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Abstract: Aiming at the problems of complex space, long planning time, and insufficient path security
of 3D path planning, an improved ant colony algorithm (TGACO) is proposed, which can be used
to solve symmetric and asymmetric path planning problems. Firstly, the 3D array is used to access
the environment information, which can record the flight environment and avoid the inefficiency
of planning. Secondly, a multi-objective function of distance and angle is established to improve
the efficiency and safety of the path. Then, a target-guided heuristic function is proposed, and an
anti-deadlock mechanism is introduced to improve the efficiency of the ant colony algorithm. Next,
the node pheromone update rules are improved to further improve the efficiency of the algorithm.
Finally, experiments prove the effectiveness of the improved algorithm, TGACO, and its efficiency in
complex environments has obvious advantages. In the 20× 20× 20 environment, compared with
the ant colony algorithm (ACO), the improved algorithm (TGACO) in this paper improves the path
length, total turning angle, and running time by 17.8%, 78.4%, and 95.3%, respectively.

Keywords: target guidance; anti-deadlock; path angle; node pheromone; ACO

1. Introduction

In recent years, military and civilian UAV technology has developed rapidly. UAVs
are used in agriculture and forestry, electric power, logistics and target attack, etc. However,
no matter what kind of scenarios and tasks a UAV is applied in, flight path planning
is indispensable. UAV path planning is a planned route that connects from the starting
point to the target point and avoids obstacles according to mission requirements, flight
environment, and other information. Path planning is an NP-hard problem. Unlike path
planning of mobile robots, path planning involves three-dimensional space, so the planning
space is more complicated and the calculation amount is larger, which requires a higher
calculation speed of the algorithm. Due to the constraints of the UAV itself, the safety
requirements of the flight path are stricter. Combined with the constraints, the quality
requirements of flight modeling and flight path solution of the UAV are more demanding.

At present, UAV path planning is mostly solved by intelligent optimization algo-
rithms [1–3], mainly focusing on the path symmetry planning problem. That is, the equal
round-trip cost between two path points is a symmetry problem, and the unequal cost is
an asymmetric problem. Paper [4] proposed an improved artificial potential field method,
which introduced angle and speed adjustment factors and set auxiliary obstacle avoidance
forces at the same time to ensure the safe and smooth path and conform to the real path of
UAVs. Paper [5] uses the Metropolis criterion and RTS smoothing algorithm to improve the
PSO algorithm, solve the problem that the algorithm is easy to fall into local optimization,
further smooth the path, and optimize the path planning results. Paper [6] designed the
coding method according to the characteristics of the 3D path, then adjusted the crossover
and mutation operators and designed the dynamically adjusted nonlinear fitness function,
which improved and solved the premature problem of the genetic algorithm and improved
the convergence speed, but the disadvantage is that there are infeasible paths that need to
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be judged again. Paper [7] introduced an adaptive adjustment factor to improve the ant
colony algorithm to balance convergence and global search capabilities, and improved high-
quality node selection probability with the angle guidance factor and obstacle elimination
factor, so that path planning has high real-time use and stability. Paper [8] improved PRM
to transform the flight environment into an undirected connected graph while increasing
the number of samples near obstacles to improve the quality of the shortest path of the ant
colony algorithm in complex terrain, but the path completely depends on the number and
location of sampling points, and the feasible path is not complete. Paper [9] proposed a lay-
ered ant colony algorithm for 3D path planning, which takes the combination of an obstacle,
distance, and height as the heuristic function and uses the way of track point projection to
reduce the dimension of 3D space and improve the efficiency of the algorithm. Paper [10]
designed an environment space coordinate transformation method, which adopts adaptive
pheromone update and uses distance and angle between the next node, the current point,
and the target point as inspiration to improve the global search ability and efficiency of
the ant colony algorithm, but the calculation method of the algorithm is complex, and the
amount of calculation is large.

