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Abstract: Thermal performance of magnetically driven Casson nanofluid over a nonlinear stretching
sheet under the influence of entropy, activation energy and convective boundary conditions was
analyzed numerically, employing the quasi-linearization method (QLM). The collective behavior
of thermophoretic diffusion and Brownian motion along with special effects of viscous dissipation,
thermal radiation, heat generation and joule heating are considered in the energy equation for
the flow problem. The addition of nanoparticles helps to stabilize the flowing of a nanofluid and
maintain the symmetry of the flowing structure. The governing highly nonlinear coupled differential
equations of velocity, temperature, concentration and entropy are simulated through an iterative
scheme encoded with MATLAB programming language. The geometric model is, therefore, described
using a symmetry technique. A comparative analysis of linear and nonlinear stretching in sheets is
presented via graphs and tables regarding pertinent dimensionless parameters. It is worth noting that
the Nusselt number and Sherwood number decrease at relatively higher rates with growing values
of activation energy in the case of nonlinear stretching. Moreover, the entropy generation rate near
the stretching surface decreases due to the strong effects of Brownian motion and thermophoretic
diffusion while it goes on improving far off the stretching surface.

Keywords: magnetohydrodynamics; Casson nanofluid; entropy generation; activation energy; quasi-
linearization method

1. Introduction

The augmentation of heat transfer is essentially required in many thermal systems
and it can be acquired by using nanofluids. The mixture of base fluid as well as nano-sized
solid fragments gives rise to nanofluids (NFs) [1]. The pioneering concept of nanofluids
was coined by Choi [2] before the end of the 20th century. Nano-sized suspended particles
were supposed to enhance the heat transfer rate of fluids. Extending his concept, Choi [3]
further presented a comprehensive review on fluid’s nanotechnologies. Some pure metals,
such as Copper, Iron, Platinum, Zinc and their oxides can act as nanomaterials and can
be used in the preparation of nanofluids. The proficiency of conventional fluids can be
boosted up using nanofluids that may effectively improve the thermal conductivity of
common fluids [4–8]. The physical and thermal aspects of nanofluids have been much
studied. Nanolaminates are a novel class of nanoparticles that illuminate the electrical,
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chemical, physical and mechanical aspects of layer thickness during the fabrication of
coating layers. Using molecular dynamics simulation, Doan [9] interpreted the indentation
behavior of amorphous nanolaminates (Cu80Ta20/Cu20Ta80) under the simultaneous effects
of surface interface and layer thickness. The impacts of surface layer, loading velocity
and indenter size on nanolaminates mechanism were also justified in this study. Ekiciler
et al. [10] examined the effect of different shapes of Al2O3 nanoparticles in the flow of water
through a triangular duct with various volume fractions. Yadav et al. [11] conferred an
inclusive review study on the nanoparticles of Carbon nanotubes (CNTs). They determined
the physical and chemical stability of CNTs and claimed that Carbon nanotubes had
better thermal properties and high tensile strength as compared to other nanomaterials.
Arslan and Ekiciler [12] presented a numerical solution of the square duct flow problem
of SiO2/water nanofluid with 1.0% to 4.0% different volume fractions of nanoparticles.
Ahmad et al. [13,14] numerically explored nanofluid flows under different circumstances
using successive over-relaxation (SOR) technique.

The combination of non-Newtonian fluids (Casson, etc.) and nanoparticles has great
potential in the field of bio-technology as well as in nanotechnologies related to life sciences.
A time-independent type of Pseudo-plastic fluid, which possesses infinite and zero shear
at zero and endless viscosity, respectively, can be referred to as Casson fluid. Some daily
life fluids that can better describe the Casson fluids incorporate honey, soup, human
blood, nail polish, jelly, liquid cement, tomato sauce, emulsions, etc. Casson [15] was
the first who developed a model for this fluid and investigated the flow tendency of
pigment oil. The proficient employments of nanofluids together with non-Newtonian fluids,
such as Casson fluid, may be found in biomedical devices, biosensors, pharmaceuticals,
agriculture, etc. Recently, Casson nanofluid flows have been explored under different
effects. Shahzad et al. [16] deliberated the swirling Casson hybrid nanofluid flow taking
the Darcy-Forchheimer formulation of the porous medium. The flow was taken through
parallel plates. It was noted that how much the thermal characteristics changed with
porosity, viscous fluid nature, rotational coordinates and magnetic interactions. The heat
transfer flow of Casson hybrid nanofluids comprising Silver and Titania nanoparticles
was explained by Krishna et al. [17]. In this analysis, base Casson fluid involved water
and ethylene glycol. The concentration and thermal buoyancy forces increased the flow
velocity. Casson fluid was treated as blood flowing through a narrow artery [18]. Skin
friction and flow velocity were determined using Newtonian fluid (stenosis artery case)
and non-Newtonian fluid (normal artery).

Use of entropy generation to control the irreversibility in the thermal systems is
essentially required. Obalalu [19] developed a mathematical model to analyze the non-
Darcian and non-Newtonian Casson nanofluid boundary layer flow in the environment of
slip condition and entropy generation. Chebyshev collocation method was used to acquire
the iterative solutions. The change in thermophysical properties due to the involvement
of internal energy in the Casson flow was examined by Salahuddin et al. [20]. Diffusivity,
conductivity and viscosity were assumed to be temperature dependent. An increase in
temperature was noticed in response to employing the activation energy to the flow regime.
Hirpho et al. [21] considered the mixed convective flow within an enclosure having wavy
walls. The Casson fluid was kept at the heated bottom wavy wall, whereas two walls of
the enclosure were assumed to be at cold temperature. They determined that an increase
in Nusselt number occurred because of an increase in Richardson number. Ennaouri &
Hachem [22] carried out an analysis of arterial Casson nanofluid blood flow, in which
effects of various parameters on blood flow were noticed. Blood-based Casson nanofluid
flow was numerically examined by Jamil et al. [23]. Further novel investigations of Casson
nanofluids subject to different effects can be searched from refs. [24–26].

