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Abstract: We review the problem of summation for a very short truncation of a power series by
means of special resummation techniques inspired by the field-theoretical renormalization group.
Effective viscosity (EV) of active and passive suspensions is studied by means of a special algebraic
renormalization approach applied to the first and second-order expansions in volume fractions of
particles. EV of the 2D and 3D passive suspensions is analysed by means of various self-similar
approximants such as iterated roots, exponential approximants, super-exponential approximants
and root approximants. General formulae for all concentrations are derived. A brief introduction to
the rheology of micro-swimmers is given. Microscopic expressions for the intrinsic viscosity of the
active system of puller-like microswimmers are obtained. Special attention is given to the problem of
the calculation of the critical indices and amplitudes of the EV and to the sedimentation rate in the
vicinity of known critical points. Critical indices are calculated from the short truncation by means
of minimal difference and minimal derivative conditions on the fixed points imposed directly on
the critical properties. Accurate expressions are presented for the non-local diffusion coefficient of a
simple liquid in the vicinity of a critical point. Extensions and corrections to the celebrated Kawasaki
formula are discussed. We also discuss the effective conductivity for the classical analog of graphene
and calculate the effective critical index for superconductivity dependent on the concentration of
vacancies. Finally, we discuss the effective conductivity of a random 3D composite and calculate the
superconductivity critical index of a random 3D composite.

Keywords: Critical Indices; Effective Viscosity; Sedimentation Rate; Shear Modulus; Non-local
Diffusion; Self-similar approximants; Effective Conductivity; Classical Analog of Graphene

1. Introduction

Real physical systems can almost never be studied in terms of exact solutions to
their governing dynamics. However, it is often possible to find asymptotic expansions
of solutions in the vicinity of some characteristics to the problem boundary points. The
ultimate goal is to construct a good approximation for the sought function, representing the
solution to the problem, valid on the whole domain of its variable(s), having as an input
only its asymptotic behavior near the boundaries. A typical complication is associated with
availability most often, only of a few terms of the asymptotic expansions.

Sometimes, we have to derive asymptotic power laws that are ubiquitous in nature.
Sometimes, following Feynman, one would attempt to estimate in a given order the result
for the expansion coefficient(s) without the brute force evaluation. Sometimes the general
structure of the expansion can only be guessed. Many instances of such problems were
discussed in the books [1–4]. Most recently, the disordered hyperuniform composites were
reviewed in [5].

The transport coefficients in random and regular media could be expressed as ex-
pansions in a concentration of particles f . Despite persistent efforts of such outstanding
researchers as Einstein, Batchelor, Brady, Jeffrey, Milton, McPhedran, Torquato, Wajnryb
and Mityushev, most recently, the problem still exists of finding long enough and correct
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expansions. When it is only possible to find short truncated series, their true value may
still need clarification. Such expansions are relevant for small f .

The transport coefficients such as effective viscosity, permeability, sedimentation rate,
elastic moduli, effective diffusion coefficients and conductivity behave critically when
approaching critical points in concentration. The relation between the two types of ex-
pressions is difficult to establish. However, it has to be looked for if the ultimate goal of a
complete understanding of the whole region of concentrations is to be achieved.

The problems of finding critical indices for the effective transport properties are
decidedly non-universal, meaning that there is no simple formula and (or) explanation of the
value. This is in sharp contrast with the theory of critical phenomena in thermodynamics,
where the critical indices are universal [6], meaning that the formulas exist, covering
different physical systems and explaining the indices in terms of spatial dimension and
number of components of the order parameter. Thus, for transport properties, the challenge
consists in developing the solution in each and every case separately, almost from scratch,
when existing methods fail.

However, certain universality exists in the methodology. In all cases, we have a short
expansion in concentration f of particles (or close in meaning) for small f . On the other
side of high concentrations (or equivalent), we are aware of the power-law behavior. In
some cases, the critical properties have to be calculated from the expansions on the other
end. In some cases, the two asymptotic tails are known, and we have to merge them into a
single formula. The location of criticality is also known from geometrical considerations
most often, or the power-laws can be attributed to infinity. Another common salient feature
is the shortness of the expansions and ensuing paucity of coefficients in the expansions.

To approach the problem, we had to master or even develop some special tools for the
two closely related problems, such as

(1) The derivation of critical properties, such as indices and amplitudes from the short
truncated versions of the putative complete expansions for the effective quantities, or
critical problems;

(2) Approximation methods for deriving formulas from the sought quantities from their
known asymptotic expressions, or crossover problems.

Thus, the main goal is to attack the group of problems, including critical behavior of
the effective transport properties and develop special methods for their solution. All the
systems and critical problems considered in the review are being studied extensively and
are important on their own merits. However, putting them together and analyzing them by
similar methods is intended to stress their commonality. Of course, the commonality is due
to the interactions between inclusions taken into account in low orders, as well as criticality
arising at some common geometrical threshold.

In Sections 2 and 3, we discuss the effective viscosity (EV) of random, active and
passive suspensions by means of a special algebraic renormalization approach. It is applied
to the first and second-order expansions in volume fractions of particles suggested by
Einstein, Batchelor et al. The EV of the two-dimensional and three-dimensional passive
suspensions is analyzed by means of various self-similar approximants.

A brief introduction to the rheology of micro-swimmers is given. Microscopic ex-
pressions for the intrinsic viscosity for the active system of puller-like micro-swimmers
are obtained. It turned out that the methods developed for passive suspensions could be
applied to the active system of the pullers. For active systems, we have to actually solve the
two crossover problems in a row. The first is with respect to their activity, and the second
of interpolation between the two concentration regimes.

In Section 4, special attention is given to the problem of calculation of the critical
indices and amplitudes of the shear modulus of random elastic composites.

In Section 5, we consider the sedimentation problem and discuss the sedimentation
rate in the vicinity of critical points. Critical indices are calculated from the short truncation
by means of minimal difference and minimal derivative conditions imposed directly on the
critical properties.
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In Section 6, crossover expressions are presented for the non-local diffusion coefficient
of a simple liquid (another random system) in the vicinity of a critical point, dependent on
the wave-number of density fluctuations in the liquids. Extensions and corrections to the
celebrated Kawasaki formula are discussed.

In Section 7, we discuss the effective conductivity for the classical analog of graphene
with the random addition of vacancies and calculate the effective critical index for super-
conductivity dependent on the concentration of vacancies.

Finally, in Section 8, we discuss the effective conductivity of a random 3D composite
with perfectly conducting spherical inclusions and calculate the superconductivity critical
index of such a random 3D composite.

Methods required in the course of the analysis are discussed when necessary and to the
extent required. Relevant references are always given for more details to be learned. Since
no one can cover the immense subject in its completeness, the presentation will be anchored
to the topics most familiar to the author. Only a few problems of transport coefficients
where short truncations are known for quite some time or were obtained only recently,
were analyzed in regard to their critical properties or crossover behavior. However, they
are all of significant interest in the theory of composites, suspensions and simple liquids.
New methods developed for critical and crossover phenomena bring new insights to the
effective transport coefficients.

The four effective transport coefficients, such as effective viscosity, sedimentation rate,
elastic modulus and effective conductivity, are the most popular in the field of effective
properties of composite media and suspensions. A similar problem of non-local diffusion
coefficients is one of the central points for research in the theory of simple liquids.

However, there are some other important problems, including criticality in various
contexts. Permeability in wavy channels also behaves critically or demonstrates a power-
law behavior. Several examples of the effective permeability in wavy channels can be found
in [7]. The rather long truncated series is given in terms of waviness [4]. Their analysis is
more traditional since one can observe a good numerical convergence for the critical indices
and amplitudes for the effective permeability. Striking power-laws were also discovered in
the gap sensitivity in optimized photonic crystal and disordered networks as the function
of the dielectric contrast [8]. The diffusion process in complex media is found to exhibit
different regimes, including power-laws, dependent on the length scale [9].

2. Viscosity of Passive Suspensions

Keep in mind that in isotropic Newtonian fluid viscosity, µ0 is a scalar quantifying the
rheology of the fluid, establishing the relation between the macroscopic strain-rate eij and
stress σij in the fluid. The effective interactions among the colloidal particles in suspensions
are described almost perfectly by the hard-spheres model. The phase behavior of hard
spheres includes liquid, crystal, and metastable states, with associated phase transitions
and crossover.

Thus, hard-sphere fluid is the simplest and most widely used reference model for
describing the behavior of real fluids and concentrated colloidal suspensions. The par-
ticles (colloids) can be viewed as large atoms. There is an understanding that the hard
spheres equation of state, as well as various effective transport properties, may be ex-
tended smoothly, avoiding the first-order freezing transition to describe the metastable
fluid branch. In the most interesting three-dimensional case, the metastable branch ends at
its first singularity at a random close packing (RCP) volume fraction fc [4,10].

The fundamental idea of Einstein (1906) was to quantitatively express the notion that
the viscous energy dissipation rate of the suspension must be equal to the dissipation rate
of the effective homogeneous fluid. Such a condition leads to the definition of the effective
viscosity applicable for any volume fractions up to the threshold where lubrication forces
dominate [11]. Such an approach naturally includes both passive and active suspensions
of cells and bacteria considered in the subsequent Sections 2 and 3. The effective viscosity
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could be measured experimentally and may become negative in open bacterial systems as
well [12].

While our main interest is in the most physically and biologically relevant case of three-
dimensional (3D) suspensions, models of two-dimensional (2D) suspensions can serve as
important additional tests of our method. Furthermore, understanding the rheological
properties of 2D suspensions may carry considerable importance for the understanding of
the function of lung surfactant monolayers, even in developing possible treatments, since
the divergent surface viscosity plays a crucial role in breathing [13,14].

Since both two-dimensional and three-dimensional contributions to the viscosity are
present for thin films [15], the importance of studying idealized 2D systems is apparent.
Thus, we first review the case of the 2D suspensions of impenetrable hard disks immersed
in a fluid of viscosity µ0.

2.1. Effective Viscosity of 2D Passive Suspensions

The effective viscosity problem can be approached as a peculiar critical phenomenon.
The expansion of effective viscosity in the volume fraction of hard disks f = πr2n, where r
is the disks radius and n is the number density of particles, is available theoretically only
up to the first-order term as f → 0 [16,17],

µ( f )/µ0 ' 1 + 2 f , (1)

where µ0 is the viscosity of the solvent. Clearly, such truncation is not sufficient to develop
any meaningful and consistent approach to high-volume fractions. We have to recognize
that, in addition, there is a critical point characterized by a power-law divergence of the
viscosity in the vicinity of the maximum volume fraction value fc =

π√
12
≈ 0.9069,

µ( f )/µ0 ' A( fc − f )−S , f → fc. (2)

The value of the critical exponent for viscosity S ≈ 4/3 has not been explained theoretically
but is known experimentally [18,19]. The value of critical amplitude A has to be estimated
in the course of calculations. From simulations with soft disks in two dimensions, using
a bi-disperse mixture with equal numbers of disks of two different radii, it is found that
S = 1.7± 0.2 [20].

In our approach to the derivation of the analytical expressions for the effective viscosity
of 2D suspensions, we are going to employ the renormalization group (RG)-inspired
technique of [21]. The next component of our approach in our manipulations is to dwell
on the intuition of the great scientists. Feynman thought to avoid tedious calculations if
possible and replace them with rather simple but direct estimates for the coefficients in the
perturbative theories.

A couple of analytical expressions for the effective viscosity have been developed over
the years. Here, we include several that we find the most useful for comparison with the
results derived in this paper. The most often used is the well-known Krieger–Dougherty
(KD) equation, applicable in 2D as well as in 3D.

µ( f )/µ0 =
(

1− f
fc

)−a1 fc
. (3)

This is a crossover expression that links polynomial and power–law behaviors at opposite
ends of the concentration interval. It can be written explicitly as

µ( f )/µ0 = (1− 1.10266 f )−1.8138,

so that one can note that the critical exponent from (3) is much larger than 4/3 but is more
compatible with [20].
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As the benchmark, we will also use the 2D variant of the simple crossover equation
suggested in [11]

µ( f )/µ0 =

(
1− f

fc

)−S(
1− q

f
fc

)
, (4)

where q = S − a1 fc. From (4), one can evaluate the second-order coefficient in the expansion
a2 = 2.67023, as well as the critical amplitude A = 1.2996.

