g1(θ) < χ2
1−
√

1−α
2

(2n))

= P(R0 − χ2
1−
√

1−α
2

(2)θ/2 < µ < R0 − χ2
1+
√

1−α
2

(2)θ/2), 2(Rn−R0)

χ2
1−
√

1−α
2

(2n)
< θ < 2(Rn−R0)

χ2
1+
√

1−α
2

(2n)
).
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The area for the confidence region based on Method 1 denoted by Area1 is obtained
as follows:

Area1 =

(
χ2

1−
√

1−α
2

(2)− χ2
1+
√

1−α
2

(2)
)(

U2
1 − L2

1
)

4
=
∫ U1

L1

(
χ2

1−
√

1−α
2

(2)− χ2
1+
√

1−α
2

(2)
)

θ

2
dθ,

where U1 = 2(Rn−R0)

χ2
1+
√

1−α
2

(2n)
and L1 = 2(Rn−R0)

χ2
1−
√

1−α
2

(2n)
.

Utilizing the second set of pivotal quantities h2(µ) and g2(µ, θ), we can construct the
confidence region of two parameters in Theorem 2 and it is called Method 2. �

Theorem 2. Considering a sequence of upper record values R0, R1, . . . , Rn following the two-
parameter exponential distribution with parameters θ and µ, the (1− α) 100% joint confidence
region of two parameters θ and µ is given by:

θ ∈

 2(Rn − µ)

χ2
1−
√

1−α
2

(2(n + 1))
,

2(Rn − µ)

χ2
1+
√

1−α
2

(2(n + 1))

,

where µ ∈

R0 − F1−
√

1−α
2

(2, 2n) Rn−R0
n , R0 − F1+

√
1−α

2

(2, 2n) Rn−R0
n

 and F1−
√

1−α
2

(2, 2n) and

F1+
√

1−α
2

(2, 2n) represent the right-tailed 1−
√

1−α
2 and 1+

√
1−α

2 percentile for F distribution with 2

and 2n-2 degrees of freedom; χ2
1−
√

1−α
2

(2(n + 1)) and χ2
1+
√

1−α
2

(2(n + 1)) represent the right-tailed

1−
√

1−α
2 and 1+

√
1−α

2 percentile for the chi-squared distribution with 2(n + 1) degrees of freedom.

Proof of Theorem 2. Since the distributions of the second set of pivotal quantities are
independent and h2(µ) ∼ F(2, 2n) and g2(µ, θ) ∼ χ2(2(n + 1)), we have:

1− α =
√

1− α
√

1− α
= P(F1+

√
1−α

2

(2, 2n) < h2(µ)< F1−
√

1−α
2

(2, 2n))×

P(χ2
1+
√

1−α
2

(2(n + 1)) < g2(µ, θ) < χ2
1−
√

1−α
2

(2(n + 1)))

= P(F1+
√

1−α
2

(2, 2n) < h2(µ) < F1−
√

1−α
2

(2, 2n)), χ2
1+
√

1−α
2

(2(n + 1)) < g2(µ, θ) < χ2
1−
√

1−α
2

(2(n + 1)))

= P(R0 − F1−
√

1−α
2

(2, 2n) Rn−R0
n < µ < R0 − F1+

√
1−α

2

(2, 2n) Rn−R0
n ,

2(Rn−µ)

χ2
1−
√

1−α
2

(2(n+1))
< θ < 2(Rn−µ)

χ2
1+
√

1−α
2

(2(n+1))
).

The area for the confidence region based on Method 2 denoted by Area2 is obtained
as follows:

Area2 =
∫ U2

L2
2(Rn − µ)

 1
χ2

1+
√

1−α
2

(2(n+1))
− 1

χ2
1−
√

1−α
2

(2(n+1))

dµ

= −(Rn − µ)2

 1
χ2

1+
√

1−α
2

(2(n+1))
− 1

χ2
1−
√

1−α
2

(2(n+1))

∣∣∣∣ U2
L2

=
(
(Rn − L2)

2 − (Rn −U2)
2
) 1

χ2
1+
√

1−α
2

(2(n+1))
− 1

χ2
1−
√

1−α
2

(2(n+1))

,

where U2 = R0 − F1+
√

1−α
2

(2, 2n) Rn−R0
n and L2 = R0 − F1−

√
1−α

2

(2, 2n) Rn−R0
n . �
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3. Simulation Study