The pertinence of flows over nonlinear/linear extending sheet is found in some indus-
trial processes, such as polymer sheet dying process, metallic plate condensation process
and plastic sheets extrusion process. Choosing the stretching rate for the sheet is important
as it can influence the final quality of the desired products. A Darcy-Forchheimer flow of
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nanoparticles and Casson flow compelled by a nonlinear and unsteady stretching surface
was analyzed, respectively, by Rasool et al. [27] and Oyelakin et al. [28]. An analysis of
Eyring–Powell nanofluid, which depicted the importance of thermal conductivity and
dynamic viscosity for a stretching sheet, was presented by Lawal et al. [29]. Flow for-
mation parameters were discussed against temperature, surface drag and concentration.
Vishalakshi et al. [30] studied the Graphene-nanoparticle-based flow with allowance for
thermal radiation involving mass transpiration and slip conditions. The porous stretch-
ing/shrinking sheet was taken as geometry in this analysis. It was deduced that the
viscoelastic parameter would cause an increase in the temperature. Seid et al. [31] math-
ematically treated a dynamical heat transfer problem through a vertical stretching sheet
assuming the special effects of the Soret and Dufour fluxes. Moreover, the analytic results
were compared with those obtained from the optimal homotopy analysis method.

The magnetic nanoparticles have great significance in the adjustable fiber filters, treat-
ment of cancer in medicine, modulators and optical controls. As time has gone on, many
scientists and research scholars have investigated Casson nanofluid flows under the in-
fluence of externally designed magnetic field settings. Alali and Megahed [32] examined
the dissipation phenomenon and the effects of slip velocity on the magnetohydrodynamic
non-Newtonian Casson thin-film flow. They simplified governing equations using simi-
larity variables and, consequently, obtained a dimensionless system with eight dominant
parameters. Sadiq et al. [33] observed the rate of mass and heat transport in the Casson
nanofluid flow inside a confined channel under the incitement of ramped temperature,
magnetic field and ramped concentration. The Sodium alginate was used as a base fluid
in the preparation of nanofluid. It was concluded that ramped conditions would better
control the flow and thermal properties of the nanofluid. The Darcy-Forchheimer effects
were considered by Jawad et al. [34] in MHD flow of Casson nanofluid. The Arrhenius
stimulation energy effect was also taken into account by the authors in the flow model.
In this research, the homotopy analysis method was preferably used to determine the
numerical solutions. A hydromagnetic flow induced by the nonlinear extending sheet and
involving Casson nanofluids was investigated by Ullah et al. [35]. They developed tabular
data for wall shear stress and presented a comparison of their results with the existing
literature. The outcomes depicted that Casson nanofluid caused a control on temperature
in the presence of a magnetic field. Al-Kouz and Owhaib [36] and Bejawada et al. [37]
presented numerical studies of Casson nanofluid flows over linear and nonlinear surfaces
under MHD effects, respectively. The results of both papers revealed that the impact of
Casson fluid factor was to reduce the velocities in fluids. Analytical as well as numerical
techniques were employed by researchers in the modern era to resolve the coupled non-
linear systems encountered in the fluid flow problems with nanocomposites. Bala Anki
Reddy et al. [38] presented quite unique technique of an artificial neural network (ANN) to
solve the MHD cross nanofluid flow problem, taking into account the thermophoresis and
Brownian motion effects simultaneously. Praveen et al. [39] employed the finite volume
method to simulate the governing equations of flow in water-based fly ash nanofluid. The
authors further extended the study [40–42] by experimental and computational analysis of
heat transfer, pressure drop, entropy generation and friction factor, through a horizontal
copper tube. In more recent times, Ali et al. [43] engaged the finite element method to
observe thermal radiation effects in the presence of a magnetic field, considering the motile
microbe gyration in the water-based nanofluid. The authors of [44–51] presented the latest
update involving traditional nanofluids with the features of heat and mass transmission in
a different physical situation.

The available literature reveals the fact that the flow of Casson nanofluid over a
nonlinear stretching sheet has not been explored yet, taking the simultaneous impacts of
entropy and activation energy under the magnetohydrodynamic environment, employing a
persuasive numerical approach; the quasi-linearization method (QLM). To establish a math-
ematical model that describes the activation energy and entropy generation phenomenon
in MHD mixed-convective Casson nanofluid flow over a nonlinear stretching sheet is the
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main focus of this work. The preeminent parameters are interpreted via the graphical and
tabular representations. In order to determine the iterative solution, an algorithm based on
linearization of coupled and nonlinear equations is developed. This technique provides an
easy approach towards finding the solution of complex dynamical problems. The role of
magnetic interaction, mixed convection, thermophoretic diffusion, Brownian motion and
Arrhenius activation energy was discussed for Casson nanofluids.

2. Formulation of Flow Model

Let us assume a steady, two-dimensional, mixed-convection hydro magnetic flow of
conducting Casson nanofluid generated due to nonlinear stretching sheet structured by
chemical reaction, slip and convective boundary conditions. The velocity of the wall of the
stretching sheet is supposed uw(x) = axm, where a is constant and m is index parameter.
The sheet is oriented in the direction of the x-axis while the stream of flow is taken along the
y-axis, as projected in Figure 1. A magnetic field of strength B0 is controlling all boundary
layers along with the joule heating phenomenon. Ambient conditions for thermal and
solutal streams are T∞ and C∞, respectively.
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Figure 1. Flow configuration.