The main shortcoming of the renormalization group method employed in [22] is that
the authors only use a perturbative theory for small f and exclude critical point behavior.
Below, we specialize the formulae to

Φ = µ, x = f , xc = fc,

with the critical index denoted by β = −S . By definition, in the vicinity of the critical point,
Φ has the following asymptotic behavior as x → xc

Φ(x) ' A(xc − x)β, (5)

where A is the critical amplitude.
The critical exponent β is the limit x → xc of the effective critical exponent β(x)

defined in a neighborhood of xc:

β(x) = (xc − x)
d

d(xc − x)
ln Φ(x). (6)

Let us note that with help of the Euler transformation,

z(x) =
x

xc − x
, x(z) =

xcz
1 + z

, (7)

the critical behavior can always be moved to infinity.
If we define a new quantity Ba(x) = ∂x log(Φ(x)), then

β(x) = (x− xc)Ba(x).

On the other end of the interval at small x the function Φ has a polynomial truncation,
with the k-th order approximant given by the series

Φk(x) = 1 +
k

∑
n=1

anxn, (8)

with integer k ≥ 1. In the k-th order effective exponent can be defined here analogously by

βk(x) = −(xc − x)
d

dx
ln Φk(x), (9)

which, for k = 1, has an explicit expression valid for small x,

β1(x)
x− xc

' a1. (10)

One would strive to extend β(x) to the whole interval [0, xc). To such an end, one can
derive a self-similar approximation [21,23], for the effective critical exponent β∗k(x). It
should also be taken into account that

β∗k(x)→ β, x → xc. (11)

The value of β may be assumed to be known in advance, and its value is finite. However, it
can be calculated as well from the expansion at small x.
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Finally, from the knowledge of β∗k(x) one can approximate the sought function, Φ∗k (x),
by integrating (6), obtaining

Φ∗k (x) = exp
∫ x

0
dX

β∗k(X)

X− xc
. (12)

The critical amplitude A can be evaluated from (12) as

A = lim
x→xc

Φ∗k (x)(xc − x)−β. (13)

The formal method of self-similar approximants may, in general, lead to multiple
solutions to β∗ and, hence, to Φ∗. Indeed, the formally constructed fixed point depends
on unknown exponents and amplitudes, which parametrizes the most general expression
for β∗k . With sufficiently many terms in the perturbative expansion, it may be possible to
determine the parameters uniquely by selecting them so that all the ak, as well as the critical
threshold and exponent, are reproduced. When only low-order expansions are at our
disposal, as is frequently the case, additional choices have to be made to select appropriate
parameter values for self-similar approximants.

The most frequently used here are what we refer to below as the root, iterated root,
factor, and super-exponential approximants [3,4]. Some precise definitions of the relevant
constructions will be given a bit later in Section 2.1.1. For convenience, most important
notions will be collected in the Nomenclature section. However, we think that for many
simpler cases have been discussed in the first order of perturbation theory, and even in
the more advanced second-order, emerging formulas are transparent enough and are
self-explanatory. In our opinion, a clever researcher could have guessed them if needed.

It is important to be able to make the extrapolation by several methods and then
compare the results. If these results yield close values, this suggests that the extrapolation
(or interpolation) is reliable.

In line with this idea, we employ the self-similar approximants within the single
framework and strive to show that they are close to each other. The latter observation
would indicate that the basic approach is robust and not overly sensitive to the uncertainty
arising from working with small-concentration expansions or incomplete knowledge of the
critical point.

We refer to our own results as obtained by the Algebraic renormalization method
(ARM). ARM dwells on studying and drawing conclusions from various expressions for
the effective critical index (β-function) in the lowest orders of perturbation theory.

Using a change in variables z = fc − f and the simplest root approximant [24],
one can obtain the simplest expression for the effective critical index from the first-order
perturbative expansion:

β∗1,1( f ) = −z0( fc − f )
(

1 + z1
1

fc − f

)
, (14)

where
z0 = a1 −

S
fc

, z1 =
S
z0

.

This is a linear expression, which after integration of (12) with β∗1 = β∗1,1 yields the following
formula

µ∗1,1( f )/µ0 = exp(z0 f )
(

fc

fc − f

)S
=

π4/3

2 3
√

232/3
e
(

2− 8√
3π

)
f
(

1
π

2
√

3
− f

)4/3

. (15)



Symmetry 2022, 14, 1912 7 of 42

Asymptotically close to the critical point, we recover a power-law, while at small concen-
trations, the exponential term dominates. The second-order coefficient and the critical
amplitude are easily evaluated from (15) and found to be

a2,1 = 2.81, A1,1 = 1.419.

One can also look for the solution in the form of an iterated root. Iterated roots of the type

β∗1,2( f ) = a1

(
(1 + v1 f )2 + v2 f 2

)−1
( f − fc), (16)

were designed to find all the parameters iteratively (see [25] and Section 2.1.1 for a complete
definition of iterated roots) in such a way that

(1 + v1 fc)
2 + v2 f 2

c = 0, (17)

so that

v1 =
a1

2S −
1
fc

, v2 = −
a2

1
4S2 . (18)

The result of integration can be expressed in closed form by means of a simple formula

µ∗1,2( f )/µ0 =

(
1 +

b f
fc − f

)S
, (19)

where b =
√

3π
4 . The intermediate expressions occurring in the course of integration

are not shown here. They are rather cumbersome [21], but the simple formula can be
established through the direct comparison of the expansions in arbitrary order. From the
expression (19), we easily analytically evaluate

a2,2 = 2.705, A1,2 = 1.323,

again, larger than what follows from (4).
However, one can also try to approximate the effective index by the following simple

exponential approximant [26],

β∗1,3( f ) = −a1 fc exp(τ f ), (20)

where τ is obtained from the condition β∗1,3( fc) = −S .
In this case, the effective viscosity can be written using an exponential integral

Ei(x) =
∫ x

−∞

(
et/t

)
dt,

so that
µ∗1,3( f )/µ0 = 2.718281.33333(−Ei(0.339334(0.9069− f ))−0.268144). (21)

Directly, one can obtain the second-order coefficient in the expansion and the amplitude.
It equals

a2,3 = 2.763, A1,3 = 1.369.

Let us also try to estimate the third-order coefficient, assuming that a2 = 2.75, the value
chosen between the three estimates for the second-order coefficient just derived above.
Note that one is not obliged to include the trivial zero-order term into the resummation
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directly, but simply can leave it outside and just re-use the results of ARM. Then, there are
two simple expressions for EV, which respect one exact and one calculated coefficient,

µ∗2,1( f )/µ0 = 1 + 2 f exp(b1 f )
(

1− f
fc

)−S
= 1 + 2e−0.0952104 f f

(
1− 2

√
3 f

π

)−4/3

. (22)

It generates the third-order coefficient in the expansion and the critical amplitude

a3,1 ≈ 3.51, A2,1 ≈ 1.46.

Based on the same idea, the second expression of such type can be readily written down,

µ∗2,2( f )/µ0 = 1 + 2 f
(

d1 f
fc− f + 1

)S
= 1 + 2 f

(
0.93524 f

π
2
√

3
− f + 1

)4/3
. (23)

It generates the corresponding third-order coefficient in the expansion and the critical ampli-
tude

a3,2 ≈ 3.5, A2,2 ≈ 1.46.

In the above expressions, unknown coefficients b1 and d1 are found from asymptotic
equivalence with the truncated expansions.

Finally, using the third suggested form of the β-function (20), we find after the same
shift yet another expression in terms of the incomplete gamma function,

µ∗2,3( f )/µ0 = 1 + 0.107521 f e1.33333Γ(0,0.0669518−0.0738249 f ). (24)

Formula (24) produces the third-order coefficient in the expansion and the critical amplitude

a3,3 ≈ 3.51, A2.3 ≈ 1.

All of our above solutions work well compared with the numerical data up to f = 0.25.
For example, at f = 0.25, (15) predicts the EV of 1.75 against numerical 1.8, with similar
accuracy for smaller f . However, one should take into account that it is a much smaller
value for maximum volume fraction fc = π/4 used in computations of [27], which are
available up to f = 0.25. The numerical agreement is expected to become better when the
higher threshold is used.

Another convenient expression for the effective viscosity can be suggested by directly
applying the factor approximant,

F ∗( f ) =
(0.228655 f + 1)2.31698

(1− 1.10266 f )4/3 , (25)

with the third-order expansion coefficient and the critical amplitude

a3 ≈ 3.44, A ≈ 1.36,

appearing close to the other estimates. In general form, the factor approximants will
be presented a bit later in the (34). However, it is quite straightforward to observe that
formula (25) is a multiple of two factors, each of them being the simplest root-form [3,23].

Thus, in the 2D passive case, we suggest, for instance, formula (23) for the whole range
of concentrations. The predictions of the formula are in good agreement with the results of
direct numerical simulation [27]. We also estimated the second-order expansion coefficient,
the third-order expansion coefficient and the critical amplitude,

a2 ≈ 2.75, a3 ≈ 3.5, A ≈ 1.46.
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In comparison, in [28], a slightly larger result for the second-order coefficient is obtained.
It was found that a2 = 3.6 by extrapolation from the confined geometry for athermal
disks. Such a difference in a2 with our estimates is to be expected since, in our study, we
do not specify the strength of thermal fluctuations but draw additional information from
high-concentration limits, where thermal and athermal cases look very similar.

To check the consistency of such estimated values for a2, a3, let us try to estimate the
critical index along the different route, as suggested in [29,30]. Assume also that in the
vicinity of a threshold,

µ ∼ ( fc − f )−1−v,

with unity to be expected as the usual contribution from the radial distribution function at
the particle’s contact G(2, f ), [29,30], and the value of v coming from the hydrodynamic
interactions in the suspension. With the total value of the critical index S ≈ 4/3, we expect
that v ≈ 1/3. One can suggest, for the effective viscosity, a simple root approximant

R(z) = 1 + b1z(1 + b2z)−v, z =
f

fc − f
,

which, by design, takes the unity contribution into account. After imposing the asymptotic
equivalence with the polynomial

µ3( f ) = 1 + 2 f + 2.75 f 2 + 3.5 f 3,

in the third-order, we find

µ∗( f )/µ0 = 1 +
1.8138 f

(
0.689576 f
0.9069− f +1

)0.358173

0.9069− f , (26)

with an estimated value for S ≈ 1.358, reasonably close to expected. The amplitude could
be estimated from (26) as well, bringing A ≈ 1.39.

2.1.1. Comment on Critical Index and Diff-Log Borel Summation

Consider the case when Φ has the following asymptotic behavior as x → ∞

Φ(x) ' Axβ, (27)

Furthermore, let the critical index β be known in advance. One can also calculate the critical
amplitudes using the method of self-similar Borel summation introduced in [31]. Mind that
the problem of critical behavior with a finite threshold (2) can always be mapped to the
problem (27) by applying Euler transformation (7), or similar, as in (57).

The Borel summation method could be devised through the Borel transform ,

Bk(x) =
k

∑
n=0

an

Γ(1 + n)
xn . (28)

The intention here is to simplify the problem by removing the superficial factorial growth of
the coefficients an. Working on the transformed series with some other approximants may
bring about more accurate results. However, returning to the original problem is not so
easy. To perform an inverse transformation, one should compute the integral numerically.
However, recently, some progress was achieved in [31,32], allowing us to find analytical
expressions for the critical amplitude A and index β. In the case of the Borel summation,
one can easily avoid numerics and use only formulas. Calculations are particularly easy to
perform with the iterated root approximants.
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Summing up the truncated series Bk(x, u) by means of iterated self-similar root ap-
proximants [3,4,32] yields the approximant

B∗k (x) =

(((
(1 + P1x)2 + P2x2

)3/2
+ P3x3

)4/3
+ . . . + Pkxk

)β/k

. (29)

The inverse Borel transformation

Φ∗k (x) =
∫ ∞

0
e−tB∗k (tx) dt , (30)

gives the approximation Φ∗k (x) for the sought function Φ(x). At large values of x, func-
tion (30) is expressed as follows,

Φ∗k (x) ' Akxβ (x → ∞) , (31)

where the critical amplitude
Ak = Ck Γ(1 + β). (32)

The marginal amplitude Ck

Ck =

(((
P2

1 + P2

)3/2
+ P3

)4/3
+ . . . + Pk

)β/k

, (33)

follows from the definition of iterated root.
One can also apply for the purpose of the Borel summation the self-similar factor

approximants [3,4] in the form

B∗k (x) =
Nk

∏
j=1

(1 + Pjx)
nj , (34)

where

Nk =

{
k/2 , k = 2, 4, 6, . . .
(k + 1)/2 , k = 1, 3, 5, . . .