To sum up, the space search of UAV 3D path planning is complex, and dimension
reduction is adopted in some studies, which results in some possible paths being ignored.
Moreover, some 3D planning coding methods are complicated, and there are infeasible
paths that need to be judged again. Then, the guidance of target points to the path is less
considered in path planning, and the calculation is large and complex, resulting in the
insufficient calculation accuracy and low time efficiency. Therefore, this paper proposes
an improved ant colony algorithm for fast path planning, and the main work involved
is as follows: (1) a 3D array flight environment model is established, and the storage of
environmental information directly corresponds to the dimensions, which reduces the
complexity of space conversion, improves the efficiency of information reading, and makes
flight path planning more consistent with the actual flight environment. (2) The multi-
objective function of path planning combining total distance and total angle is established
to reduce the number of turns and angles and improve the safety of path planning while
obtaining the shortest path. (3) Cross-grid path search is prohibited to avoid the occurrence
of an infeasible path, so there is no need to judge the feasibility of the path. (4) In the
algorithm, the target guidance mechanism and anti-deadlock mechanism are designed to
improve the target guidance of the search, and then the invalid nodes are marked to improve
the efficiency of the algorithm and the quality of the path solution. The node pheromone
updating method is adopted to reduce the corresponding relationships between nodes and
edges to improve the computational efficiency of the ant colony algorithm. (5) Simulation
results show that the improved algorithm is efficient and correct. The detailed structure of
this paper is: (1) research background, (2) UAV flight model establishment, (3) algorithm
design, (4) simulation and analysis, and (5) conclusion.

2. Model Establishment
2.1. Flight Environment Model

Flight environment construction is the basis of UAV flight path planning. This paper
establishes a 3D environment model for the UAV flight. Compared with a 2D plane,
3D modeling can more truly reflect the UAV flight environment. As shown in Figure 1,
the space rectangular coordinate system of x, y, and z axes is established, and the flight
environment is divided by the grid method. The grid method is a common method in path
planning. It refers to dividing the flight space into a certain number of grids [11], and each
grid represents a searchable space. The size of the unit grid directly affects the accuracy
and complexity of UAV path planning. The division of the unit grid is too large and the
accuracy of the UAV path is insufficient, which affects the final path distance and cannot
ensure a better-planned path. The unit grid division is too small and the complexity of path
planning is high, which increases the time required for path planning. Therefore, this paper
selects the minimum path segment of UAV as the basis of grid division, which can not only
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ensure the path accuracy of UAV but also meet the design requirements of a UAV. Then, by
marking the known environmental information, 0-obstacle, 1-flight, and using a 3D array
to store the flight environment information converted into digital markers, we are able to
facilitate the subsequent intelligent algorithm to read the flight environment and then plan
the flight path of the UAV. At the same time, using a 3D array to record information can
avoid the conversion of spatial dimensions and improve the computational efficiency of
the algorithm.
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2.2. Path Planning Model
2.2.1. Objective Function

The establishment of an objective function directly affects the evaluation of the path.
To ensure that the planned UAV has the shortest path distance and the least turning times,
a multi-objective function composed of the total path distance and the total turning angle
is established in this paper. The establishment of a multi-objective function is used to solve
the problem of insufficient path safety of UAVs, while ensuring the shortest flight distance
of UAVs, reducing the number and degree of changing flight attitude, and balancing the
relationship between flight distance and attitude change to improve the flight safety of
UAVs. The objective function is shown in Equation (1).

f (x) = λ1

n

∑
i=1

li + λ2

n−1

∑
j=1

θj (1)

where li is the distance of the path segment, θj is the included angle between the path
segments, and λ1 and λ2 are the weights of the total distance and angle, respectively.

2.2.2. Constraints

Due to the design requirements of the UAV, the planned path needs to meet the
physical characteristics of the UAV. In this paper, the maximum turning angle, the maximum
pitching angle, and the maximum path distance are selected as the UAV path constraint
conditions [12].

(1) Maximum turning angle: the maximum angle allowed by the UAV in a turn during
flight. The maximum turning angle can be calculated by the included angle between two
paths. As shown in Figure 2, α is the angle of a turn of a UAV, which is calculated as shown
in Equation (2).

ai·aT
i+1

|ai| × |ai+1|
≥ cos α (i = 1, 2, . . . , n− 1) (2)

where ai is the path segment vector, and |ai| is the length of the path segment vector.
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Figure 2. Schematic diagram of the maximum turning angle.