The basic rheological relations for mass, momentum, energy and concentration are
given as [52,53]:

∂u
∂x

+
∂v
∂y

= 0 (1)

u ∂u
∂x + v ∂u

∂y =
µ f
ρ f

(
1 + 1

β

)
∂2u
∂y2 −

σB2
0(x)
ρ f

u

+

[
(1− C∞)

ρ f∞
ρ f

βT(T − T∞)− (ρp−ρ f∞)
ρ f

(C− C∞)

]
g

(2)

u ∂T
∂x + v ∂T

∂y = α f
∂2T
∂y2 + τ

[
DB

∂C
∂y

∂T
∂y + DT

T∞

(
∂T
∂y

)2
]

− 1
(ρc) f

∂qr
∂y +

µ f
(ρc) f

(
1 + 1

β

)(
∂u
∂y

)2
+

σB2
0

(ρc) f
u2 + Q

(ρc) f
(T − T∞)

(3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − k2

r (C− C∞)

(
T

T∞

)n
e(−

Ea
kT ) (4)
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The above-cited mathematical relations are composed of u and v being the veloc-
ity components in the x and y directions, respectively. Moreover, the symbols used for
description of modelled equations and are: β; Casson material parameter, µ f ; dynamic
viscosity of fluid, σ; electrically conductivity, ρ f ; fluid density, g; gravitational force due
to acceleration, βT ; volumetric coefficient of thermal expansion, DB; Brownian diffusion
coefficient, DT ; thermophoretic diffusion coefficient, α f

(
= k/(ρc) f

)
; thermal diffusivity of

the fluid, τ
(
= (ρc)p/(ρc) f

)
; ratio of heat capacities of fluid and nanoparticles, qr; radiative

heat flux, k2
r ; rate of chemical reaction and Ea; activation energy factor.

Boundary conditions of the sheet are given as:

u = uw + N1

(
1 + 1

β

)
µ f

∂u
∂y , v = Vw, k f

∂T
∂y = −h f

(
Tf − T

)
, ks

∂C
∂y = −hs(Cw − C) at y = 0,

u→ 0, T → T∞, C → C∞ as y→ ∞.

 (5)

In Equation (5), the symbols used, N1; the slip factor, h f ; heat convection and hs; mass

flow are expressed by the following relations N1 = N0x−(
m−1

2 ), h f = h0x(
m−1

2 ), and

hs = h0x(
m−1

2 ).
The well-known Rosseland approximation is employed to describe the radiative heat

flux qr in the energy equation

qr =
−4σ∗

3k1
∗

∂T4

∂y
(6)

where σ∗ is the Stefan–Boltzmann constant and k1
∗ is the mean absorption coefficient. To

evaluate T4 as a linear function of temperature, we expand T4 by Taylor’ series approxima-
tion about T∞. Truncating higher-order terms, we obtain

T4 ∼= 4T3
∞T − 3T4

∞ (7)

Here, we define a new set of similarity variables corresponding to the stream function
(ψ), temperature (T) and concentration (C) comprising a similar variable ξ,

ξ =

√
(m + 1)axm

2νx
y, ψ =

√
2νaxm+1

m + 1
f (ξ), θ(ξ) =

T − T∞

Tf − T∞
, φ(ξ) =

C− C∞

Cw − C∞
(8)

The new variables defined in Equation (8) yield the transformed system of Equations (9)–(12)
on plugging into the modelled Equations (2)–(5).(

1 +
1
β

)
f ′′′ + f f ′′ − 2m

m + 1
f ′2 − 2

m + 1
M f ′ + λ(θ + Nφ) = 0 (9)

1
Pr

(
1 +

4
3

Rd

)
θ′′ + f θ′ + Nbφ′θ′ + Ntθ

′2 + (1 +
1
β
)Ec f ′′ 2 + MEc f ′2 + εθ = 0 (10)

1
Le

φ′′ + f φ′ +
Nt

Nb
θ′′ −

(
2

m + 1

)
k1(1 + α1θ)nφ exp(

−E
1 + α1θ

) = 0 (11)

The associated boundary conditions are given as

f ′(0) = 1 +
√

m+1
2 δ

(
1 + 1

β

)
f ′′ (0), θ′(0) = −

√
2

m+1 Bi1[1− θ(0)],

φ′(0) = −
√

2
m+1 Bi2[1− φ(0)], and f ′(∞) = 0, θ(∞) = 1, φ(∞) = 0

 (12)

In the above expressions, the dimensionless parameters M, λ, N, Pr, Rd, Nt, Nb,
Ec, ε, Le, k1, α1, E, δ, Bi1, Bi2 and Gr are the magnetic parameter, mixed convection,
buoyancy forces ratio, Prandtl number, radiation parameter, thermophoresis parame-
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ter, Brownian motion parameter, Eckert number, heat generation (ε > 0) or absorption
(ε < 0) parameter, Lewis number, reaction rate, temperature gradient, activation energy
parameter, slip parameter, thermal Biot number, solutal Biot number and Grashof num-

ber, respectively, and are defined by the following relations as: M =
2σB2

0
aρ f (m+1) , λ = Gr

Re2
x
,

N =
(ρp−ρ f∞)(Cw−C∞ )

(1−C∞)ρ f∞ βT(Tf−T∞)
, Pr =

ν f
α f

, Rd = 4σ∗T3
∞

kk1
∗ , Nt =

τDT(Tf−T∞)