. (35)

The condition on the exponent

β =
Nk

∑
j=1

nj.

should be respected as well. For the factor approximants, marginal amplitude for the
transformed series is given by the expression

Ck =
Nk

∏
j=1
Pnj

j , (36)

Calculations could be performed with relative ease using formulas, strictly following
the structure of the example presented in (Section 7, [31]). To the Borel-transformed series,
we apply factor or iterated root approximants and simply find the leading term at infinity,
behaving as a power law. The power calculated in such a manner is nothing else but the
sought critical index [31].

As for the amplitude, it consists of the critical amplitude of the factor approximants
applied to the transformed series, scaled by a Gamma-function appearing in the course of
inverse transformation and dependent only on the found critical index [31]. Thus we find
S ≈ 1.245, A ≈ 1.518.
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With the value of the critical index fixed to 1.3 and factor approximants given by (34),
we can recalculate A ≈ 1.417 by using the same method of self-similar Borel summation
[31]. If, instead of a factor approximants, we employ iterated roots, the result remains
quite close, i.e. A ≈ 1.433. In both situations, we observed reasonably good numerical
convergence to the quoted numbers.

Critical indices can also be found by using the techniques developed for critical
amplitudes. Let us deal now with a function with power-law asymptotic behavior

Φ(x) ' Axβ (x → ∞).

The critical exponent can be expressed as a diff-log function of the limit

β = lim
x→∞

x
d

dx
ln Φ(x) ≡ lim

x→∞
xψ(x), (37)

where ψ(x) ≡ d
dx ln Φ(x), as shown, e,g., in the books [3,4].

When the small-variable expansion for the original function is given by the sum Φk(x),
we can find the small-variable expression for the diff-log function ψ(x),

ψk(x) =
d

dx
ln Φk(x), (x → 0),

which can be expanded in powers of x, leading to the truncated series

ψk(x) =
k

∑
n=0

dnxn . (38)

However, for x → ∞, we find that simply

ψ(x) ' β xδ,

where the “ critical amplitude” is the sought critical index β, and the “critical index” is
fixed to δ ≡ −1 to make the limit (37). We can also apply the technique of iterated roots
described above for the critical amplitudes and calculate the critical index β. Then, it
remains to simply apply the methods to be developed to calculate also the critical index
β. However, the case of δ = −1, appears to be divergent, or indeterminate, when treated
by the self-similar Borel summation technique of [31]. In such cases, some other types
of summation could be used, similarly to in the paper [32]. Such summations, called
Borel–Leroy and Mittag–Leffler summations, include some control parameters [32]. The
parameters could be found from the minimal-difference, or minimal derivative conditions
imposed on critical amplitudes [4].

There is also some simple way to avoid divergence. Let us consider an inverse,

ψ(x)−1 ' γ x−δ.

With such a critical index, there is no divergence in the formulas of [31]. Now the value
of critical amplitude γ can be found following [31]. After resummation, say with iterated
roots [32], we will arrive at the resummed amplitude γ∗, and

1
γ∗
≡ β∗,

where β∗ gives the sought value of the critical index β.
The technique just discussed can be readily applied to the case of critical index S . The

first-order iterated root properly conditioned at infinity gives S1
∗ ≈ 1.374, while in the

second-order S2
∗ ≈ 1.39. Application of the second-order factor approximant leads to the

estimate very close to the latter value.
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Both methods of Borel summation [31,32], also explained in Section 2.1.1, especially
with iterated roots, are very easy to work with since the computations are performed on
explicitly given formulas.

2.1.2. Comment on Critical Index and Elasticity-Viscosity Analogy

Consider special 2D composite material with an incompressible matrix and perfectly
rigid, incompressible inclusions. It represents an elastic analog of the viscous suspension [4].

The snapshot of a random media studied below is displayed in the book [4]. Lengthy
but straightforward Monte-Carlo computations result in the polynomial formula for the
effective viscosity of 2D random suspension valid for small f ,

µe

µ0
' 1 + 2 f + 2 f 2 + 3.81137 f 3 + 8.27305 f 4 + 5.33447 f 5 + 20.5096 f 6. (39)

The elasticity-viscosity analogy, in principle, allows us to take into account all elastic &
hydrodynamic interactions between inclusions and map them into effective interactions of
the pairs, triplets, etc. of groups of the inclusions. Of course, there is no trace of a Brownian
motion in such an approach. On the other hand, less sophisticated estimates by ARM
presented in the main body of the section allows us to potentially take them into account
indirectly.

Application of the self-similar Borel summation with factor approximants from Section
2.1.1, generates single real, non-trivial estimates in the third-order of the perturbation theory,
S3
∗ ≈ 1.073. The higher-order estimates produce only non-physical, complex solutions.

Application of the diff-log Borel summation with iterated roots and inverse transformation
discussed in Section 2.1.1 brings again only a single non-trivial estimate in, de-facto, the
same order, S1

∗ ≈ 1.301. Again, only complex results are generated in higher orders.
Let us employ the Euler transformation (7),

z( f ) =
f

fc − f
, f (z) =

fcz
1 + z

.

In terms of the transformed variable, let us construct the iterated root approximants
introduced in Section 2.1.1,

R∗k (z) =
(((

(1 + P1z)2 + P2z2
)3/2

+ P3z3
)4/3

+ . . . + Pkzk

)Sk/k

, (40)

and define the parameters Pj from the asymptotic equivalence with the original truncated
series for the effective viscosity. This gives the large-z asymptotic form

R∗k (z) ' AkzSk (z→ ∞) , (41)

where the amplitudes Ak = Ak(Sk) are

Ak =

((
(P2

1 + P2)
3/2 + P3

)4/3
+ . . . + Pk

)Sk/k
. (42)

In order to calculate the critical index S , we analyze the differences for the critical
amplitudes in k-th order, as prescribed in [4,33],

∆kn(Sk) = Ak(Sk)− An(Sk) . (43)

The control parameters are defined as the solution to the minimization problem

| ∆kn(Sk) |= minS | ∆kn(S) | .
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The results of calculations are presented in Table 1. As shown in [4], the most reason-
able estimate for the index equals S = 1.26± 0.09,

Table 1. Critical indices for the viscosity Sk obtained from optimization conditions on ∆kn(Sk).

Sk ∆k+1(Sk) = 0 ∆k6(Sk) = 0

S1 0.907 1.37
S2 n.a n.a
S3 n.a 1.19
S4 1.23 1.317
S5 1.16 1.16

The latter value for the index appears to be compatible with the experimentally found
number 1.24, quoted in the book [1], justified by the elasticity-viscosity analogy [4]. It is
smaller than the otherwise measured value of 1.3 since only an elastic (hydrodynamic)
contribution to the index is considered. Currently, we are not aware of the consistent
estimates for the contributions from the 2D Brownian motion, unlike in the 3D case to be
discussed in what follows.

2.2. 3D Viscous Suspensions

We now apply the ARM method to the case of passive suspensions of spherical
particles. The effective viscosity of random suspensions of the hard spheres with the stick
boundary condition is always of great interest, as the researchers strive for a long time to
obtain an accurate and compact formula for arbitrary concentrations. The expansion in
the volume fraction of hard spheres f = 4

3 πr3n, where r is the spheres radius and n is the
number density, is available up to the second-order term as f → 0:

µ( f )/µ0 ' 1 + a1 f + a2 f 2 , (44)

and for non-interacting hard spheres, the result a1 = 5/2 is due to Einstein (1906).
Finding the second-order coefficient turned out to be a great challenge. Batchelor [34]

found that a2 = 6.2, and Wajnryb and Dahler [35] obtained a2 = 5.9147. The result for
a2 takes into account the two different mechanisms. It consists of the hydrodynamic
contribution ≈ 5, with the addition of the smaller contribution from the Brownian motion
of the order of unity. We tend to use Batchelor’s estimate. However, we will also recall
the Wajnryb and Dahler estimate when required. The effective shear viscosity behaves
critically,

µ( f )/µ0 ' A( fc − f )−S , f → fc. (45)

The threshold here corresponds to the random closest packing of hard spheres at fc ' 0.64.
The value of the critical exponent for the viscosity in 3D, S ' 2 can be satisfactorily deduced
both theoretically and experimentally [19,29].

For practical purposes, for three-dimensional situations, even with varying threshold
values and model assumptions, it was suggested to consider such divergence as a universal
power-law with the value of S = 2 [36].

2.2.1. First-Order Interpolation

Thus, near the critical point, the EV in the 3D case has a divergent behavior (45), with
β = −S . At the other end of the interval for small f , it is expressed as the second-order
polynomial. Let us proceed similarly to the 2D case studied above and in accordance with
the paper [21], where more technical details could be looked up. Our primary target is a
subsequent application to the case of active suspensions in Section 3 since in that case, only
first-order information is available.
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In addition to β1(x), we are now able to construct in the next Section 2.2.2 β2(x). For
k = 1 and small x, we have an explicit expression (10),

β1(x)
x− xc

' a1.

In terms of the variables z = fc − f , one can easily obtain the simplest expression for the
effective viscosity [24],

µ∗1,1( f )/µ0 = exp(z0 f )
(

fc

fc − f

)S
=

0.4096e−0.625 f

(0.64− f )2 . (46)

One can also look for the β-function in the form of an iterated root

β∗1,2( f ) = a1

(
(1 + v1 f )2 + v2 f 2

)−1
( f − fc), (47)

where

v1 =
a1

2S −
1
fc

, v2 = −
a2

1
4S2 .

After integration in (12) with β∗1 = β∗1,2, we arrive, after some transformations, at the
surprisingly simple explicit solution:

µ∗1,2( f )/µ0 =

(
1 +

0.8 f
0.64− f

)2
. (48)

Another way to approach the problem is simply to approximate the effective index by
the exponential approximant [26],

β∗1,3( f ) = −a1 fc exp(τ f ), (49)

where the control parameter τ has to be obtained from the condition

β∗1,3( fc) = −S ,

In this case, integral (12) can be written in the general form

µ∗1,3( f )/µ0 = exp(a1 fc exp(τ fc))(Ei(τ( fc − f )− Ei(τ fc))) (50)

Directly from the expressions (46), (48), (50), one can plausibly estimate the second-order
coefficient in the expansion. It equals, respectively,

a2 = 5.566, a2 = 5.469, a2 = 5.514.

2.2.2. Second-Order Interpolation

Let us now consider the second-order approximation to the effective critical index,

β2(x)
x− xc

' a1 + (2a2 − a2
1)x (k = 2). (51)

Transformation of the independent variable. In the paper [21], the following expression
for the effective critical index in the form of a second-order iterated root [25],

β∗2( f ) = −g0( fc − f )
(
(1 + g1

1
fc − f

)2 + g2(
1

fc − f
)2
)1/2

, (52)

was suggested. The parameters should follow from the asymptotic equivalence in the
region of small f as well as from the critical regime. In general form, iterated roots are
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given by formula (40). Numerical analysis of the integral (12) for effective viscosity allows
us to find the critical amplitude, A = 0.342.

Iterated Root. However, another expression was suggested in [21]

β∗2( f ) = −a1( fc − f )
(
((1 + k1 f )2 + k2 f 2)3/2 + k3 f 3

)−1
, (53)

utilizing the higher-order iterated root [25]. Imposing the condition on critical points
together with usual asymptotic conditions, one can obtain all parameters in (53) explicitly.
Again, the EV is given numerically by the integral (12). One can also find the corresponding
critical amplitude, A = 0.398.

Super-exponential and root approximants. One can also construct the so-called super-
exponential approximant [26],

β∗2( f ) = −a1 fc exp(τ1 f exp(τ2 f )), (54)

as shown in [21]. The parameters τ can be found in [21]. After numerical integration (12),
one can find A = 0.34.

Similarly, but using a root approximant [3,24]

β∗2( f ) = −a1 fc(1 + P1 f )m, (55)

with

m = 0.134, P1 =
(2a2 − a2

1) fc − a1

fca1m
,

after integration (12), one can then find the critical amplitude A = 0.309.
Averaged approximants. A different approach to the second-order problem could be

based on pairwise weighted averages of the expressions obtained in the first-order, such as
(46), (48), (50). In total, three such pairs are available. For example,

µ∗∗1,2( f ) = p1µ∗1,1( f ) + (1− p1)µ
∗
1,2( f ). (56)

The weight p1 is determined through the asymptotic condition on the second-order coeffi-
cient a2. By analogy, one obtains µ∗∗1,3 and µ∗∗2,3. Averaged approximants will be employed in
Section 3.