(2) Maximum pitch angle: the maximum angle allowed to change when the UAV rises
or dives in the vertical direction. As shown in Figure 3, the included angle between the
path segment and its projection on the horizontal plane ξ is the rising or diving angle, and
the angle calculation is shown in Equation (3).

|bi|
|ai|
≤ tan ξ (i = 1, 2, . . . , n) (3)

where |bi| is the difference in the vertical direction of the path segment, and |ai| is the
length of the path segment vector.
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(3) Maximum path distance: the maximum distance that the UAV can fly at a constant
speed in a mission. The constraint condition is shown in Equation (4).

∑
i

li ≤ Lmax (i = 1, 2, . . . , n) (4)

where li is the distance of the path of segment i, and Lmax is the preset maximum path distance.

3. Improved Ant Colony Algorithm

UAV path planning is a route that connects from the starting point to the ending point
and bypasses obstacles according to mission requirements, flight environment, and other
information. At the same time, the flight path should meet the constraints of the UAV to
ensure flight safety. After analyzing the commonly used algorithms for UAV flight path
planning [13–15] and the structure of the flight path solution, this paper selects the ant
colony algorithm to solve the 3D flight path of UAV. The ant colony algorithm has good
parallelism, cooperation, and robustness, and the greedy mechanism drives the solution
to the optimal. Moreover, the ant colony algorithm has no crossover mutation or other
operations, resulting in the chaos of the path solution order. It has no specific requirements
for the symmetry of the graph and objective function, and can solve symmetric, asymmetric,
linear, and nonlinear problems, so it is more suitable for UAV path planning.

3.1. Ant Colony Algorithm

As a heuristic intelligent algorithm for solving optimization problems, the ant colony
algorithm is also commonly used in path planning [16–21]. The basic idea is to use the
positive feedback mechanism to leave pheromones along the path of ants, and the better the
path is, the more pheromones are generated. The selection probability of ants is calculated
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according to the pheromone and heuristic function, and then the optimal solution is found
through continuous iteration. The calculation equations of the traditional ant colony
algorithm are shown in Equations (5)–(7), which are heuristic function, state transition
probability, and pheromone update, respectively.

ηij(t) =
1

dij
(5)

pk
ij(t) =


τα

ij (t)×η
β
ij(t)

∑s∈Jk(i)
τα

ij (t)×η
β
ij(t)

j ∈ Jk(i)

0 Otherwise
(6)

τij(t + 1) = τij(t)× (1− ρ) + ∆τij

∆τij =
m
∑

k=1
∆τk

ij

∆τk
ij =

{
Q
Lk

k ant passes by ij

0 Otherwise

(7)

where τij is pheromone, ηij is the heuristic function, dij is the distance from grid i to grid j, α
is the pheromone factor, β is the heuristic function factor, ρ is the pheromone volatilization
coefficient, Q is the pheromone constant, Lk is the path length of this iteration, and ∆τij is
the pheromone increment of this iteration.

3.2. Improvement Heuristic Function

The heuristic function of the ant colony algorithm is guided by the distance between
the current point and the selected node, while the orientation of the target point is not
considered. As the end node of the whole path, the position relationship between the
target point, the current point, and the selected node are particularly important. The closer
the selection node is, the better the connection between the current point and the target
point is. That is, the more the vector between the current point and the selection node
points to the target point, the greater the probability that the selected node should be
selected. Usually, there are 26 selectable nodes near a node, and the guidance of the target
point to these selectable nodes is different. If the difference between the advantages and
disadvantages of nodes can be distinguished effectively, the ant can preferentially select
nodes with better quality, thus improving the efficiency of the algorithm. Therefore, the
improved heuristic function of the target guidance mechanism is proposed in this paper, as
shown in Equations (8) and (9). The known information of the UAV flight environment
is fully utilized, enhancing the influence of the target point on the whole path, making
it easier for the ant colony to find the path segment pointing to the target point, thus
effectively improving the convergence speed of the algorithm. According to the target
guidance mechanism, Equation (9), CG-SG is in the range of [−3,3] and TG is in the range
of [0,1]. The larger the value, the smaller the angle between the vector from the current
point to the selected point and the vector from the current point to the target point, and
the better the target directivity. As shown in Figure 4, the target guidance values of the
26 nodes around the current point have symmetry, wherein the target guidance value of the
S1 node on the vector line segment from the current point to the target point is 1, the target
guidance value of the other nodes decreases gradually, and the target guidance value of the
node away from the vector line segment is 0. Therefore, the selection point S1 pointing to
the target point is more enlightening.