ν , Nb = τDB(Cw−C∞)
ν ,

Ec = uw
2

c f (Tf−T∞)
, ε = 2xQ

(ρc) f (m+1)uw
, Le = ν

DB
, k1 = k2

r
a , α1 =

Tf−T∞
T∞

, E = −Ea
kTf

, δ = N1

√
a
ν ,

Bi1 =
h f
k f

√
ν
a , Bi2 = hs

ks

√
ν
a and Gr =

(1−C∞)(ρ f∞ /ρ f )gβT(T∞−Tm)x3

ν2 .
The wall skin friction, wall heat flux and wall mass flux, respectively, are defined by

τw = µ

(
1 +

1
β

) (
∂u
∂y

)2

y=0, qw = −
((

α f +
16σ∗T3

∞
3ρcpk1

∗

)
∂T
∂y

)
y=0

, qs = −DB

(
∂C
∂y

)
y=0

The skin friction coefficient C fx = 2τw
ρ f u2

w
, the local Nusselt number Nux = xqw

α f (Tf−T∞)

and local Sherwood number Shx = xqs
DB(Cw−C∞)

on the surface along x-direction are the
dimensionless physical quantities. Where the local Nusselt number Nux and Sherwood
number Shx are given by

(Rex)
1/2C fx =

(
m+1

2

)(
1 + 1

β

)
f ′′ (0), (Rex)

−1/2Nux = −
(

m+1
2

)(
1 + 4

3 Rd

)
θ′(0),

(Rex)
−1/2Shx = −

(
m+1

2

)
φ′(0)

 (13)

where Rex = axm−1

ν is the local Reynold number.

3. Entropy Generation Analysis

A mathematical expression for entropy generation due to heat, fluid friction, magnetic
retardation and mass concentration is written as

SG =
k

T2
∞
(1 +

16σ∗T3
∞

3kk∗
)

(
∂T
∂y

)2
+

σB2(x)
T∞

u2 +
1

T∞

(
1 +

1
β

)(
∂u
∂y

)2
+

RDB
T∞

∂C
∂y

∂T
∂y

+
RDB
C∞

(
∂C
∂y

)2
(14)

Which after simplification gives the form

NG =
(

1 + 4
3 Rd

)(
m+1

2

)
θ′2α1 + MBr f ′2

+
(

m+1
2

)(
1 + 1

β

)
Br f ′2 +

(
m+1

2

)
χλ1φ′θ′ +

(
m+1

2

)
L
α1

φ′2
(15)

Here

NG =
νSGT∞

ak
(

Tf − T∞

) x1−m, Br =
µa2x2m

k
(

Tf − T∞

) , χ =
(Cw − C∞)

C∞
, λ1 =

RDB(Cw − C∞)

k

where NG, Br, χ and λ1 are the rate of entropy optimization, Brinkman number, concentra-
tion gradient and diffusive variable, respectively.

4. Solution Procedure

The solution of the modelled equations for MHD Casson nanofluid flow over a non-
linear stretching sheet may be found numerically by solving the linear system of equations,
obtained from the set of coupled nonlinear differential equations, by employing a persuasive
technique, known as the quasi-linearization method (QLM). A sequence of auxiliary vectors{

f (k)
}

,
{

θ(k)
}

and
{

φ(k)
}

is generated through this method, corresponding to the “kth”



Symmetry 2022, 14, 1940 7 of 25

linearized equations related to foremost functions f , θ and φ, such that Equations (9)–(11) can
be rewritten as:(

1 + 1
β

)
f (k+1)

′′′
+ f (k) f (k+1)

′′
− 4m

m+1 f (k) ′ f (k)
′′

f (k+1) ′ − 2
m+1 M f (k+1) ′

= f (k) f (k)
′′
− 2m

m+1 f (k)
′2 − 4m

m+1 f (k)
′2

f (k)
′′
− λ(θ + Nφ)

(16)

1
Pr

(
1 + 4

3 Rd

)
θ(k+1)

′′
+ f (k)θ(k+1) ′ + Nbφ(k) ′θ(k+1) ′ + Ntθ

(k+1) ′2

+(1 + 1
β )Ec f (k)

′′ 2
+ MEc f (k)

′2
+ εθ(k+1) = 0

(17)

1
Le

φ(k+1)
′′
+ f (k)φ(k+1) ′ +

Nt

Nb
θ(k)

′′
−
(

2
m + 1

)
k1(1 + α1θ(k))

n
φ exp(

−E
1 + α1θ(k)

) = 0 (18)

The simulation of a linearized system in Equations (16)–(18) is iteratively pro-
ceeded through MATLAB programming and a stopping criterion for the maximum
difference between the numerical solutions of two consecutive iterates is defined by
the following inequalities:

max
(∣∣∣∣∣∣ f (k+1) − f (k)

∣∣∣∣∣∣L2 ,
∣∣∣∣∣∣θ(k+1) − θ(k)

∣∣∣∣∣∣L2 ,
∣∣∣∣∣∣φ(k+1) − φ(k)

∣∣∣∣∣∣
L2

)
< 10−8 (19)

Additional information related to this iterative procedure may be found in our anterior
literature [54–57]. Figure 2 summarizes the order of numerical procedure adopted in
simulation of the problem. A graphical comparison presented in Figure 3 validates our
numerical procedure with the classical results by Vajravelu [58].
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The simulation of a linearized system in Equations (16)–(18) is iteratively proceeded 

through MATLAB programming and a stopping criterion for the maximum difference 

between the numerical solutions of two consecutive iterates is defined by the following 

inequalities: 

( )
2 2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) 8
,max || || ,|| || || || 10k k k k k k

L L Lf f    + + + −− − −   (19) 

Additional information related to this iterative procedure may be found in our ante-

rior literature [54–57]. Figure 2 summarizes the order of numerical procedure adopted in 

simulation of the problem. A graphical comparison presented in Figure 3 validates our 

numerical procedure with the classical results by Vajravelu [58]. 
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Figure 3. Comparison of numerical scheme adopted in the present study over nonlinear stretching
sheet with the classical analytical results.

