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Abstract: This paper aims at certain theoretical studies and additional computational analysis on
symmetry and its lack in Kullback-Leibler and Jeffreys probabilistic divergences related to some
engineering applications. As it is known, the Kullback-Leibler distance in between two different
uncertainty sources exhibits a lack of symmetry, while the Jeffreys model represents its symmetriza-
tion. The basic probabilistic computational implementation has been delivered in the computer
algebra system MAPLE 2019®, whereas engineering illustrations have been prepared with the use
of the Finite Element Method systems Autodesk ROBOT® & ABAQUS®. Determination of the first
two probabilistic moments fundamental in the calculation of both relative entropies has been made
(i) analytically, using a semi-analytical approach (based upon the series of the FEM experiments), and
(ii) the iterative generalized stochastic perturbation technique, where some reference solutions have
been delivered using (iii) Monte-Carlo simulation. Numerical analysis proves the fundamental role of
computer algebra systems in probabilistic entropy determination and shows remarkable differences
obtained with the two aforementioned relative entropy models, which, in some specific cases, may be
neglected. As it is demonstrated in this work, a lack of symmetry in probabilistic divergence may
have a decisive role in engineering reliability, where extreme and admissible responses cannot be
simply replaced with each other in any case.

Keywords: Kullback-Leibler divergence; Jeffreys divergence; relative entropy; Finite Element Method;
probabilistic divergence of homogenized parameters; reliability assessment

1. Introduction

Uncertainty analysis is one of the most important aspects of a solution to real engineer-
ing problems [1], in which geometrical, and material imperfections as well as a statistical
scattering of the environmental actions may play a decisive role. Such an analysis may
concern the theoretical or numerical determination of probabilistic characteristics of the
structural response (expectations, variances, etc.) or finding a difference (distance) of
maximum (extreme) responses to their admissible counterparts. This second problem is
fundamental for reliability assessment [2], in which engineering structures or systems are
verified in the context of deformations, vibrations, stresses, temperatures, or also other
physical quantities. Both extreme responses and also their admissible counterparts may
have an uncertain nature so that a realistic mathematical problem would be to find the prob-
abilistic distance between two different probability density functions, where one is discrete,
and the opposite–most frequently–has continuous character. Therefore, it would be quite
natural to apply the probabilistic divergence [3] (relative entropy) to measure the safety
margin of both existing as well as newly designed structures and systems. This idea has
been explored yet in the literature a few times and may also concern some other research
issues like detecting a difference in-between the experimental and numerical results, which
is a subject of the specific calibration procedures in deterministic analyses. Some other appli-
cations may be seen in eigenfrequency and the induced frequency in forced vibrations of the
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given system, the extreme and phase change temperatures in the given material, etc. One
of the very specific ideas is looking for a distance between original material characteristics
and their effective counterparts resulting from some homogenization procedures.

Relative entropy [4] (probabilistic distance) applicable in this context may be defined
for univariate and multivariate random sources but always demands a precise definition
of two probability distributions (or at least their histograms biased with relatively small
numerical errors). Most mathematical models in this area show full symmetry, which
means that a choice of primary and target distribution makes no difference. The only
exception is the so-called Kullback-Leibler distance [3], which is affected by this choice and
which exhibits a certain lack of symmetry and which could be very sensitive to contrasted
distribution types and parameters. Mathematical proofs and considerations have been
demonstrated in the literature; nevertheless, the importance of real engineering systems
and their reliability has not been precisely studied. Such a lack of symmetry may result in
some underestimation (or overestimation) of structural safety, which leads to non-optimal
design decisions or even to designing over the realistic limits and demands; such an effect
is an unwanted situation in both cases.

This asymmetry is the main research problem studied in this work, in which a two-fold
methodology has been proposed. The first approach is based upon symbolic integration
inherent in the Kullback-Leibler entropy (KL) definition assuming for a brevity of presenta-
tion two different Gaussian probability distributions with given intervals of their parameter
variations. It is very rare in real engineering problems that the given system response may
be described with a specific probability density function and its parameters. That is why
the second method of the KL entropy determination is the most common application of
the Monte-Carlo simulation as well as the generalized stochastic perturbation technique
together with the Finite Element Method (FEM) [5] program. Such a two-fold methodology
guarantees a huge variety of possible applications, especially because all probabilistic
procedures employed in this study have been programmed by the author in the numerical
environment of the system MAPLE. The few computational experiments attached here
confirm an importance of the KL entropy asymmetry in both engineering and applied
sciences problems while studying a distance between extreme and admissible structural
response functions.