2.2.3. Factor Approximants and Estimates for the Critical Index

As explained in the paper [21], one can take into account some additional proposition
on the expansion at small f for finite-size systems [37] by means of the following variables
transformation

z =
( f / fc)1/2

1− ( f / fc)1/2 (57)

which admits an inverse

f = fc
z2

(1 + z)2 .

The factor approximant is then obtained from the trial expansion in the parameter f 1/2,

F ∗( f ) =

(
1 + P1

( f / fc)1/2

1− ( f / fc)1/2

)S−m(
1 + P2

( f / fc)1/2

1− ( f / fc)1/2

)m

, (58)

as suggested and explained in more detail in [4,21]. Here,

P2 =
3S + (S(9S − 8a1 fc))1/2

2S , m = − 2a1S
P2

2S − 2a1
, P1 =

P2m fc

m− S . (59)
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From (58), one can evaluate the second-order coefficient in the expansion at small
concentrations,

a f
2( fc) =

6 fca2
1S

2−4 fca2
1S+9a1S2

12S2 fc
+

27a1S
4 −9a2

1 fc
a1(9S

2−8a1S fc)3/2

4S2 +
8a3

1 f 2
c

3S

3 fc
√

9S2−8a1S fc−4a1 f 2
c +9S fc

. (60)

This coefficient a f
2 is a function of the critical concentration fc. Evaluating at the random

close packing fraction fc = 0.64 yields a f
2 = 5.859, remarkably close to the result of [22,35],

obtained after exceptionally tedious calculations. With a slight decrease in the value of the
threshold to fc = 0.636, we estimate a2 ≈ 5.9. In reverse, with known a2 = 5.9147 [22,35],
we estimate S ≈ 2.036 in close agreement with the accepted value.

With the threshold fc = 0.637 and two known coefficients in the expansion, one can
develop the factor approximant

µ( f )/µ0 = (1− 1.56986 f )−2.00267(1 + f )−0.643908, (61)

and almost perfectly deduce the critical index, S = 2.00267.
Assimilating the value of the index, threshold and the two coefficients for the viscosity,

we arrive at the following factor approximant

µ( f )/µ0 = (1− 1.56986 f )−2 (1.01684 f + 1)−0.629126. (62)

The critical amplitude found from such a factor approximant is equal to 0.3. Such value can
be considered most reasonable based on our various approximations.

The method of index function developed in the book [4] can be applied to calculate S
as well. Recall first the well-known Krieger–Dougherty (KD) Equation (3),

µ( f )/µ0 =

(
1− f

fc

)−a1 fc

.

which has the form of the simple root-approximant [3]. One can see that the critical index
can be expressed as

S = − lim
f→ fc

log(µ( f )/µ0)

log(1− f / fc)
, (63)

see also [38], where such a definition is introduced in the general case of phase transition.
Let us look for the solution in a more general form,

µ( f )/µ0 =

(
1− f

fc

)−S( f )
,

with
S( f ) =

a1 fc

1 + f (a1
2 fc+a1−2a2 fc)

2a1 fc

,

and we were able to calculate S ≈ 2.02. Overall, the index function monotonically increases
from the KD value away from fc to the calculated critical index in the vicinity of fc. More
details on the index function can be found in the book [4].

2.2.4. Reference Formulae for 3D Passive Suspensions

We would also bring up a few useful formulas for the effective viscosity. The empirical
Thomas equation [39] gives an accurate fit

µ( f )/µ0 = 1 + 2.5 f + 10.05 f 2 + 0.00273 exp(16.6 f ), (64)

valid outside of the neighborhood of fc.
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In [29], Brady suggested an explicit semi-empirical expression for the EV (see also [21]
for more details):

µ( f )/µ0 = µH/µ0 +
12
5

f 2 G(2, f )D0

D0
s ( f )

. (65)

Several physical parameters, which are functions of f , are required: the short-time self-
diffusion coefficient of suspended particles

Ds
0( f ) = D0(1− 1.56 f )(1− 0.27 f ) (66)

and the high-frequency limiting viscosity µH ,

µH =
1 + 3

2 f (1 + f − 0.189 f 2)

1− f (1 + f − 0.189 f 2)
. (67)

Both expressions above represent the experimental data of Pearson and Shikata in the
form convenient for calculations. They conform to the dilute limits and vanish or diverge
at fc = 0.64. The theory behind (67) allows us to track experimental data nicely for
0.20 < f < 0.5.

For f < 0.5, the radial distribution function G(2, f ) at particle contact is given approx-
imately as

G(2, f ) =
1− f /2
(1− f )3 .

For higher concentrations, f ≥ 0.5 G(2, f ) is found approximately through simulations,

G(2, f ) =
0.78

0.64− f
. (68)

Remarkably, such considerations lead to the critical index of S = 2! More details and
discussions can be found in [21,29]. Perhaps, the value S = 2 is even universal [36].
Nevertheless, such value could be employed for practical purposes, notwithstanding the
threshold value, as conjectured in [36].

Brady’s approach can be conveniently extended to the whole region of concentra-
tions [40],

µ/µ0 = 1 +
2.5 f

1− f
fc

+
3.4 f 2(

1− f
fc

)2 . (69)

The earlier numerical RG results from [22] can be summarized as follows:

µ( f ) = µ(ψ0) exp
∫ f /ψ0

1
dxΥ(g(x, ψ0)), (70)

with Υ(g) given explicitly [22]:

g(t, g) =
(

ln(exp(1/g)ta1−2 a2
a1 )

)−1
, Υ(g) = a1g + (2a2 − a2

1)g2,

with ψ0 = 0.085.
From the analysis of the most typical curves presented in Figure 1, one can conclude

that for a typical suspension of spherical particles [39], our ARM formula matches it with
good accuracy, substantially exceeding the accuracy of prior RG results [22]. More details
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and discussion can be found in [21]. At present, it seems that the following formula derived
from the factor approximant given by the expression (58),

µ( f )/µ0 =

(
0.863446

√
f

1−1.25294
√

f
+ 1
)2.84988

(
2.89537

√
f

1−1.25294
√

f
+ 1
)0.84988 , (71)

is in better agreement with the Thomas interpolation (64) than all other formulas derived
from all kinds of self-similar approximants.

0.25 0.30 0.35 0.40 0.45 0.50
f
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8
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Μ

Figure 1. Predictions for the effective viscosity (in the units of µ0) obtained with ARM after integration
(12) applied to (55) (dotted) for passive suspensions. They are compared to the phenomenological
Thomas formula (64) (dashed), an earlier RG-based result (70) (dot-dashed) and asymptotic expansion
(44) (solid).

3. Effective Viscosity of Suspensions of Pullers

Pullers are an important biophysical system that exhibit a range of interesting macro-
scopic behaviors, while being in many ways simpler than pushers [21]. Their rheology
could be similar to that of passive suspensions. It is believed that suspensions of puller-
like microswimmers, such as Chlamydomonas algae cells, possess interesting rheological
properties [41,42].

However, the pullers are difficult to investigate experimentally. At meaningful concen-
trations, the algae tend to form a kind of precipitate. Pullers typically propel themselves by
executing a breaststroke-like motion with a pair of flagella attached at the front of the body
(see, e.g., [43]). This should be contrasted to the propulsion of pushers, see Figure 2, which
illustrates the two types of swimmers. The pushers, such as Escherichia Coli bacteria, use a
rotating flagella bundle to push the fluid behind the bacterial body (see, e.g., [44]).

Figure 2. Schematic depiction of swimmers. Left: a puller with two flagella executing a “breaststroke”.
Right: a pusher swimming with a flagellar bundle acting as a “propeller”. Solid arrows show forces
acting on the fluid.
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The rheological behavior of pushers at present appears to be beyond the reach of
analytical methods. Early experiments on pushers revealed a number of novel macroscopic
properties of their suspensions. In particular, in [45,46], pushers were found to exhibit
a super-diffusion for small times, with a crossover to classical diffusion on longer time
intervals. This initial dramatic modification in diffusion was attributed to the advection
generated by coherent bacterial motion. The second effect corresponds to the long-time
diffusion enhancement compared to the passive case. The same effect was found for pullers,
but in that case, it was shown to be much smaller [47,48].

The effect of different types of propulsion is even more pronounced in effective viscos-
ity. For pushers, EV can decrease dramatically with the increasing particle concentrations
but still remain in the dilute regime f < 0.3% [12,49]. Even leading to a viscous-less,
“super-fluid” regime with µ ∝ 0 or even negative [49].

Experimental and theoretical models have been developed to examine fundamental
aspects of a collective motion exhibited by various biological systems. Following the pa-
pers [12,50–52] and works cited therein, it was suggested that hydrodynamic interactions
between the swimmers lead to the collective motion when every bacterium (pushers) in-
teracts with others through the viscous environment. Implicit evidence of the collective
motion can be found in a reduction in the effective viscosity [12]. The theoretical investi-
gations of the collective motion were based on the framework of mechanical dynamical
systems [53–57].

Experimental EV measurements for pullers are scarce, yet there are good reasons to
expect [41] that pullers behave similarly to passive suspensions with a strongly enhanced
effective viscosity [41,42]. In experiments on Chlamydomonas [41], this enhancement was
found to be of a smaller magnitude than the corresponding EV decrease for pushers.

In a suspension of microscopic particles, both the strain-rate and the stress are modified
by the disturbance flow around the particles, and the effective viscosity µ quantifies the
relationship between these volume-averaged quantities. Operationally, we can define a
scalar µ as relating fixed components of e and σ (e.g., the xy-components for particles
suspended in a planar shearing flow) [44]. Given the low Reynolds numbers typical of
suspensions, one has to solve the Stokes equation in the exterior of the microscopic particles.
The solution amounts to balancing the forces and torques on the fluid. In the simplest case
of dilute suspensions, the inclusions are statistically independent and do not interact. In this
situation, the disturbance flow of a single typical particle is sufficient to determine the EV,
and the normalized correction appears to be linear in the volume fraction of inclusions f .

The aspect ratio for prolate spheroids is quantified by the Bretherton constant
Br = b2−a2

b2+a2 , in terms of its minor and major semi-axes a and b. The dynamics of par-
ticle orientations τ in a linear ambient flow were elucidated by Jeffery (1922). When the
particles are subject to the Brownian motion, a unique long-time distribution of orientations
can be obtained, predicting only an increase in EV. For self-propelled particles modeled as
prolate spheroids with a rigidly attached point force (see Figure 3), the situation is different.
Elongated particles, according to Jeffery (1922), will spend more time aligned to the stable
principal axis of the ambient planar shear flow.

~x

~τ

a
b

λ b −Fpτ

Figure 3. A bacterium modeled as a prolate spheroid with semi-axes a and b, orientation τ and a
point force “propeller” attached at distance (1 + λ)b behind the center of mass x, pushing the fluid
behind the bacterium.

Having established the ARM for passive suspensions, we would like to apply the same
technique to suspensions of swimming cells. Specifically, it is important to suggest the
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concentration dependence of EV for suspensions of a puller cell organism. The interesting
characteristic of pullers is that their presence tends to monotonically increase the effective
viscosity of the suspension. The latter property is in contrast with pushers. The effective
viscosity of pushers may depend on concentration non-monotonically and even exhibit a
significant lowering of the effective viscosity for low to moderate concentrations.

However, one would expect all swimming cells or bacteria to affect the effective
viscosity of the suspension similarly. All swimmers inject energy into the fluid, thus
decreasing the effective rate of viscous dissipation and leading to an effective decrease in
viscosity. The usual qualitative explanation of the different behavior of pullers is as follows.
In an imposed shear flow, passive elongated particles approximated by infinitesimal rods—
force dipoles—tend to align with the extensional axis of the flow, and the effective viscosity
is increased. When a puller, approximated by a contractile dipole, is aligned with the
extensional axis, the rate of strain is decreased. Since the viscosity is inversely proportional
to the rate of strain, one can think that under a constant external force, the effective viscosity
should increase.