5. Results and Discussion

The flow and mass transfer analysis of magnetically driven Casson nanofluid over
a nonlinear stretching sheet is performed numerically for two distinctive index numbers
m = 1.0 and m = 10 in a single frame. The governing nonlinear differential equations of the
flow regime are numerically simulated through the quasi-linearization method (QLM) for
all three types of boundary layers (i.e., velocity, temperature and concentration boundary
layers). The major parameters that are controlling the flow system are estimated through
graphical as well as tabular data for the following set of default values fixed as: Bi1 = 3,
Bi2 = 2, M = 10, β = 0.3, S = 1.0, Pr = 7.38, Nb = 0.2, Nt = 0.1, ε = 0.5, Ec = 0.1, Le = 1.0,
Rd = 1.0, N = 0.5, λ = 5.0, E = 5.0, k1 = 0.5, α1 = 2.0, δ = 0.5, λ1 = 0.2, n0 = 0.5, L = 1.0,
Br = 0.5 and χ = 0.5.

5.1. Velocity Profiles

Figures 4–7 show the influence of various parameters on the velocity profiles of MHD
Casson nanofluid flow for two distinct indices m (m = 1.0 and m = 10). Figure 4 displays
that the velocity curves decline for increasing values of the magnetic parameter for both
linear and nonlinear stretching cases, but the impact of linear stretching is more prominent
as compared to the nonlinear one. Physically, magnetic field produces a resistive force
in the flow region that retards the fluid acceleration. A similar trend can be observed in
Figure 5 for the Casson parameter. The reason behind this decline in velocity is due the
expanding plastic viscosity in the Casson fluid. Here, the nonlinear stretching dominates
the linear stretching significantly. Figure 6 shows that the influence of slip parameter is to
fall off the fluid’s acceleration due to the wall shear stress factor. The decline in velocity
distribution for linear stretching is higher than that of nonlinear stretching. The impact of
increasing values of buoyancy force ratio on the velocity profiles is to accelerate the fluid
extraordinarily (see Figure 7). Physically, the buoyant forces enhance the thickness of the
momentum boundary layer and, hence, the fluid’s velocity as well.
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5.2. Thermal Profiles 

Figures 8–17 exhibit the impact of various parameters on the temperature curves of 

the flow. Figure 8 states that the increasing values of magnetic parameter upsurge the 

thermal profiles for both linear and nonlinear stretching cases. Drag force generated due 

to the magnetic field produces the friction to flow, which incidentally enhances the heat 

of flowing fluid. Impact of the Casson parameter shows quite opposite behavior as com-

pared to the magnetic parameter. The rising Casson parameter reduces the yield stress, 

which, in turn, depletes the thermal boundary layer thickness and, hence, shows a signif-

icant decline in thermal profiles (see Figure 9). Figures 10 and 11 describe that the incre-

ment in mixed convection parameter and Eckert number lead to rapid rise in thermal pro-

files due to nonlinear stretching in contrast with the linear stretching case. The abrupt 

upsurge in heat of fluid is due to the dissipative heat generated due to frictional aspects 

of adjacent layers. 
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5.2. Thermal Profiles

Figures 8–17 exhibit the impact of various parameters on the temperature curves of
the flow. Figure 8 states that the increasing values of magnetic parameter upsurge the
thermal profiles for both linear and nonlinear stretching cases. Drag force generated due to
the magnetic field produces the friction to flow, which incidentally enhances the heat of
flowing fluid. Impact of the Casson parameter shows quite opposite behavior as compared
to the magnetic parameter. The rising Casson parameter reduces the yield stress, which,
in turn, depletes the thermal boundary layer thickness and, hence, shows a significant
decline in thermal profiles (see Figure 9). Figures 10 and 11 describe that the increment in
mixed convection parameter and Eckert number lead to rapid rise in thermal profiles due
to nonlinear stretching in contrast with the linear stretching case. The abrupt upsurge in
heat of fluid is due to the dissipative heat generated due to frictional aspects of adjacent
layers.
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thermal distribution for both indices m  ( 1.0m =  and 10m = ). Nonlinear stretching 

shows a higher upsurge in thermal distributions for 1 3   (see Figure 14). Thermal 

Biot number 1Bi  given in Figure 15 shows an increasing effect on the thermal profiles. 

Physically, thermal Biot number enhances the convection of heat by reducing the surface 

retardation effects. Hence, the thermal boundary layer thickness improves and the tem-

perature of the fluid rises accordingly. Figures 16 and 17 are sketched to show the impact 

of thermophoresis and Brownian motion on the thermal curves. Thermophoresis depends 

on the thermal gradient, which tends to enhance the heat of fluid on increasing the values 

of tN  for both cases of stretching. However, nonlinear stretching dominates the linear 

one for relatively higher values of the domain. A similar trend was seen for the Brownian 

motion parameter bN . Physically, the random motion of nanoparticles increases the ki-

netic energy of flow due to collisions of nanoparticles, which ultimately transform into 

heat energy. Hence, the overall heat of the flow region enhances and raises the thermal 