ηj(t) = µ1
1

dij
+ µ2TG (8)

where dij is the distance between the current grid i and the selected grid j, TG is the
normalization of the target point guidance value in the interval [0,1], and µ1 and µ2
represent the corresponding weight, respectively. When µ1 = 1 and µ2 = 0, the heuristic
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function is the distance heuristic of the traditional ant colony algorithm. When µ1 = 0 and
µ2 = 1, the heuristic function is target-guided heuristic. The larger µ is, the stronger the
corresponding distance or target guidance enlightenment is.

TG = (sin((CG − SG)× π
6 ) + 1)/2

CG = |tx − cx|+
∣∣ty − cy

∣∣+∣∣tz − cz
∣∣

SG = |tx − sx|+
∣∣ty − sy

∣∣+∣∣tz − sz
∣∣ (9)

where CG is the guidance of the target point to the current point, SG is the guidance of
the target point to the selected node, tx, cx, and sx are the grid x-axis indexes of the target
point, the current point, and the selected node, respectively, ty, cy, and sy are the grid y-axis
indexes of the target point, the current point, and the selection node, respectively, and tz, cz,
and sz are the grid z-axis indexes of the target point, the current point, and the selection
node, respectively.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 

effectively improving the convergence speed of the algorithm. According to the target 
guidance mechanism, Equation (9), CG-SG is in the range of [−3,3] and TG is in the range of 
[0,1]. The larger the value, the smaller the angle between the vector from the current point 
to the selected point and the vector from the current point to the target point, and the 
better the target directivity. As shown in Figure 4, the target guidance values of the 26 
nodes around the current point have symmetry, wherein the target guidance value of the 
S1 node on the vector line segment from the current point to the target point is 1, the target 
guidance value of the other nodes decreases gradually, and the target guidance value of 
the node away from the vector line segment is 0. Therefore, the selection point S1 pointing 
to the target point is more enlightening. 

1 2

1
( ) G

j
ij

t T
d

     (8)

where dij is the distance between the current grid i and the selected grid j, TG is the nor-
malization of the target point guidance value in the interval [0,1], and μ1 and μ2 represent 
the corresponding weight, respectively. When μ1 = 1 and μ2 = 0, the heuristic function is 
the distance heuristic of the traditional ant colony algorithm. When μ1 = 0 and μ2 = 1, the 
heuristic function is target-guided heuristic. The larger μ is, the stronger the correspond-
ing distance or target guidance enlightenment is. 

(sin((C ) ) 1) / 2
6

| |

| |

G G G

G
x x y y z z

G
x x y y z z

T S

C t c t c t c

S t s t s t s


   

     

     

 (9)

where CG is the guidance of the target point to the current point, SG is the guidance of the 
target point to the selected node, tx, cx, and sx are the grid x-axis indexes of the target point, 
the current point, and the selected node, respectively, ty, cy, and sy are the grid y-axis in-
dexes of the target point, the current point, and the selection node, respectively, and tz, cz, 
and sz are the grid z-axis indexes of the target point, the current point, and the selection 
node, respectively. 

S3C

T

S1S2

S3S5

S2S4

TS1C

 
Figure 4. Schematic diagram of target guidance mechanism. 

