An Improved Regularity Criterion for the 3D Magnetic Bénard System in Besov Spaces
Abstract
:1. Introduction
2. Main Results and Proofs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulone, G.; Rionero, S. Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem. Arch. Ration. Mech. Anal. 2003, 166, 197–218. [Google Scholar] [CrossRef]
- Nakamura, M.A. On the magnetic Bénard problem. J. Fac. Sci. Univ. Tokyo Sect. 1991, 38, 359–393. [Google Scholar]
- Frassu, S.; Li, T.; Viglialoro, G. Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math. Methods Appl. Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Silvia, F.; Viglialoro, G. Boundedness criteria for a class of indirect (and direct) chemotaxis-consumption models in high dimensions. Appl. Math. Lett. 2022, 132, 1–7. [Google Scholar]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 2021, 34, 315–336. [Google Scholar]
- Leray, J. Sur le mouvement d’un liquide visquex emplissent l’espace. Acta Math. J. 1934, 63, 193–248. [Google Scholar] [CrossRef]
- Robinson, J.C.; Rodrigo, J.L.; Sadowski, W. The Three-Dimensional Navie—Stokes Equations: Classical Theory; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Ladyzhenskaya, O.A. Mathematical Problems in the Dynamics of Viscous Incompressible Fluid; Gordon and Breach: New York, NY, USA, 1963. [Google Scholar]
- Serrin, J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 1962, 9, 187–195. [Google Scholar] [CrossRef]
- Chae, D.; Lee, J. Regularity criterion in terms of pressure for the Navier-Stokes equations. Nonl. Anal. TMA 2001, 46, 727–735. [Google Scholar] [CrossRef]
- Berselli, L.; Galdi, G. Regularity criteria involving the pressure for the weak solutions of the Navier-Stokes equations. Proc. Am. Math. Soc. 2002, 130, 3585–3595. [Google Scholar] [CrossRef]
- Zhou, Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann. 2004, 328, 173–192. [Google Scholar] [CrossRef]
- Zhou, Y. On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in Rn. Z. Angew. Math. Phys. 2006, 57, 384–392. [Google Scholar] [CrossRef]
- Zhou, Y. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3. Proc. Am. Math. Soc. 2006, 134, 149–156. [Google Scholar] [CrossRef]
- Duan, H. On regularity criterion in terms of pressure for the 3D viscous MHD equations. Appl. Anal. 2002, 91, 947–952. [Google Scholar] [CrossRef]
- Ma, L. Global existence of smooth solutions for three-dimensional magnetic Bénard system with mixed partial dissipation, magnetic diffusion and thermal diffusivity. J. Math. Anal. Appl. 2018, 461, 1639–1652. [Google Scholar] [CrossRef]
- Ma, L. Blow-up criteria and regularity criterion for the three-dimensional magnetic Bénard system in the multiplier space. Results Math. 2018, 73, 1–22. [Google Scholar] [CrossRef]
- Liu, Q. A note on blow-up criterion of the 3d magnetic Bénard equations. Appl. Math. Lett. 2020, 104, 1–6. [Google Scholar] [CrossRef]
- Chen, D.; Jian, F.; Chen, X. Regularity criteria for the 3D magnetic Bénard equations without thermal diffusion in terms of pressure. Math. Methods Appl. Sci. 2021, 44, 1956–1970. [Google Scholar] [CrossRef]
- Montgomery-Smith, S. Conditions implying regularity of the three dimensional Navier—Stokes equation. Appl. Math. 2005, 50, 451–464. [Google Scholar] [CrossRef]
- Chan, C.H.; Vasseur, A. Log Improvement of the Prodi–Serrin Criteria for Navier–Stokes Equations. Methods Appl. Anal. 2007, 14, 197–212. [Google Scholar] [CrossRef]
- Zhou, Y.; Gala, S. Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces. J. Math. Anal. Appl. 2009, 356, 498–501. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, Z. Logarithmically improved criteria for Euler and Navier-Stokes equations. Commun. Pure Appl. Anal. 2013, 12, 2715–2719. [Google Scholar] [CrossRef]
- Zhang, H. Logarithmically improved regularity criterion for the 3D micropolar fluid equations. Int. J. Appl. Anal. 2014, 10, 1–6. [Google Scholar] [CrossRef]
- Chi, M.; Xu, F.; Wu, Y. A logarithmic improvement of regularity criterion for the MHD equations in terms of the pressure. Appl. Math. Comput. 2018, 327, 46–54. [Google Scholar] [CrossRef]
- Lemarie-Rieusset, P.G. Recent Developments in the Navier-Stokes Problem; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kozono, H.; Ogawa, T.; Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 2002, 242, 251–278. [Google Scholar] [CrossRef]
- Kato, T.; Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 1988, 41, 891–907. [Google Scholar] [CrossRef]
- Fefferman, C.L. Existence and smoothness of the Navier-Stokes equation. Millenn. Prize. Probl. 2006, 57, 67. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqeeb, M.; Hussain, A.; Alghamdi, A.M. An Improved Regularity Criterion for the 3D Magnetic Bénard System in Besov Spaces. Symmetry 2022, 14, 1918. https://doi.org/10.3390/sym14091918
Naqeeb M, Hussain A, Alghamdi AM. An Improved Regularity Criterion for the 3D Magnetic Bénard System in Besov Spaces. Symmetry. 2022; 14(9):1918. https://doi.org/10.3390/sym14091918
Chicago/Turabian StyleNaqeeb, Muhammad, Amjad Hussain, and Ahmad M. Alghamdi. 2022. "An Improved Regularity Criterion for the 3D Magnetic Bénard System in Besov Spaces" Symmetry 14, no. 9: 1918. https://doi.org/10.3390/sym14091918
APA StyleNaqeeb, M., Hussain, A., & Alghamdi, A. M. (2022). An Improved Regularity Criterion for the 3D Magnetic Bénard System in Besov Spaces. Symmetry, 14(9), 1918. https://doi.org/10.3390/sym14091918