profiles. 
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Figure 12 demonstrates that by enlarging the Prandtl number, dwindling effects on
the thermal profiles are observed. The range of Prandtl number has been chosen for
different working non-Newtonian fluids (i.e., Sodium alginate, methanol, and sea-water
etc.). Figure 13 reveals that the thermal radiation effects increase the heat transfer rate of
the fluid, subsiding the heat absorption rate. The heat generation parameter enhances the
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thermal distribution for both indices m (m = 1.0 and m = 10). Nonlinear stretching shows a
higher upsurge in thermal distributions for 1 ≤ ξ ≤ 3 (see Figure 14). Thermal Biot number
Bi1 given in Figure 15 shows an increasing effect on the thermal profiles. Physically, thermal
Biot number enhances the convection of heat by reducing the surface retardation effects.
Hence, the thermal boundary layer thickness improves and the temperature of the fluid
rises accordingly. Figures 16 and 17 are sketched to show the impact of thermophoresis and
Brownian motion on the thermal curves. Thermophoresis depends on the thermal gradient,
which tends to enhance the heat of fluid on increasing the values of Nt for both cases of
stretching. However, nonlinear stretching dominates the linear one for relatively higher
values of the domain. A similar trend was seen for the Brownian motion parameter Nb.
Physically, the random motion of nanoparticles increases the kinetic energy of flow due to
collisions of nanoparticles, which ultimately transform into heat energy. Hence, the overall
heat of the flow region enhances and raises the thermal profiles.

5.3. Concentration Profiles

Figures 18–25 are prepared to discuss the effects of principal parameters on the solutal
profiles. It is evident from graphical data that the linear stretching leads the nonlinear
stretching for all governing parameters of the concentration profiles. Figure 18 shows
that the mixed convection parameter improves the concentration profiles with its rising
values while buoyancy force ratio has fairly opposite behavior on the solutal profiles (see
Figure 19). All these physical impacts are due to a combination of Ohmic heating and
Lorentz force produced at the surface of a nonlinear stretching sheet. Figures 20 and 21
are prepared to show the effects of thermophoresis and Brownian motion on the solutal
profiles. Increasing values of Nt, enhance the concentration of nanoparticles. Physically,
enlarging the thermophoretic parameter, the temperature difference rises, which improves
the thermophoresis diffusion. Hence, the concentration of governing fluid raises in the flow
regime. On the contrary, augmenting the Brownian motion parameter Nb, concentration
profiles diminish significantly. Random motion of nanoparticles heats up the fluid and
accelerates the heated nanoparticles away from the stretching surface, which ultimately
lessens the concentration of nanoparticles in the boundary layer region.
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values of solutal Biot number 2Bi . The larger solutal Biot number will enhance mass 

transfer rate and, hence, the concentration of nanoparticles. A decreasing trend of concen-

Figure 19. Delineation of φ(ξ) for various N.

Symmetry 2022, 14, 1940 16 of 27 
 

 

 

Figure 19. Delineation of ( )   for various N . 

 

Figure 20. Delineation of ( )   for various tN . 

 

Figure 21. Delineation of ( )   for various bN . 

Figure 22 displays an escalating trend of concentration profiles with the improving 

values of solutal Biot number 2Bi . The larger solutal Biot number will enhance mass 

transfer rate and, hence, the concentration of nanoparticles. A decreasing trend of concen-

Figure 20. Delineation of φ(ξ) for various Nt.

Symmetry 2022, 14, 1940 16 of 27 
 

 

 

Figure 19. Delineation of ( )   for various N . 

 

Figure 20. Delineation of ( )   for various tN . 

 

Figure 21. Delineation of ( )   for various bN . 

Figure 22 displays an escalating trend of concentration profiles with the improving 

values of solutal Biot number 2Bi . The larger solutal Biot number will enhance mass 
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tration profiles under enhancing Lewis number is mapped in Figure 23. Physically, diffu-

sivity is inversely linked with the Lewis number. Enlargement of Le  reduces the con-

centration of nanoparticles. Activation energy E  and chemical reaction parameter 1k  

show a contrasting effect on the concentration distribution of nanoparticles (see Figures 

24 and 25), since the activation energy is the least possible extent of energy required to 

start a chemical reaction. Therefore, Arrhenius equation of chemical reaction states the 

fact that the higher the extent of activation energy, the greater the concentration of mass. 

Contrarily, the chemical reaction parameter diminishes the concentration profiles. 
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5.4. Entropy Generation Profiles 

Figures 26–33 explore the impact of various parameters on the entropy generation 

number GN . It is worth noting that the entropy generation number against nonlinear 

stretching (i.e., 10m = ) is leading as compared to the linear stretching (i.e., 1.0m = ) for 

all pertinent parameters of the flow regime. Physically, the nonlinear stretching surface 

abandons a huge amount of disorder in the flow regime causing a higher rate of irrevers-

ibility in the thermodynamic working system. Graphical data show that the entropy gen-

eration number is an incremental function of the parameters Br , 1Bi , 2Bi , Rd , tN  

and bN  while a declining function of parameters   and Pr . Nevertheless, the behav-

ior of Brownian motion and thermophoretic diffusion parameters in the vicinity of the 

surface of the sheet minimizes the entropy. The same is the case for the Prandtl number 

with an opposite trend. These behaviors of entropy generation number predominantly 

depend on the momentum, temperature and concentration gradients that signify the heat 

transfer and fluid friction irreversibilities in the flow region. 

Figure 24. Delineation of φ(ξ) for various E.
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Figure 25. Delineation of φ(ξ) for various k1.