Let us keep in mind that reconstruction of EV for pullers should be accomplished only
on the basis of the (effective) intrinsic viscosity,

a1 = lim
f→0

µ− µ0

µ0 f
. (72)

Even then, the problem is far more complicated than for passive systems since: (1) For
comparison with experiments, a1 has to be calculated first as a function of the puller’s
internal parameters and of the flow. Second, (2) it should be supplemented with the
information or insight on critical behavior at the dense packing limit, which we argue to be
similar to that of passive suspensions.

Only then, would we be in a position to apply the techniques developed for passive
suspensions and justify all the extensive groundwork on passive systems with only a1
available from the “microscopic” approach of Stokes equations. To reconstruct the depen-
dence of the intrinsic viscosity on the parameters of the background flow and the shape
of the swimmers, we are going to rely on the results of [44]. In the paper [44], it was
shown how the case of pullers can be obtained from the same formulae as for pushers just
by changing the rigidly attached propulsion force Fp. The analytical expressions for the
intrinsic viscosity as a function of the arbitrary strain rate γ of the background flow, as well
as the Bretherton constant, were obtained in [44], in the form of another two asymptotic
pieces.

For the small parameter ξ = γBr
Dr

, applicable when the background flow is much
smaller than the rotational diffusion of pullers (weak flow regime), the following asymptotic
is valid,

µ− µ0

µ0 f
' α0 + α1ξ + α2ξ2 + O(ξ3), ξ → 0, (73)

with
α0 = M0; α1 =

FpK
160πa2µ0γ

; α2 = M2. (74)

Here, Dr is a tumbling constant specifying the strength of rotational diffusion.
For the large ξ, the background flow dominates the rotational diffusion (strong flow

regime), and a different asymptotic is valid,

µ− µ0

µ0 f
' L = S +

FpK
16πa2µ0γ

+ O(1/ξ), ξ → ∞, (75)

Coefficients M0, M2, K, S and N are the shape factors, dependent only on the geometry of
the puller [44]. In the aligned limit of a strong flow, the particles tend to align along the
extensional axis of the flow.
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It just so happens that the experimental data from [41] are outside the asymptotic
regimes of (73) and (75). The only way to obtain estimates for the viscosity at real parameters
is to find a good or just reasonable interpolation formula between these asymptotic regimes by
means of yet another interpolation step with respect to the parameter ξ. It seems convenient
to separate the passive and active contributions to the effective intrinsic viscosity.

Therefore, we start with the construction of the suitable interpolation in the form

a(1)1 (ξ) = α0 + α1ξ

(
1 +

α1

L− α0
ξ

)−1
, (76)

which is the simplest two-point Padé approximant (see, e.g., book [3]). The second
approximant

a(2)1 (ξ) = L + (α0 − L) exp
(

α1

α0 − L
ξ

)
, (77)

is the simplest exponential interpolation.
We next form a mixture of the two approximants using the method of weighted

averaging, according to the (56),

a(p)
1 (ξ) = pa(1)1 (ξ) + (1− p)a(2)1 (ξ) (78)

using the remaining condition—matching α2—to determine p:

p = α2−u2
u1−u2

, u1 =
α2

1
α0−L ; u2 = u1/2, (79)

where u1 and u2 are second-order terms in the expansion of a(1)1 and a(2)1 in the parameter
ξ, respectively.

A curve drawn for pullers with positive Fp (see Figure 4) [21] demonstrates that the
effective intrinsic viscosity always remains positive for pullers. It approaches the aligned
limit from above and another limit of small γ from below.
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ᵞ
Figure 4. The intrinsic viscosity of pullers as a function of strain rate magnitude γ: asymptotic results
(weak, strong) and the weighted approximant (78) (interpolation).

The asymptotic expressions in [44] were derived in the absence of interactions between
particles and yield only the intrinsic viscosity a1. Instead, just as is the case of passive
suspensions, we apply the ARM to the first-order expansion in concentration with a(p)

1 (ξ).
To complete the application of the ARM, the information on critical point behavior

is required. Intuitively, the densely packed regime with power-law divergence can be
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invoked here. Indeed, for large concentrations, the algae cells become immobilized and
nearly spherical [41], apparently falling dormant in the untenable conditions of very
high concentrations. Thus we can apply the techniques developed for passive spherical
particles, such as factor approximant F ∗( f ) from (58) using the intrinsic a(p)

1 (ξ) as the
first-order coefficient.

The approximant is a function of both f and ξ, describing the two crossovers, (1) with
increasing ξ, from zero to infinity, inside of the expression for the intrinsic viscosity, and (2)
with increasing f from the active system at small f to the passive system at f → fc.

The first crossover was already formalized above by means of weighted averages of
the two simple approximations. In the course of formalizing the second crossover, we have
to rely on the approximants already tested above in the passive case.

For instance, the factor approximant F ∗( f ) provides a lower bound on our estimates
of the EV of pullers. The very same expression as derived for the passive case is to be
applied in the active case of pullers, but with a1 replaced by a(p)

1 (γ) for arbitrary γ. After

the two crossovers are taken into account, the final expression µ fa( f , a(p)
1 ) should work, in

principle, for arbitrary f and γ.
To assess the quality of the resulting prediction, we calculated the predicted enhance-

ment in the effective viscosity relative to the passive spherical case. In practice, one can
use the most transparent ARM approximant given by (46), with coefficients from (14). The
only difference is that a1 is replaced with a(p)

1 from (78), so that it becomes µ∗1,1( f , a(p)
1 ). The

enhancement ratio for this approximant becomes particularly transparent

µ∗1,1

(
f , a(p)

1

)
µ∗1,1( f , a1)

= exp
((

a(p)
1 − a1

)
f
)

. (80)

To calculate the enhancement, we used the following parameters of the puller model
(see Figure 3): the major semi-axis of the approximating spheroid b = 5 µm, force location
characterized by λ = 0.5, bacteria’s swimming speed v = 100 µm/s, rotational diffusion
Dr = 0.4 s−1 taken from [41,43]. Finally, the Stokes drag law holds, i.e., Fp = 6πbµ0vN,
where an expression for a factor N can be found in [44].

Let us finally make the desired estimates of the enhancement for the typical values
of parameters of the problem, following [21]. For γ = 5 s−1, f ≈ 0.15 and b/a = 2.5
(motivated by an estimate of flagellar’ length, 10–12 µm, see [58]), the enhancement is
around 1.757. The first-order renormalized coefficient a(p)

1 is estimated as 7.122, and the

second-order coefficient a( f )
2 = 17.23. Both numbers appeared as rather different from the

corresponding numbers for passive systems.
When the enhancement ratio is averaged over various models, including the factor

approximant, three ARM models and the KD model, it becomes larger and equals 1.956. The
ratio also depends weakly on γ in agreement with the results on shear-thinning from [59].
Mind that all models involved in the averaging are based on the first-order expansion in
concentration. Hence, the structure of the starting sections is dedicated in large part to
such models.

It is interesting to realize, at least in principle, that an increase in the effective viscosity
for pullers could have matched the corresponding decrease in the effective viscosity for
pushers [44]. If Dr is decreased to 0.1 in accordance with [42], the average enhancement
ratio increases to 2.5 in good agreement with [41] and also could become considerably
larger for smaller γ. For instance, for γ = 1.3 s−1, we are able to estimate an increase of
seven times the ratio, matching the corresponding decrease in the effective viscosity for
pushers [21].

4. Critical Index for 3D Elasticity, or High-Frequency Viscosity

In the problem of finding the effective shear modulus of perfectly rigid spherical
inclusions embedded at random into an incompressible matrix, we have two shear moduli,
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G1, G, for the particles and matrix, respectively, and the G1
G is going to be set to infinity. The

jamming regime sets in when f tends to a random close packing fraction fc ≈ 0.637, and is
very hard to simulate numerically. Therefore, the value of theoretical approaches to this
limit is increasing.

The elasticity problem is treated by analogy to the problem of high-frequency effective
viscosity of a suspension [60]. In the analogous case of suspension, consisting of hard
spheres immersed in a Newtonian fluid of viscosity µ0, only hydrodynamic interactions
between pairs of suspended particles are considered.

For such suspension (or elastic composite), which is described by the ratio of the
effective shear modulus Ge ≡ µe to that of the matrix, and for small f , the second-order
truncation is available [35],

Ge( f ) = 1 + a1 f + a2 f 2 + O( f 3),
a1 = 5

2 , a2 = 5.0022.
(81)

The coefficient a2 was also estimated earlier by Batchelor and Green, who gave a2 = 5.2 [60].
In the vicinity of the 3D threshold, the effective modulus characteristically behaves as a
power-law

Ge( f ) ' A( fc − f )−S ,

where fc ≈ 0.637, S ≈ 1.7 [30,33]. Here S stands for the critical index for 3D (su-
per)elasticity, analogous to the critical index for the viscosity when only hydrodynamic
interactions are considered.

The idea of application of optimal conditions in the space of approximations was
put forward by V.I. Yukalov [61,62], and the minimal difference condition was formulated
in [63]. The minimal derivative (sensitivity) condition was discussed in [64]. Kleinert
also employed minimal derivative conditions in the course of his variational-perturbation
method [65]. Technically, it is very difficult to extract expressions for the physical quantities
in a closed form by Kleinert’s methods.

4.1. Original Suggestion

Let us recapitulate the original suggestion for the calculation of the critical index [66,67].
In the case of a critical quantity divergent at the critical point, one has to apply a resumma-
tion technique to the inverse series

[Ge( f )]−1 ' 1− a1 f + (a2
1 − a2) f 2 ≈ 1 + ã1 f + ã2 f 2, (82)

where ã1 = −5/2, ã2 = 1.2478. Here, we construct the simplest pair of approximations
given below, with m being a control parameter,

R∗1( f ) =
(

1− ã1

m
f
)−m

, R∗2( f ) = 1 + ã1 f
[

1− ã2 f
ã1(1 + m)

]−(1+m)

. (83)

The, we set m2 = m1 ≡ m, to have the same behavior at infinity.
Let us have the two solutions (83) differ minimally in the vicinity of a critical point. The

minimal difference condition between the two approximations is reduced to the condition
on m, ∣∣∣∣∣1 + ã1 f c

1(m)

[
1−

ã2 f c
1(m)

ã1(1 + m)

]−(1+m)
∣∣∣∣∣ , (84)

where the threshold as a function of m,

f c
1(m) =

m
ã1

, (85)
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was found from the first-order approximant. With the concrete parameters pertaining to
the problem, we calculate m = −1.57646. The corresponding critical index S = −m is
found automatically.

4.2. Conditions on Thresholds

One can also select the iterated root as the second approximant, so that

R∗1( f ) =
(
1 + a1

m f
)m, R∗2( f ) = ((P1(m) f + 1)2 + P2(m) f 2)m, (86)

where

P1(m) =
a1

2m
, P2(m) =

−2a1
2m + a1

2 + 4a2m
4m2 .

The second-order approximant gives an explicit expression for the threshold,

f c
2(m) =

√
2a1

2m3 − a1
2m2 − 4a2m3 + a1m

a1
2m− a1

2 − 2a2n
.

The same threshold is expected for each approximation, i.e.

f c
1(m) = f c

2(m) . (87)

From (87), find the stabilizer m,

m =
a1

2

a1
2 − 2a2

.

The critical index is determined by the control parameter, S = 1.66471.

4.3. Conditions on the Critical Index

Let us consider the value of a threshold as a parameter f0. It could be introduced into
consideration through the Euler transformation [4,68],

z =
f

f0 − f
⇔ f =

z f0

z + 1
,

applied to the original truncation (81).
Let us begin by deriving the two low-order approximations,

R∗1(z) = (1 + p1( f0)z)
m1( f0), R∗2(z) = ((P1( f0)z + 1)2 + P2( f0)z2)m2( f0)/2. (88)

After such a task is accomplished, it remains to minimize the difference

|m2( f0)−m1( f0)|,

with respect to the control parameter f0, where m1( f0) and m2( f0) are explicit formulas for
the critical index obtained from the two approximations. Their difference can be minimized
at a calculated value of threshold f0 = 0.656746. The first-order approximant

R∗1( f ) =
(

1 + 1.01373 f
0.656746− f

)1.61963
,

gives the critical index S = 1.61913.