3.3. Anti-Deadlock Path 
Due to the influence of the flight environment, the ant colony may fall into the sur-

rounding obstacles when looking for the path node. As shown in Figure 5, there are no 
selectable nodes around the current point, and the ant colony algorithm falls into a dead-
lock, thus failing to find the track from the starting point to the target point. Therefore, 
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3.3. Anti-Deadlock Path

Due to the influence of the flight environment, the ant colony may fall into the sur-
rounding obstacles when looking for the path node. As shown in Figure 5, there are no
selectable nodes around the current point, and the ant colony algorithm falls into a dead-
lock, thus failing to find the track from the starting point to the target point. Therefore,
this paper designs a mechanism to jump out of obstacles to prevent algorithm deadlock. If
there is no selectable node around the current point, jump out of the current point, return
to the previous node, and mark the current point to prevent entering the enclosure again.
Release the marking information until the next feasible path node is successfully selected.
This mechanism can ensure that the ant colony algorithm can obtain an effective path from
the starting point to the target point, reduce the possibility of obtaining invalid paths, and
improve the quality of each ant colony’s search solution.
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Figure 5. Schematic diagram of anti-deadlock mechanism.

3.4. Improvement Pheromone Update

In the development of the ant colony algorithm, two main pheromone storage struc-
tures have been developed: edge pheromone and node pheromone [22]. Most ant colony
algorithms use edge pheromones to update and store, which is related to the structure of the
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path planning solution. Due to the complexity of spatial search and numerous node-edge
paths in the 3D path planning of UAV, the storage space of the edge pheromone structure
is huge, and the corresponding relationship of nodes is complex, which is not conducive
to the algorithm’s solution. In addition, this paper establishes a 3D array model for UAV
flight environment information, which is more convenient for the use of node pheromone
structure, reduces the mapping relationship between nodes, and further improves the
efficiency of the algorithm. Through the above improvements, the space complexity of this
paper is the space complexity O (n3) of the 3D array. In the ant colony algorithm using the
node pheromone, there is a problem that a node may pass through multiple association
paths. Each association path will generate a pheromone and update at the node, which
makes the pheromone distribution of the node increase sharply [23]. To avoid the rapid
accumulation of node pheromones, the strategy of global pheromone update should be
adopted. When the global pheromone update strategy is adopted, it can appropriately slow
down the trend of rapid accumulation of node pheromones, but there is still instability.
Therefore, this paper considers that only the pheromone of the optimal solution is updated
in the early stage of the algorithm iteration to reduce the updating of the pheromone of
inferior nodes, and the pheromone of each solved path is updated in the middle and late
stage of the algorithm iteration. When each time is t + 1, the pheromone update is shown
in Equations (10) and (11).

τj(t + 1) = τj(t)× (1− ρ) + ∆τj (10)

∆τj =
m
∑

k=1
∆τk

j

∆τk
j =


Q

Lbest

The early of iteration,
k ant passes through node j

Q
Lk

The middle and later of the iteration,
k ant passes through node j

0 Otherwise

(11)

where ρ is the pheromone volatilization factor, Q is the pheromone constant, Lbest is the
current optimal path length, and Lk is the path length found by ant k.

3.5. Improvement Algorithm Flow

To avoid the planned path crossing obstacles and carrying out collision tests later, a
cross-grid search by ants is forbidden in this paper. Therefore, the selectable nodes searched
by ants each time are the adjacent grid of the current point. At the same time, the grid that
does not meet the maximum turning angle and maximum pitch angle is deleted to avoid
invalid searches by ants and improve the search efficiency of the ant colony algorithm. The
specific algorithm implementation steps are as follows:

(1) Input the starting point, target point, minimum direct flight distance, and other param-
eters, build the flight environment grid map, and create a 3D array of environment information.

(2) Initialize the algorithm parameters, and set the maximum number of iterations of
the ant colony algorithm, the number of ants, heuristic function factor, pheromone factor,
volatilization coefficient, etc.

(3) Path selection: the ant calculates the state transition probability according to the
target guidance mechanism, selects the next path node, and avoids generating invalid paths
according to the anti-deadlock mechanism until the target point is found.

(4) Pheromone updating: according to the pheromone updating rules, the pheromone
of ant passing through the node is updated.

(5) The termination condition: the maximum number of iterations is reached, the
iteration is stopped, and the optimal path is output. Otherwise, return to step (3) to
continue to find the optimal path.