Figure 22 displays an escalating trend of concentration profiles with the improving
values of solutal Biot number Bi2. The larger solutal Biot number will enhance mass transfer
rate and, hence, the concentration of nanoparticles. A decreasing trend of concentration
profiles under enhancing Lewis number is mapped in Figure 23. Physically, diffusivity is
inversely linked with the Lewis number. Enlargement of Le reduces the concentration of
nanoparticles. Activation energy E and chemical reaction parameter k1 show a contrasting
effect on the concentration distribution of nanoparticles (see Figures 24 and 25), since the
activation energy is the least possible extent of energy required to start a chemical reaction.
Therefore, Arrhenius equation of chemical reaction states the fact that the higher the extent
of activation energy, the greater the concentration of mass. Contrarily, the chemical reaction
parameter diminishes the concentration profiles.

5.4. Entropy Generation Profiles

Figures 26–33 explore the impact of various parameters on the entropy generation
number NG. It is worth noting that the entropy generation number against nonlinear
stretching (i.e., m = 10) is leading as compared to the linear stretching (i.e., m = 1.0) for
all pertinent parameters of the flow regime. Physically, the nonlinear stretching surface
abandons a huge amount of disorder in the flow regime causing a higher rate of irre-
versibility in the thermodynamic working system. Graphical data show that the entropy
generation number is an incremental function of the parameters Br, Bi1, Bi2, Rd, Nt and Nb
while a declining function of parameters β and Pr. Nevertheless, the behavior of Brownian
motion and thermophoretic diffusion parameters in the vicinity of the surface of the sheet
minimizes the entropy. The same is the case for the Prandtl number with an opposite trend.
These behaviors of entropy generation number predominantly depend on the momentum,
temperature and concentration gradients that signify the heat transfer and fluid friction
irreversibilities in the flow region.
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6. Physical Quantities of Engineering Interest

The influence of different values of flow parameters on the numerical estimates of

the skin friction coefficient (C fxRe
1
2
x ), Nusselt number (NuxRe

−1
2

x ) and Sherwood number

(ShxRe
−1
2

x ) is explicated in Tables 1 and 2. A novel numerical contrast of linear and nonlinear
stretching in the sheet is tabulated for physical quantities of engineering applications
against several pertinent dimensionless parameters. It is observed that the magnitude of
skin friction coefficient enhances for increasing values of Rd, β, Ec, δ, Bi1, Bi2, λ, ε, Nt, N,
k1 and E while it is a lessening function of Pr, M, Le, and Nb. However, the magnitude
of skin friction in the case of nonlinear stretching dominates the linear stretching for all
aforementioned parameters. The heat transference rate grows with the enhancing values of
parameters Pr, Rd, β, δ, Le, k1 and Bi1, whereas a declining function in parameters M, Ec,
Bi2, λ, ε, Nt, Nb, E and N. Sherwood number that is representative of mass transference
rate rises with enlarging the values of parameters M, Rd, Ec, Bi2, Le, λ, ε, Nb, k1 and N.
However, a diminishing trend in mass transfer is noted against parameters Pr, β, δ, Bi1, Nt
and E.
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Table 1. Numerical values of skin friction coefficient C f x, Nusselt number Nux and Sherwood
number Shx for fixed values of Le = 1, λ = 5, N = 0.5, ε = 0.5, Nt = 0.1, Nb = 0.2, k1 = 0.5 and
E = 5.

Pr M Rd β Ec δ Bi1 Bi2

Linear Stretching
(m = 1.0)

Nonlinear Stretching
(m = 10)

CfxRe
1
2
x NuxRe

−1
2

x ShxRe
−1
2

x CfxRe
1
2
x NuxRe

−1
2

x ShxRe
−1
2

x

7.38 5 1 0.3 0.1 0.5 3 2 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
6.50 −2.0127 2.0215 0.6359 −3.4058 6.3840 2.6385
7.38 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
8.00 −2.2307 2.6936 0.3959 −4.6823 7.9332 2.3796

2 −1.2522 2.3938 0.5796 −4.1249 8.6631 2.3350
3 −1.5627 2.2560 0.5846 −4.0620 7.9686 2.3984
5 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225

1 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
2 −1.8494 2.4286 0.6672 −3.0301 8.2835 2.6653
3 −1.6812 2.6148 0.7170 −2.2438 9.3106 2.7633

0.3 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
0.4 −1.7368 2.1591 0.5699 −3.3178 6.9686 2.4786
0.5 −1.5323 2.2149 0.5582 −2.9036 7.2003 2.4498

0.1 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
0.2 −1.9087 1.5545 0.6638 −2.1724 3.1598 2.8806
0.3 −1.7386 0.9730 0.7487 0.4449 −2.3094 3.4186

1 −1.4760 2.2093 0.5532 −2.6048 6.9133 2.4712
2 −0.9426 2.3126 0.5238 −1.5491 7.1415 2.4314
3 −0.6922 2.3526 0.5110 −1.1027 7.2341 2.4147

2 −2.1431 1.7297 0.6219 −4.3114 5.0947 2.6169
4 −1.9997 2.2955 0.5658 −3.6926 7.7490 2.4516
6 −1.9288 2.5737 0.5388 −3.3207 9.3719 2.3522

1 −2.1399 2.1294 0.4108 −4.3904 6.8786 1.5333
3 −2.0109 2.0375 0.6871 −3.6629 6.4114 3.2167
5 −1.9613 2.0017 0.7946 −3.2843 6.1605 4.1298

Table 2. Numerical values of skin friction coefficient C f x, Nusselt number Nux and Sherwood
number Shx for fixed values of Pr = 6450, β = 0.3, δ = 0.5, M = 5, Bi1 = 3, Bi2 = 2, Rd = 1 and
Ec = 0.1.