4.4. Conditions on the Amplitude

Assume now that we know the correct value of threshold fc = 0.637 in advance, and
try to use the knowledge in the course of estimating the index. Let us apply the Euler
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transformation (7), with known threshold fc. The original truncation is transformed to the
following form,

R(z) = 1 + b1z + b2z2 + O(z3) b1 = 1.5925, b2 = 0.437238. (89)

The lower-order approximationR∗1 can be written down as follows,

R∗1 =

(
1− b1z

s1

)−s1

. (90)

In order to construct a second approximation, we leave the constant outside of the
renormalization procedure and obtain

R∗2 = 1 + b1z
[

1− b2z
b1(1 + s2)

]−(1+s2)

. (91)

Let us require that both approximations (90) and (91) have the same power-law behavior
as z→ ∞, so that

s2 = s1 = s.

The parameter s has to be deduced from the two approximants. Require now the fastest
convergence of the two approximations, and impose the minimal difference condition
on critical amplitudes. The solution to the minimization problem [4,68] is found so that
S = 1.60483. As usual, more details can be found in [4,68], where the case of elastic
modulus is explained.

4.5. Minimal Derivative

We also may start with the iterated root employed for the second-order approximant,

R∗2(z) = ((P1(s)z + 1)2 + P2(s)z2)s, (92)

where

P1(s) =
b1

2s
, P2(s) =

−2b1
2s + b1

2 + 4b2s
4s2 .

The control parameter s may be interpreted as the “critical” index in the vicinity of the
(quasi)threshold f c

e (s). The second-order approximant (92) allows for an explicit expression
for the quasi-threshold

f c
e (s) =

√
−P2(s)−P1(s)
P1(s)2 + P2(s)

. (93)

Let us ask for an independence of the critical index at infinity on the position of a quasi-
threshold. One can find the value of s from the minimal derivative (sensitivity) condition
imposed on the quasi-threshold,

∂ f c
e (s)
∂s

= 0,

and we found the critical index S = 1.788 [4,68].
In summary, we found five fairly close estimates for the critical index S . Their average

equals S = 1.65± 0.13, which is in fair agreement with the experiment [30]. Finer details
and explanations can be found in [4,68].

4.6. Comment on the Method of Coherent-Anomaly

It is interesting to compare our results for the critical index with other approaches with
similar objectives, such as the coherent-anomaly method (CAM) of Suzuki. CAM derives
the critical index from a couple of systematically obtained approximations for the sought
quantity, whose critical points converge to the known true value of fc. The physical idea
behind initial CAM is to first take into account the diluted regime (long-range interactions)
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and to correct it by taking into account progressively larger clusters with shorter-range
interactions. At each step, the problem becomes more difficult, but the result is still a
mean-field approximation for the critical index with the expected critical index S = 1 for
any finite cluster.

Assume that the problem of finding the effective property is solved analytically for a
number of finite clusters of varying size, including all the interactions between the growing
number n of particles at each step. One can think about the regular or randomly generated
clusters or about the snapshots of the real material. In application to elasticity, the problem
would consist of the numerical extrapolation of the results for the effective moduli of such
clusters to the infinite cluster as n tends to infinity.

Is it possible to move beyond the mean-field approximation within the framework of
the cluster approach? The answer is “no” if only finite-size clusters are considered without
additional efforts to make an inference on the case of infinite clusters. Suzuki suggested that
additional information about the critical index is hidden in the parameters of two successive
approximations [69]. In order to extract the information, one has to find the approximate
thresholds fc1 and fc2 and the amplitudes A1 and A2, i.e., the derivatives calculated in
the vicinity of the approximate thresholds in each approximation. Then, the critical index
value, different from the mean-field value, could be estimated. With increasing complexity
of the approximation, the value of the threshold is supposed to approach the true threshold,
and the value of the amplitude is supposed to increase, reflecting the so-called coherent
anomaly.

The CAM is built in the same spirit as any renormalization group (RG), but the flow
of the sought quantity is considered with respect to the approximation parameter, discrete
or continuous. The critical amplitude of the mean-field approximation is considered
the sought physical quantity. The value of amplitude should be known for at least two
successive approximations. In addition, for the amplitude, it is most important that one
should introduce a scaling hypothesis, which postulates that the amplitude diverges as a
power-law with the index of s̃ in the vicinity of the fixed point with exact threshold fc. The
divergence rate should give a non-mean-field contribution to the critical index on top of
the mean-field value.

The scaling hypothesis, in turn, should be expressed in terms of the parameter char-
acterizing proximity to the true critical point, or more generally, a fixed point of various
RG transformations. To this end, one should know how such a parameter varies from
approximation to approximation. It is enough to know the derivative of such transforma-
tion in the vicinity of the fixed point. When the ratio of amplitudes for two successive
approximations is expressed in two different ways, one arrives at the formula for the critical
index to be found as the solution of a simple equation. CAM recommends the simplest
and most natural choice of the approximate threshold fc as the parameter characterizing
the different approximations, and the derivative is simply expressed in finite differences
between the two thresholds and the exact threshold. From the approximate thresholds and
known amplitude ratios, one can express the critical index.

The final expression for the critical index S = 1 + s̃ becomes explicit and simple, as s̃
is expressed below

s̃ =
log
(

A1
A2

)
log
(

fc− fc2
fc− fc1

) . (94)

Here, the value of unity comes from the mean-field approximation and s̃ from the unac-
counted interactions. This formula written in appropriate variables is standard for most RG
calculations of the critical indices [70], except for the approaches of the type of [66], where
the critical index is treated as a control parameter and found from some sort of additional
condition of a non-perturbative nature.

We applied the two methods suggested by Suzuki to generate systematic mean-field
approximations from the series. The first method of [71] is based on an analysis of the
series and by studying the zeroes for the first two polynomials of the power-series of the
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inverse of the relevant physical quantity, giving fc1 = 0.4 and fc2 = 0.552187. Then, the
mean-field amplitudes A1 = 2.5 and A2 = 1.12196 can be found near each of the points.

Because we are working with inverse quantities, the value of amplitude decreases
with an increasing number of terms. The critical exponent is estimated on the basis of the

general CAM theory [69,72] and formula (94) with changed sign, S = 1 +
log
(

A1
A2

)
log
(

fc− fc1
fc− fc2

) , with

the result S ≈ 1.7797, for fc = 0.637.
In the second method of [73], one should first construct the continued fractions,

approximant asymptotically equivalent to the original series. Then, find the critical point
from the position of the simple pole and determine the critical coefficient/amplitude as the
corresponding residue so that

fc1 = 0.4, fc2 = 0.49978, A1 = 0.4, A2 = 0.62445.

The information extracted from the two continued fractions is then combined with the
CAM theory to estimate fractional critical exponents [69,72] from formula (94), with the
result S ≈ 1.8151. The value of the critical coefficient now is increasing with an increasing
number of terms, as is anticipated in the framework of CAM, and formula (94) is fully
applicable.

The techniques of Padé approximants and their various modifications are rather
popular, and their advantages and limitations are understood. Thus, first applying the
diagonal Padé approximants or continued fractions as the zero approximation for the
critical point should be quite natural. However, in an unexpected turn, the value of a
critical index can also be found from such a pedestrian approach. However, it is given only
implicitly, as it is hidden or scattered within the different Padé approximants.

The CAM estimates agree with other estimates from this section and are close to the
upper bound. Such an estimated critical index could be employed as an initial guess/input
for some other technique, which would operate with the critical index explicitly. Such a
technique would calculate a correction to the CAM value and reconstruct corresponding im-
proved approximants, giving the expression for the sought quantity for all concentrations.

5. Sedimenatation and Particle Mobility

The sedimentation problem is concerned with a suspension movement under gravity.
The suspension is built of small rigid spheres with random positions, and they are falling
through Newtonian fluid under gravity. A homogeneous mixture of solid particles and a
fluid stands in a container. The rate of particles settling under gravity depends on their
concentration, which is dependent on the hydrodynamic interaction between particles.

The quantity of interest is called sedimentation velocity U. It is nothing else but the
averaged velocity of suspended particles. It is usually normalized with respect to the
velocity U0 of a single particle movement in the absence of any other particles. The ratio
U/U0 is also called the collective mobility or sedimentation coefficient. In sedimentation
experiments, two different scenarios are played out. The first scenario corresponds to
the phase transition [74], but different scenarios with metastable phase extension up to
RCP [75] can be observed as well.

Below, we mainly follow the discussion presented in [4,68], present some empirical and
semi-empirical observations, and develop formulas based on some low-order expansions
for the sedimentation rate. We also provide some estimates for the critical properties of
the sedimentation rate. Based on Stokes relation U0 ∼ 1

µ0
, where µ is an ambient fluid

viscosity, one might expect the sedimentation rate to be inversely proportional to the
effective viscosity of the suspension

U ∼ 1
µe( f )

, (95)
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One can think that the critical index value for the sedimentation rate is close to the critical
index for effective viscosity. Various studies [76–81] suggest a critical behavior for the
sedimentation rate in the form of formula (7),

U
U0
∼ (1− f )β, (96)

with a positive critical index in the range from β ≈ 3 to β ≈ 5.5. Various formulas for the
sedimentation rate can be found in [4]. For small f , the following single-term expansion
formula was found in [77]

U
U0

= 1− 6.55 f + O( f 2) . (97)

The value of a2 will be estimated below, following [4]. It turns out that the estimated value
is in rather good agreement with some other microscopical, theoretical estimates.

We are interested in accurate expressions satisfying (97), with power-law behavior (96).
Let us follow the method of derivation, which leads to formula (19). Let us find for U/U0
the simplest approximant with fixed position of singularity and given the critical index [4],

U
U0

=

(
1 +

2.18333 f
1− f

)−3
. (98)

From formula (98), one can find the approximate value of the second-order coefficient, i.e.,
a2 ≈ 22.05. One can also estimate a3 ≈ −53.425.

Another simple formula can be obtained similarly to the derivation of ([21], eq. 3.6),

U
U0

= e−3.55 f (1− f )3, (99)

and its expansion at small f gives a close value for a2 ≈ 19.95. Both estimates for a2,
especially the former, agree with the value of a2 ≈ 21.918 calculated in [82].

In reverse, accepting the theoretical estimate of a2 = 21.918, we can find

U
U0

=

(
1 +

2.15061 f
1− f

)−3.04379
, (100)

and estimate that β ≈ 3.044. The latter value is exactly the result of the application of the
diff-log Padé method from [4,68], after Euler transformation (7), from the finite interval to
semi-infinity. After the transformation, one can simply apply the technique sketched in the
end of Section 2.1. The new formula (98) agrees better in comparison with the simulation
results of [80].

We conclude that the value of a2 ≈ 21.918 from the [82] is reasonable. We also
employed it for more detailed estimates of the critical properties. Following minor modifi-
cations to the same approach of the five methods of application, as in Section 4, we found
β = 3.003± 0.323 [68]. More details are presented below in Section 5.1. Keep in mind that
in [33], we estimated the critical index β = 3.3049± 0.26.

Practitioners also respect the formula suggested by Barnea–Mizrahi[83],

U
U0

=
(1− f )2

( 3
√

f + 1) exp( 5 f
3(1− f ) )

. (101)

It works quite well in the region of high concentrations but gives different results as f < 0.2
compared to the numerical data of [80].
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5.1. Direct Estimates of the Critical Indices

In reverse, when the coefficient a2 calculated in [82] is known in advance, so that for
small f

U
U0

= 1− 6.55 f + 21.918 f 2 + O( f 3) ,

one can estimate the value of a critical index at fc = 1. Such an estimate is independent of
any other experimental or theoretical considerations [68]. Let us again employ the special
resummation techniques, just as in the previous section, for the shear modulus. In this case,
for obtaining estimates of the critical index β for the sedimentation rate, remember that the
strategy consists of employing various conditions for the fixed point in order to compensate
for a shortage of the coefficients. We present below only the main results obtained in [68].

The method of Section 4.1 gives the critical index β = 2.966.
The method of Section 4.2 produces an unreasonably large value and is discarded.
The method of Section 4.3 brings the critical index β = 2.863.
The minimal difference condition of Section 4.4 gives the index β = 2.577.
The minimal derivative condition of Section 4.5 leads to the critical index β = 3.566.
The index can also be obtained with the diff-log Padé method of [4,68], with the result

β = 3.044.
The average taken among all estimates gives the value of β = 3.003± 0.323.
The formulas for the sedimentation rate U presented above are applicable up to f ≈ 0.5

before the freezing point for the hard-spheres suspension.
In the case of a metastable branch of the suspension, the following expression was

derived in [4,68],

U
U0

( f ) =

1 +
4.17235 f

(
1 + 1.4814 f

0.637− f

)0.6937

0.637− f


−1

. (102)

In the latter case, we looked for a formula to continue up to the jamming threshold of
fc ≈ 0.637. The critical index β ≈ 1.7 was found for such a threshold in [4,68]. The latter
value of β appeared as close to the estimates for the critical index of the high-frequency
effective viscosity due to hydrodynamic interactions, obtained in the preceding Section.