The flow chart of the improved ant colony algorithm (TGACO) is shown in Figure 6.
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4. Simulation Experiments and Analysis

To verify the effectiveness and correctness of the improved ant colony algorithm
(TGACO), the TGACO is simulated in different flight environments, and the advantages
of the improved algorithm in efficiency, path quality, and other indicators are analyzed
by comparing with other algorithms. The simulation environment is the Core (TM) i5
(2.40 GHz) Windows10 system.

4.1. Parameter Settings

The selection of different parameter values of the ant colony algorithm not only affects
the time efficiency of operation, but also affects the quality of the solution. However, there
is no perfect parameter value selection method in the existing research, so it is necessary
to determine the parameter values of the ant colony algorithm through experiments and
past experience [24]. In this paper, the parameter setting experiment is carried out in the
20× 20× 20 grid environment, the single variable control method is adopted, and the best
average value of 10 operation results is taken as the best parameter. Parameter intervals are
α ∈ {1, 2, 3, 4, 5}, β ∈ {1, 3, 5, 7, 9}, and ρ ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. The default values are
α = 1, β = 5, and ρ = 0.5. The experimental results are shown in Table 1.
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Table 1. Experimental results of main parameters.

Parameters Parameter Settings and Experimental Results

α 1 2 3 4 5
Mean path length 35.25 36.13 36.34 36.68 36.82

β 1 3 5 7 9
Mean path length 42.55 36.83 35.87 34.81 34.01

ρ 0.2 0.4 0.5 0.6 0.8
Mean path length 34.84 34.97 35.43 35.33 36.13

According to the experimental results, α is near 1, β is near 9, ρ is near 0.2, and the
average path length is better. The weight coefficient of the heuristic function needs to be set
according to the specific flight environment and experience. When there are few obstacles
on the line between the starting point and the target point, target guidance can be taken
as the main inspiration, so that the planned flight path is closer to the line between the
two points. Therefore, the weight of target guidance can be set to a larger value. When
there are many obstacles between the starting point and the target point, the weight of
the target guidance should be appropriately reduced to avoid the algorithm falling into
obstacles or local optimization. The weight experiment of the multi-objective function is
shown in Table 2. The multi-objective function of distance and angle sets in this paper is
significantly better than the single objective function of distance in terms of total angle and
turning times, and there is a slight difference in distance. The weights of the multi-objective
function are λ1 = 0.8 and λ2 = 0.2.

Table 2. Multi-objective function experiment.

Functions Total Distance Mean Total Angle Mean Average Number of UAV
Attitude Changes

Optimal path distance 33.81 376.5 12
Optimal path

comprehensive 33.85 256.5 8

4.2. Algorithm Comparison Experiment

According to the parameter settings experiment, the optimal parameter values are
selected as the parameters of the algorithm comparison experiments. The number of
iterations of the ant colony algorithm (ACO) and improved algorithm (TGACO) is 50, the
number of ants is 50, and the improved heuristic function weights are set according to the
grid environment, starting point, and target point position. Since the starting point and the
target point are in the diagonal position in the experiments, the target guidance weight is
set to a larger value, and the heuristic function weights are µ1 = 0.02 and µ2 = 0.98.

(1) The 20× 20× 20 Grid environment

In the 20× 20× 20 obstacle grid environment, the improved ant colony algorithm
(TGACO), ant colony algorithm (ACO), and A* algorithm are experimentally analyzed, and
the four indexes of total path distance, total path angle, UAV attitude change times, and
algorithm running time are compared, respectively. The experimental results are shown
in Table 3. Compared with ACO, the TGACO has obvious advantages in four indexes,
which are increased by 17.8%, 78.4%, 50%, and 95.3%, respectively. Compared with the
A* algorithm, the TGACO algorithm improves the total angle, attitude change times, and
running time by 28.9%, 33.3%, and 37.9%, respectively. The experimental results show that
the proposed target guidance mechanism and anti-deadlock mechanism can effectively
improve the speed and solution quality of the algorithm, and the multi-objective function
can ensure that the UAV has fewer attitude changes and a smaller total turning angle. The
planned paths of the three algorithms are shown in Figure 7.
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Table 3. Environmental experiment results.