Using Proposition 1 and Theorems 1–2 (Methods 1–2), the simulated average confi-
dence length and confidence area with the nominal confidence coefficient 1-α = 0.90, 0.95
for n = 1(1)10(10)30, 60 are obtained in Table 1 based on 5000 simulation runs. From Table 1,
we found that the confidence length and confidence area are decreasing when sample
size n is increasing for fixed 1-α = 0.90, 0.95 and increasing when confidence level 1-α is
increasing for fixed n. As for the confidence region, Method 2 has better performance than
Method 1 when n ≥ 2 for 1-α = 0.90 and when n ≥ 3 for 1-α = 0.95 in terms of shorter
confidence area. Therefore, Method 2 is recommended for use for the confidence region of
two parameters when n ≥ 2 for 1-α = 0.90 and when n ≥ 3 for 1-α = 0.95 and Method 1 is
recommended for use only when n = 1 for 1-α = 0.90 when n = 1,2 for 1-α = 0.95. We also
found that the simulation results indicate that all proposed methods can reach the nominal
confidence coefficient.

Table 1. The average length and area for the interval estimation of the exponential distribution with
(µ,θ ) = (0,1) under 1-α = 0.90 and 0.95.

1-α = 0.90 1-α = 0.95

n Length Method 1 Method 2 Length Method 1 Method 2

1 18.9442 5170.463 5672.394 40.1069 28621.48 38499.85

2 5.2178 181.8382 167.7742 7.8828 471.5438 474.2633

3 3.2142 55.4781 50.0454 4.4151 113.3213 106.0673

4 2.4160 29.6365 26.8569 3.1991 54.3921 50.1530

5 1.9952 19.8614 18.1598 2.6003 35.3613 32.5916

6 1.7454 15.3585 14.1663 2.2028 24.9928 23.1242

7 1.5387 12.0971 11.2444 1.9497 19.7239 18.3398

8 1.4171 10.4444 9.7725 1.7536 16.2681 15.2019

9 1.2945 8.9408 8.4128 1.5989 13.7533 12.9117

10 1.2020 7.8545 7.4262 1.4980 12.3047 11.6006

15 0.9339 5.3172 5.109 1.1449 7.9318 7.5936

20 0.7942 4.2413 4.1122 0.9625 6.153 5.9454

30 0.6299 3.1236 3.0579 0.7617 4.4811 4.3750

60 0.4365 2.0251 2.0031 0.5219 2.8227 2.7876

4. A Biometrical Example

In Proschan [15], the data for times between successive failures of air conditioning
equipment in a Boeing 70 airplane are used to illustrate the proposed methods in Propo-
sition 1 and Theorems 1–2. The data are 57,48,74,29,12,70,21,29, 326,59,27,153,26, 386,502.
It is assumed that the data fit an exponential distribution. The sequence of upper record
values are {R0, R1, R2, R3, R4} = {57,74,326,386,502}.

By Proposition 1, the 95% confidence interval for θ is obtained as (50.75695, 408.30731)
with confidence length 357.5504. By Theorem 1 (Method 1), the 95% joint confidence region
for θ and µ is given by:(

57− 0.01274θ < µ < 57− 4.36929θ, 45.77403< θ < 503.66646
)

with area 548,019.8.
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By Theorem 2 (Method 2), the 95% confidence region is given by(
−824.628 < µ < 55.58029, 2(504−µ)

22.52085 < θ < 2(504−µ)
2.716047

)
with area 505,305.9. The confidence

regions for two parameters obtained by Method 1 and Method 2 are plotted in Figure 1.
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From Figure 1, the users can see that the area obtained by Method 2 is smaller than
the one obtained by Method 1. Therefore, Method 2 is recommended for the construction
of the confidence region of two parameters rather than Method 1 for this example.

5. Conclusions

This paper proposed the confidence interval for the scale parameter θ and two methods
for the development of the confidence region of θ and µ for the two-parameter exponential
distribution based on the upper record value data. From the simulation comparison study,
we recommend Method 2 rather than Method 1 for the construction of the confidence
region for two parameters under most cases. We also found that all proposed methods can
reach the nominal confidence coefficient. At last, we employed one biometrical example
to illustrate the application of the proposed interval estimation for two parameters in
this paper.
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