6. Non-Local Diffusion in Critical Liquids

The definition of a non-local diffusion coefficient in liquids and suspensions dwells on
some other quantities, which are briefly discussed below. First, one has to introduce the
space- and time-dependent local number density

ρ(r, t) =
N

∑
i=1

δ(r−~ri(t)),

where N stands for the number of particles.
Second, consider the intermediate scattering function, which is the auto-correlation

function of the Fourier components ρq(t) [84],

F(q, t) =
1
N
〈ρq(t)ρ−q(0)〉,

where the averaging is performed over a statistical ensemble. F(q, t) depends on time t and
on the wave-number q.

Even more convenient for experimental and theoretical purposes is the dynamic
structure factor S(q, ω) [85]. It is defined as the Fourier-transform of the F(q, t) in the
temporal domain

S(q, ω) =
∫ ∞

−∞
F(q, t) exp(tiω)dt .
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The celebrated S(q, ω) is directly measurable in light scattering experiments. The density
fluctuations spectrum ωc corresponds to the simple pole ω = −iωc, in S(q, ω), dependent
on frequency ω and on the wave-number q. To obtain the non-local, q-dependent diffusion
coefficient, one has to simply divide ωc by q2 [86].

Near the critical point, temperature is measured by the ratio | T−Tc
Tc
|. We are interested

here only in long-time relaxation properties, dependent on the wave-number q. They
are characterized by the characteristic relaxation time τ of the density fluctuations. Such
fluctuations are the inverse of the ωc.

The dynamic scaling hypothesis conjectures that the characteristic frequency can be
expressed in the following form

ωc(ζ, q) = qzΩ
(

q
ζ

)
.

Here, the dynamical critical index z is introduced , and ζ stands for the inverse correlation
length [38]. In fact, we are looking for an approximation for the function Ω and would
like to estimate the index z. The length scale ζ−1 is intermediate between the atomic and
macroscopic scales.

The behavior of ωc can be reconstructed approximately from some general asymptotic
information [38] using the crossover approach of [24]. The scheme was extended and
developed further in the book [4]. Crossovers are typical of the thermodynamics of a
supercritical state [87].

In the hydrodynamic regime q
ζ � 1, for isotropic fluid, we have an expansion [38],

ωc(ζ, q) ' DTq2

(
1 + B

(
q
ζ

)2
+ . . .

)
, B > 0 (

q
ζ
� 1). (103)

In the fluctuation regime q
ζ � 1, another expansion is considered,

ωc(ζ, q) ' Aqz

(
1 + A′

(
ζ

q

)2
+ . . .

)
, (

q
ζ
� 1) , (104)

The expansion is expounded in [38]. Here, DT is thermal diffusivity. The value of B is
estimated as B = 3/5 [38,88]. Assume also that the value of A is known.

The simple analytical expression for the characteristic frequency for arbitrary q
ζ was

suggested [24],

ωc(ζ, q) = DTq2

(
1 + C

(
q
ζ

)2
) z

2−1

, (105)

where C is constant, and

C = ζ2
(

A
DT

) 2
z−2

. (106)

If we now substitute the dependencies of DT ∼ εγ−a and ζ ∼ εν into the expression for C,
then the well-known relation

z = 2 +
(γ− a)

ν
, (107)

we simply recover the known relation between the dynamic critical index z and three other
critical indices γ ≈ 1.239, ν ≈ 0.63 and a. Formula (107) represents one of the central results
of the dynamical scaling hypothesis [38]. Remember that γ stands for the critical index for
heat capacity, while a stands for the critical index for thermal conductivity. Index ν is the
correlation length critical index. The combination

a′ = γ− a ≈ 0.67
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stands for the critical index for thermal diffusivity.
From (106), it follows then that

A = A(ε) = DTζ2−zC
z
2−1,

in such a way that requirement A(0)=const is satisfied when the relation between in-
dices (107) is valid.

The index a′ is determined mainly by the concentration (long time) diffusion coefficient
(see, e.g., [89]), which in turn, can be estimated from the analog of Stoke’s formula [4]. The
value of a′ is dominated by the correlation length index, provided the effective viscosity µ
remains finite at the critical point as ε = 0 [4]. Therefore, a′ ≈ ν.

Using the scaling relation (107), the dynamic critical index can be crudely estimated as
z ≈ 3. However, one can also take into account a correction to z, originating from weakly
divergent viscosity. If such divergence is characterized by the index xµ ≈ 0.068 (measured
in units of the critical index ν), then

z ≡ z
(
xµ

)
= 2 + (1 + xµ).

The latter formula means that it takes longer for short wavelength density fluctuations to
relax if compared with a long wavelength regime. Different estimates for xµ can be found
in [90].

The unknown C can be estimated from the asymptotic equivalence with the expan-
sion (103) in the hydrodynamic regime. For instance, C ≈ 1.2, with typical B and z. To
calculate the thermal diffusivity DT , one can simply use the diffusion coefficient approxi-
mated by the Stokes formula, as explained in [4,86,89].

The non-dimensional part of ωc can be approximated already by a simple self-similar
root approximant

ωnd =
√

1 + 1.2x2, (108)

where x = q
ζ . Its asymptotic behavior as x → 0

ωnd(x) ' 1 + 0.6x2 − 0.18x4 + . . . , (109)

respects the coefficient B, while as x → ∞

ωnd(x) ' 1.09545x + 0.456435x−1 − 0.0950907x−3. (110)

Both expressions are in qualitative agreement with the expressions (103), (104). Expan-
sions (109), (110) are designed to obey the dynamic scaling in all orders.

The non-dimensional part of ωc

ωkaw(x) =
3
((

x3 − 1
x

)
tan−1(x) + x2 + 1

)
4x2 , (111)

was derived by Kawasaki [88]. Its asymptotic behavior as x → 0

ωkaw(x) ' 1 +
3x2

5
− x4

7
+

x6

15
, (112)

is qualitatively correct in all orders. It is in agreement with the dynamic scaling in the
hydrodynamic limit (103).

While as x → ∞
ωkaw(x) ' 3π

8
x +

1
x2 −

3π

8x3 . (113)

However, the second expansion (113) agrees only with the leading term in (104). This
means that it violates the dynamic scaling by means of the x−2 term in (113). The term
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O(x−1) is altogether absent. We conclude that the Kawasaki approximation [88] is correct
only as far as the leading term is considered in the limit-case of x → ∞.

In the book [4], we attempted to find some form of approximant extending (108) based
asymptotically on a few terms from the correct Kawasaki limit x → 0 and the leading term
as x → ∞. Such approximants should be free from the terms violating dynamic scaling. In
other words, we thrive on restoring dynamic scaling in all orders. To this end, we have to
come up with some additional considerations.

Already, the simplest factor approximants give a reasonable approximation to the
Kawasaki function while restoring the dynamic scaling in all orders [4]. Based on this
observation, one can suggest a simple factor approximant to the non-dimensional part of
ωc, generalizing the simplest forms presented above to an arbitrary z (xµ). In other words,
the second-order factor approximant satisfies just one non-trivial coefficient from (112) and
is designed to give the correct critical index,

F ∗2 (x, xµ) =
(

1 + 6x2

5(xµ+1)

) xµ+1
2 . (114)

The higher-order approximant asymptotically obeys the three non-trivial coefficients
from (112) and also gives the correct critical index z. It also has a closed form but with
expressions for the parameters P1(xµ) P2(xµ), m1(xµ) given explicitly in [4],

F ∗4 (x, xµ) =
(
x2P1

(
xµ

)
+ 1
)m1(xµ)(x2P2

(
xµ

)
+ 1
) 1

2 (xµ+1)−m1(xµ). (115)

Approximants (114) and (115) respect the dynamic scaling by design. Of course, they can
also be used with a non-zero xµ. In such cases, the Kawasaki function is not rigorously
applicable. Remember that in developing the factor approximations, we rely on the fact
that the Kawasaki approximation works well at small x, at least in leading orders [38].
However, the Kawasaki function is often used as a part of the formulas that account for
the correct value of the critical index z. For instance, the following approximation was
developed in [91],

ωpp(x) =
(

x2 + 1
)xµ

ωkaw(x)1−xµ , xµ = 0.07. (116)

Another formula was explored in [86,92,93],

ωbsbg(x) = ωkaw(x)
(

1 +
1
4

x2
)xµ/2

xµ = 0.068. (117)

In Figure 5, factor approximants (114) and (115) are compared with the two non-
monotonous approximations based on the Kawasaki function and with reference to the
monotonous Kawasaki function itself. They deviate from the Kawasaki (111) in less than
two other semi-empirical formulas. Such a difference is potentially above the typical
experimental error of 10% [89].
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Figure 5. The non-dimensional ratio ω
x is shown along the y-axis, dependent on the parameter

x−1 = ζ
q . The lower-order factor approximant (114) divided by x is shown with a dashed line

(xµ = 0.068). The higher-order factor approximant (115) divided by x is shown with a solid line, with
the same xµ. The expression (117) (dotted) corresponds to the lower curve. Formula (116) is also
shown with a dotted line but correspondes to the upper curve. The Kawasaki formula (111) is also
brought up and is shown with a dot-dashed line.

7. Effective Conductivity of a Classical Analog of Graphene

For the subsequent study, it is important to remember that graphene consists of atoms
tightly packed into a 2D honeycomb lattice. Graphene has very good electric conductivity,
at par with silver and copper. On the other hand, silver (or copper) inclusions, embedded
into a very weakly conducting matrix (vacuum, air, water, polyfoam), can be considered
perfect conductors [94].

Consider a continuum analog of graphene [68,94]. To this end, one can introduce and
study a regular honeycomb array of perfectly conducting (superconducting) disks. The
disks are embedded into a matrix with a conductivity normalized to unity. With respect to
the matrix conductivity, one can set the inclusions conductivity to infinity. The relevance
for establishing the analogy case corresponds to the volume fraction f → fc. In such a
limit-case, one can expect that the effective conductivity of the array goes to infinity.

If some vacancies are introduced at random within the continuum model, the threshold
fc, or maximal possible volume fraction of disks in a regular case, will be lowered to the
value of fc(p), where the parameter p is the number of vacancies per cell and fc(0) = fc.
The effective conductivity σe is expected to diverge with some critical index s(p). For the
sake of analogy, with graphene, it only makes sense to consider the limit f → fc(p) [68,94].

The expansion for small f is possible to obtain by means of the Monte Carlo sim-
ulations combined with analytical results from the method of basic structural sums, as
described in [94], leading to the polynomials representing effective conductivity at small
and moderate f . The details of the methodology of deriving the effective conductivity of
finite samples for various p can be found in [68,94]. A complete set of polynomials for
p = 36 can be found in [68].

For instance, in some particular cases, the following truncations were computed,

σe ' 1 + 2 f + 2 f 2 + 2.085728259543634 f 3 + 4.503578882551432 f 4+
7.022350274464803 f 5 + 9.889873882233639 f 6, p = 2;

σe ' 1 + 2 f + 2 f 2 + 2.4267342319989553 f 3 + 5.952924825710871 f 4+
10.215408230511798 f 5 + 17.000009114788686 f 6, p = 8.

(118)
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Smoothing of the polynomials was performed following the methodology explained
in [94] in great detail. Concrete sets of polynomials for smaller samples can be found
in [94]. Polynomials (118) can be seen as evolving smoothly from the expression (121) for
the regular case with increasing p.

The critical index will be found by extrapolation from the small- f polynomials to
f → fc(p). The threshold is conveniently given by formula (120). In the vicinity of the
threshold, the following family of power-laws is considered

σe( f , p) ∼ ( fc(p)− f )−s(p). (119)

Here, the superconductivity critical index s depends on p. We also expect that as p = 0, the
index should be equal to 1/2.