Le λ ε Nt Nb N k1 E

Linear Stretching
(m = 1.0)

Nonlinear Stretching
(m = 10)

CfxRe
1
2
x NuxRe−

1
2

x ShxRe−
1
2

x CfxRe
1
2
x NuxRe−

1
2

x ShxRe−
1
2

x

1 5 0.5 0.1 0.2 0.5 0.5 5 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
3 −2.2710 2.1076 0.8862 −4.9178 7.1047 3.1427
5 −2.3261 2.1325 1.0030 −5.1124 7.2187 3.3437

3 −2.5725 2.1562 0.5556 −6.3210 7.5287 2.3616
5 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
7 −1.5259 1.9566 0.6226 −1.2865 5.4147 2.7014

0.1 −2.1670 2.5039 0.5244 −4.7874 8.3329 2.3381
0.3 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
0.7 −1.8019 1.1148 0.7273 −1.9781 2.2189 2.9742

0.1 −2.0569 2.0705 0.5880 −3.9580 6.6033 2.5225
0.2 −1.8532 1.9129 0.4212 −3.0659 5.9165 2.2900
0.3 −1.6681 1.7556 0.3002 −2.2718 5.2373 2.1905

0.2 −1.9023 2.1395 0.3580 −3.2647 6.4004 2.1942
0.4 −2.0569 2.0705 0.5880 −3.9580 6.5409 2.5225
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Table 2. Cont.

Le λ ε Nt Nb N k1 E

Linear Stretching
(m = 1.0)

Nonlinear Stretching
(m = 10)

CfxRe
1
2
x NuxRe−

1
2

x ShxRe−
1
2

x CfxRe
1
2
x NuxRe−

1
2

x ShxRe−
1
2

x

0.6 −2.0902 1.9707 0.6694 −4.1510 6.6033 2.6524
1 −1.5483 1.9574 0.6233 −2.1734 5.7906 2.6467
2 −0.6506 1.6999 0.6878 0.6823 4.3577 2.8435
3 0.1247 1.4286 0.7456 2.9520 3.1026 3.0005

2 −2.0762 2.0765 0.6203 −3.9735 6.6115 2.5343
4 −2.1000 2.0837 0.6601 −3.9938 6.6327 2.5498
6 −2.1217 2.0902 0.6966 −4.0136 6.6425 2.5650

1 −2.1188 2.0818 0.6730 −4.0139 6.6320 2.5568
3 −2.0714 2.0739 0.6094 −3.9700 6.6096 2.5306
5 −2.0569 2.0693 0.5880 −3.9580 6.6033 2.5225

7. Conclusions

A novel numerical exploration of MHD Casson nanofluid over a nonlinear stretching
sheet is presented in this study. The modelled partial differential equations are transmuted
to a system of nonlinear differential equations with the help of similarity variables. The
energy equation of the flow is improved with the heat generation, thermal radiation, viscous
dissipation and joule heating terms. The numerical results obtained through an iterative
procedure based on the quasi-linearization method (QLM) were deliberated against various
dimensionless parameters. Brownian motion, thermophoretic diffusion and activation
energy effects are also taken into account in the analysis. Impacts of various dimensionless
parameters on velocity, temperature and concentration profiles are numerically estimated
through graphs and tables. The main outcomes of the present study are listed below:

• Growing values of M, β and δ cause a significant decline in the velocity while N
exhibits an opposite trend.

• Thermal profiles fall off with enhancing values of β and Pr, whereas increasing values
of M, λ, Ec, Rd, Nt and Nb improve thermal profiles significantly.

• Improving the values of λ, Nt, Bi2 and E upsurge the concentration profiles; however,
the parameters N, Nb, Le and k1 cause a remarkable reduction in the concentration
distributions.

• The linear stretching dominates the nonlinear stretching for all controlling parameters
of the concentration profiles.

• Entropy generation is an incremental function of the parameters Br, Bi1, Bi2, Rd, Nt
and Nb while a declining function of parameters β and Pr.

• Implications of Brownian motion and thermophoresis are to minimize the entropy
generation near the surface of the stretching sheet while maximizing the sheet.

• Entropy generation against nonlinear stretching leads as compared to the linear stretch-
ing for all pertinent parameters of the MHD flow of Casson nanofluid.

• Nusselt number and Sherwood number decrease significantly with growing values of
activation energy in the case of nonlinear stretching.

The quasi-linearization method (QLM) could be applied to a variety of physical and
technical challenges in the future [59–61].
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Nomenclature

g acceleration due to gravity (ms−2) Re Reynolds number
Tf temperature of fluid (K) Le Lewis number
Cp specific heat at constant pressure (J mol−1 k−1) Pr Prandtl number
B0 magnetic field strength (kg s−2 A−1) Ec Eckert number
k thermal conductivity (W m−1 k−1) Gr Grashof number
D∗ molecular diffusivity (m2 s−1) Br Brinkman number
C fluid concentration (mol m−3)
Bi1 thermal Biot number Greek Symbols
Bi2 solutalBiot number µ fluid viscosity (kg m−1s−1)
qr radiative heat flux (Wm−2) ρ fluid density (kg m−3)
M magnetic parameter β Casson parameter
Q heat generation coefficient (W) σ electrical conductivity (Sm−1)
Ea activation energy factor (J·mol−1) ψ stream function (m2 s−1)
Nt thermophoresis parameter θ dimensionless temperature
Nb Brownian motion parameter λ mixed convection parameter
kr rate of reaction (s−1) φ dimensionless concentration
m index parameter η similarity variable
u, v components of velocity (ms−1) γ dimensionless reaction rate

x, y
Cartesian coordinates along the ε heat generation parameter
stretching sheet, respectively (m) δ slip parameter
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