Algorithms Total Distance Total Angle Attitude Change Times Running Time(s)

TGACO 33.7 135 4 0.798
ACO 41.0 625 8 17.099

A* 33.7 190 6 1.285
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(2) The 30× 30× 30 Grid environment

In the obstacle grid environment of 30× 30× 30, the experimental analysis of three
algorithms (TGACO, ACO, A*) is also carried out, and the four indexes in the above
experiment are compared. The experimental results are shown in Table 4. Compared with
the ACO, the TGACO has been greatly improved in terms of total distance, total angle,
attitude change times, and algorithm running time, which are increased by 21.7%, 61.9%,
59.1%, and 99%, respectively. The advantages of the improved algorithm in algorithm
running time are particularly obvious. Compared with the A* algorithm, although the
TGACO does not have advantages in total distance, total angle, and attitude change times,
it is 81.6% higher than the A* algorithm in running time. When the other three indexes are
similar, the TGACO can better meet the requirements of UAV rapid path planning. The
planned paths of the three algorithms are shown in Figure 8.

Table 4. Environmental experiment results.

Algorithms Total Distance Total Angle Attitude Change Times Running Time(s)

TGACO 50.8 280 9 2.262
ACO 64.9 735 22 224.262

A* 50.7 190 6 12.282
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(3) The 100× 100× 100 Grid environment

Since path planning is an NP-hard problem, the running time of the algorithm increases
exponentially by increasing the planning space. When the flight environment is too large,
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ACO and A* algorithms cannot plan the flight path in a short time (10 min) and cannot meet
the requirements of rapid path planning. The planning path of the improved algorithm
(TGACO) in this environment is shown in Figure 9, and the experimental results are shown
in Table 5.
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Table 5. Environmental experiment results.

Algorithms Total Distance Total Angle Attitude Change Times Running Time(s)

TGACO 183.2 3075 98 16.701

According to the results of experiments (1), (2), and (3), the improved algorithm
TGACO in this paper has a certain degree of improvement in the total path distance, total
path angle, UAV attitude change times, and running time, especially in the operation
efficiency of the algorithm, which has obvious advantages. With the expansion of the
UAV flight environment, the advantage of the improved algorithm in running time is
more obvious.

5. Conclusions

To improve the accuracy and efficiency of the environment modeling, the flight en-
vironment grid map is established, and the 3D array is used to access the environment
information, so that the UAV flight environment modeling is closer to the real situation and
the environment information dimension is corresponding, thus effectively improving the
reading efficiency of the flight environment information. To improve the insufficient path
safety, a multi-objective function for UAV path planning is established. The function consid-
ers both the shortest path distance and the total angle of the path, to reduce the amplitude of
variation and times of the UAV flight attitude change in the planned path and improve the
safety of the planned path. The improved ant colony algorithm, proposed target guidance
mechanism, and anti-deadlock mechanism effectively improved the global search efficiency
and the quality of algorithm solution, adopted improved node pheromone update rules,
improved the efficiency of the algorithm operation, and prevented the algorithm from
falling into local optimization. Last, the effectiveness of the improved algorithm TGACO
in this paper is verified through simulation experiments and algorithm comparison, and
the improved algorithm is beneficial to fast path planning in complex flight environments.
In the 30× 30× 30 environment, compared with the ant colony algorithm (ACO), the
improved algorithm (TGACO) in this paper increases the path length, the total turning
angle, and the running time by 21.73%, 61.90%, and 98.99%, respectively.

The follow-up research work will focus on the adaptability of weights and influence
factors, reduce the participation of human testing and experience values, and enable
dynamic adjustment of each parameter to improve the adaptability of the ant colony
algorithm to various application environments and meet different requirements. In the
aspect of algorithm solution quality, the pheromone distribution is optimized to avoid the
occurrence of local optimum. The time and space complexity of the algorithm is further
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optimized, the overall process of path planning technology is improved by combining
information such as UAV sensors, and it is analyzed and tested in a practical application.
Finally, facing the future development trend of UAVs, the cooperative path planning of
multi-UAV is further studied.
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