The threshold fc(p) also depends on p. It is given by the compact formula

fc(p) =
π

3
√

3
pmax − p

pmax
, (120)

where fc(0) = π
3
√

3
is the maximum volume fraction attainable for the honeycomb lattice,

and the maximal value of p is denoted as pmax. In simulations of [68], pmax = 36. When the
threshold is known, we would first apply the following Euler transformation (7),

z =
f

fc(p)− f
⇔ f =

z fc(p)
z + 1

to the original series. The transformation maps the segment to a half-line.
It is instructive to first study the regular case with no defects. The small- f polynomial

corresponding to the case of p = 0 has the following form,

σe ' 1 + 2 f + 2 f 2 + 2 f 3 + 4.14933 f 4 + 6.29865 f 5 + 8.44798 f 6, (121)

calculated exactly from the formulas of [3], applied to the case of a honeycomb array of
disks. Let us calculate the critical index s applying the technique suggested in Section 2.1.1.
After the diff-log transformation, taking an inverse and Borel summation of Section 2.1.1,
we arrive at the following sequence of approximations dependent on the number of terms
k involved in the construction of the iterated roots,

s1 = 0.6046, s2 = 0.5617, s3 = 0.5372, s4 = 0.523, s5 = 0.5142.

The latter sequence can be continued beyond the fifth order if we also keep taking the
inverse of the sixth order term, i.e., s6 = 0.5089. The results agree rather well with the
expected value of 0.5. The latter estimate seems better than the result s ≈ 0.519 of [68],
which was obtained by the technique of the paper [33], as already employed in Section 2.1.2.
Note that the method of [31], based on the Borel summation and factor approximants [31],
failed to produce a convergent sequence.

Similarly, for the case of p = 2, we obtain the following sequence

s1 = 0.571, s2 = 0.5306, s3 = 0.507, s4 = 0.4928, s5 = 0.4837, s6 = 0.4779,

The latter estimate agrees with the result s ≈ 0.4814 of [68] for the same disordered case.
Again, similarly for the case of p = 8, we obtain the following sequence

s1 = 0.4702, s2 = 0.4367, s3 = 0.4157, s4 = 0.4023, s5 = 0.393, s6 = 0.3864,

The latter estimate agrees with the result s ≈ 0.3796 of [68] for the same disordered case. The
dependence of s on the degree of disorder measured in steps p of randomization achieved
through random placement of vacancies on a honeycomb lattice is displayed in Figure 6.
The results given by the Borel summation method in the sixth order, as explained in the
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examples above, are shown with squares. The results found by applying the fifth-order
Borel summation method are shown with disks.

5 10 15 20 25 30 35
p

0.1

0.2

0.3

0.4

0.5

s

Figure 6. The dependence of s on the degree of disorder measured in steps p of randomization
attained through random placement of vacancies on a honeycomb lattice is displayed. The results
given by the approximants of the sixth-order procedure are shown with squares. The results found
by applying the fifth-order approximation method are shown with disks

We see that both approximations give rather close results for the index for all p.
One can also plot curves for the (inverse) effective conductivity [68,94] for varying

p. The dependence is characterized by the steepening of the curves with an increasing
fraction of vacancies [68,94], while the threshold simultaneously shifts to smaller values.
The index s is non-universal, smaller than 1/2, and decreases with increasing concentration
of vacancies. Remarkably, the honeycomb array of highly conducting disks has the ability
to adapt to randomly placed vacancies by adjusting (lowering) the threshold and critical
index, effectively retaining its quasi-regularity. One can think that analogous graphene can
also withstand the infusion of vacancies while remaining a good conductor.

The dependence of the critical index on the degree of disorder defies the universal-
ity hypothesis [95]. Similarly, the critical index in the so-called eight-vertex model and
equivalent Ising model with four-spin interaction [95] depends on temperature [96].

It would also be very interesting to understand if there is a way to find a continuous
analog of the order to disorder abrupt transition in quasi-periodic twisted bilayer graphene
composites [97]. The interesting effect of order emerging from disorder was discovered
in [98]. In both situations, it could be interesting to access the change in critical properties
in the course of transitions.

8. Superconductivity Critical Index of Random 3D Composite

It was argued in [4] that in the limit-case of a random array of perfectly conducting
spherical inclusions embedded into a matrix with a conductivity normalized to unity, the
expression for effective conductivity σe( f ), given by the classical Jeffrey formula [99], could
possibly contain the wrong quadratic term in the volume fraction f .

Interesting and challenging analyses of various formulas in the theory of composites
can be found in [100,101]. However, the effective medium-type approaches can be useful if
applied properly for the qualitative analysis of the complex composite systems [102,103],
when modeling is not feasible, when the system is designed particularly to satisfy the cer-
tain, generalized Hashin–Shtrikman bounds [104], or when the expansions are converging
fast [105]. The method of basic structural sums developed by Mityushev et al. [3,4], serves
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as the firm foundation for obtaining polynomial truncations of the effective properties, as
well as for the direct analysis of a micro-structure of nanocomposites [106].

For macroscopically isotropic composites, the following truncated expansion for effec-
tive scalar conductivity was found

σe = 1 + 3 f + 3 f 2 + 4.80654 f 3 + O( f
10
3 ). (122)

Jeffrey [99], in this case gives, only a quadratic term, 4.51 f 2. Mityshev et al. concluded
in [4] that such a disparity is caused by a methodological error, “related to an intuitive
physical treatment of the conditionally convergent integral discussed in [99]”.

With a known threshold corresponding to the random close packing (RCP), fc = 0.637,
the conductivity is given by the power-law of the type (7),

σe ' A( fc − f )−s.

From simulations, the superconductivity critical index s is expected to have the value of
0.73± 0.01 [107]. Let us estimate the value of s based on asymptotic information contained
in (122). Let us use the same method for calculating the critical indices as in Section 2.1.2.
To this end, compose the sequences ∆kn = 0, with k = 1, 2. From the series (122), one can
find only three independent estimates for the critical index s, see Table 2. One can see that
all three are close to 0.72 and to the expected value of 0.73. More details can be found in the
book [4].

Table 2. Critical indices for the superconductivity sk obtained from the optimization conditions
∆kn(sk) = 0.

sk ∆k,k+1(sk) = 0 ∆k3(sk) = 0

s1 0.725 0.721
s2 0.715 0.715

To obtain a final formula, one can simply fix the value of s = 0.73 and find the
following approximant for the effective conductivity:

R∗3( f ) =
((

2.56706 f 2+2.06109 f+0.405769
(0.637− f )2

)3/2
− 0.372504 f 3

(0.637− f )3

)0.243333

. (123)

From the approximant, we obtain A ≈ 1.456. Furthermore, the fourth-order coefficient,
a4 ≈ 7.48, could be found fromR∗3( f ).

Let us calculate the critical index s, applying the technique suggested in Section 2.1.1.
After the diff-log transformation, inversion and Borel summation, we arrive at the fol-
lowing sequence of approximations dependent on the number of terms k involved in the
construction of the iterated roots,

s1 = 0.725, s2 = 0.72.

With the index fixed to the value of s = 0.72 and applying the technique of [32] directly to
the truncation (122), we obtain the following sequence of amplitudes

A1 = 1.332, A2 = 1.398, A3 = 1.43, A4 = 1.446.

The latter sequence was continued beyond the third order since we kept going after the
Euler variable transformation (7) to the fourth-order term.

The method of self-similar Borel summation [31] based on Borel transformation and
factor approximants, and described in more detail in Section 2.1.1, produces reasonable
values

s2 = 0.84, s3 = 0.721,
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for the index, and in the third order gives A ≈ 1.489. Various techniques bring very close
results for the critical index and amplitude.

9. Concluding Remarks

The conclusion of the paper is straightforward. Even short polynomial expressions
derived by the great scientists for the effective properties at small values of relevant pa-
rameters are rather informative, as long as their treatment is complemented with the
consideration of critical properties for a non-universal critical phenomenon. Such a par-
ticular realization of the L. I. Manevitch asymptotic complementarity principle (from the
1960s) [108] is our contribution to the “Big Picture”. Moreover, the two limit-cases are so
thoroughly intertwined or entangled in the course of obtaining an approximate solution,
that each of them retains hidden information about the other even when they are considered
separate or disentangled. Uncovering such information turns out to be possible by means
of mostly analytical tools. Thus, an analytical approach to perturbative problems advocated
by Feynman and developed by Bogolyubov in the refined form of an RG turns out to be
fruitful in application to the effective properties.

One can think about the methodological universality in place of the physical univer-
sality of critical phenomena elaborated on by Wilson and Kadanoff [6,70].

In Section 2, we applied the methods of estimation of the coefficients in the truncated
expansions based on the first-order and second-order coefficients, supplemented by the
information on the maximum volume fraction and critical indices for the effective viscosity.
In the three-dimensional case, the critical index is even calculated based on the two non-
trivial coefficients and threshold by applying the factor approximants. The results for the
index are found to be in good agreement with Brady predictions. In the three-dimensional
case, an accurate crossover formula for the conductivity is brought up. They are compared
with others and are in good agreement with the reference formula.

In Section 3, the formulas developed in Section 2 for passive suspensions are applied
to the active suspensions of puller micro-organisms. The two crossover problems for the
intrinsic viscosity dependent on activity, and the effective viscosity dependent on volume
fractions are solved approximately. The quality of approximations could be evaluated by
estimating the enhancement in the effective viscosity, which turned out correct by an order
of magnitude for pullers.

In Section 4, we discussed the main five methods for the problem of the calculation of
the critical indices and amplitudes from extremely short truncated series. The critical index
for the shear modulus of random elastic composites is calculated by all five methods, and
the average (and variance) is found in agreement with expectations from the experiments.

In Section 5, the critical indices for sedimentation are calculated from the short trunca-
tion by means of minimal difference and minimal derivative conditions imposed directly
on the critical properties. The estimates at various thresholds agree with other theoretical
estimates and real experimental results.

In Section 6, we found the crossover expressions for the non-local diffusion coefficient
of a simple liquid in the vicinity of a critical point, dependent on the wave-number of den-
sity fluctuations in the liquids. The extensions and corrections to the celebrated Kawasaki
formula are designed in such a way that the dynamic scaling hypothesis is satisfied in all
orders.

In Section 7, we calculated the effective critical index for superconductivity dependent
on the concentration of vacancies. The index is predicted to be smaller than the value of
1/2 for the two-dimensional regular composites.

In Section 8, we calculated the superconductivity critical index of the random three-
dimensional composite in good agreement with results from simulations on lattice models.

The problems to be solved are technical but difficult, consisting of improvements of
the quality of expansions using some smoothing procedures, such as those applied in the
derivation of the expansions in [94]. Hopefully, a more accurate truncated expansion could
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be obtained for the problems of finding critical indices t for conductivity in 3D and elasticity
T in 2D and 3D cases [1,4].

The method of self-similar Borel summation could be improved further by applying it
iteratively, with the number of iterations playing the role of a control. Generally speaking,
the quality of Borel summation could be improved through various generalizations, and
finding the most effective optimization technique, in addition to those already available [32],
would help to improve the accuracy of summations in various problems of physics and
applied mathematics.

Another challenge to be solved is envisaging a 2D system with a critical index for
superconductivity s larger than 1.3, as our work already covered the physics behind the
region of 0 < s ≤ 1.3 [3,68,94].
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Nomenclature
f stands for volume fraction (concentration) of the inclusions
s stands for the critical index for superconductivity
ω stands for frequency
q, q = |q| stand for the wave vector and wave number
σe stands for the effective conductivity
Ge stands for the effective shear modulus
S is the critical index for super-elasticity and viscosity
εij stand for the components of the strain tensor
µ, µe both stand for the effective viscosity
σij stand for the components of the stress tensor
2D, and 3D mean two-, and three- dimensional
A, B and C stand for the critical amplitudes
F ∗ stands for the factor approximants
Pn,m stands for the Padé (n, m)-approximant
R∗ stands for the root approximants
KD means Krieger–Dougherty equation
ARM means algebraic renormalization method
CAM means coherent-anomaly method
RG means renormalization group
RCP means random close packing
T stands for temperature
β generally stands for the critical index in application to an arbitrary case
Γ(x) stands for the Γ function
Ei(x) stands for the exponential integral
∼ indicates asymptotic equivalence between functions, i.e., indicates that functions

are similar, of the same order
' indicates that the two functions are similar or equal asymptotically
≈ is used as “approximately equal to”, indicating that the number is acceptably

close to an exact value
∗ marks self-similar approximants
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