2. Historical and Mathematical Background

Probabilistic divergence (also known as the relative entropy [6]) has directly followed
the foundations of thermodynamics, where Gibbs (1878) entropy of a given thermodynami-
cal system has been introduced in the statistical context as

S = −kB∑
i

pi ln(pi) (1)

where kB is the Boltzmann constant (1872), while pi denotes the probabilities of all the
microstates. Johann von Neumann (1927) modified this definition to the following form:

S = −kBTr(ρ ln(ρ)) (2)

with ρ being the density matrix of the given quantum mechanical system. Finally, Shannon
(1948) [7] proposed this entropy as

H = −∑
i

pi ln(pi) (3)

which, with some small modifications and extensions toward continuous probability dis-
tributions, has been used until now. Lower index i counts here and further the given
populations of random accidents. Quite independently, probabilistic divergence itself
has been invented and developed more than a hundred years ago (Hellinger, 1905 [8]) to
measure a distance in-between two different probability distributions. It has received a lot
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of attention in mathematical studies, but even more in applied sciences and engineering
applications. Some of them concern quantum mechanics, fracture analysis and some other
issues exhibiting statistical scattering. One of the most famous models is the so-called
Kullback-Leibler (KL) model [9], whose principal deficiency is a lack of symmetry while
analyzing a divergence of two given distributions p and q according to its discrete version.

DKL(p, q) = ∑
i

pi log
(

pi
qi

)
(4)

In general cases, such as DKL(p, q) 6= DKL(q, p), Jeffreys [10] have proposed a sym-
metrization of this divergence by simply adding

DJ(p, q) = DKL(p, q) + DKL(q, p) (5)

A lack of symmetry in the KL divergence is of paramount importance while analyzing
engineering reliability problems, where p may denote structural effort and q means struc-
tural strength, for instance. Now, the area of relative entropy includes more advanced mod-
els adjacent to both univariate and multivariate PDFs as Jensen-Shannon [11,12], Rényi [13],
Bhattacharyya [14], Mahalanobis [15], Tsallis [16], and others have proposed. Nevertheless,
symmetry, its possible lack, and its consequences for the probabilistic divergence remain
one of the most important theoretical and numerical topics.

It is well known that KL divergence has a huge number of well-documented appli-
cations in various branches of engineering starting from energy analysis [17,18], marine
engineering [19], mechanical problems of failure [20–22] as well as in civil engineering anal-
yses [23]. Some recent mathematical works concern the maximum entropy principle [24]
or multivariate distributions [25], while physicists are interested in i.e., non-equilibrium
random motion [26]. A comparison of various probabilistic divergence models is also avail-
able in the literature and is documented for Hellinger and Kullback-Leibler theories [27],
Jensen-Shannon and KL distances [28] as well as for a relation of the latter model of Tsallis
statistics [29].

The main aim of this work is to compare two closely related probabilistic relative
entropies proposed by Kullback-Leibler and Jeffreys [30], and this is done to study an impact
of a lack of symmetry in the first theory. The numerical study proposed here concerns
three different examples, and it starts from the analytical symbolic determination of both
divergences in the case of two different combinations of neighboring Gaussian distributions.
The first computational experiments is based upon symbolic integration inherent in the
definitions of two relative entropies under consideration. Further, a reliability study
relevant to some steel Pratt trusses is presented, in which KL and Jeffreys divergence is used
to detect a distance in between the PDFs of extreme and admissible structural deformations.
The extreme deformations are determined using the stochastic finite element method
approach realized with (i) probabilistic extension of traditional deterministic designing
procedures, (ii) the Monte-Carlo simulation analysis and (iii) the iterative generalized
stochastic perturbation method, while the admissible deformations are given due to the
engineering codes.

The final example deals with the homogenization procedure of some particulate com-
posite, in which divergence between real and homogenized composite characteristics is
under investigation. The computational analysis presented in this paper exhibits that a lack
of symmetry in the KL divergence may play a remarkable role in some engineering prob-
lems. As has been demonstrated here, it is highly important whether the Kullback-Leibler
distance is measured in between the admissible and extreme deformations or vice versa.
This aspect is completely absent in reliability analysis, for instance, where an absolute value
of the difference of admissible and extreme structural behavior mean values (scaled by its
variance) is analyzed. A more remarkable effect is seen while approximating the analogous
distance between the original and homogenized composite materials characteristics. Some
further idea could be a discussion of probabilistic distance between the designed and real
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deformations or stresses in the erected civil engineering structures or mechanical systems.
This aspect has not been discussed until now in the literature, but it may have some impor-
tance, especially in highly nonlinear problems with uncertainty when reliability assessment
is decisive for structural safety and durability.

3. Relative Entropies and Probabilistic Numerical Methods

Relative entropy equations applied and discussed here follow probabilistic divergence
models invented by Kullback and Leibler as well as by Jeffreys [30]. Their definitions for
two different probability distributions p(x) and q(x) are formulated in turn as follows [9]:

DKL(p, q) = −
∫

p(x) log(q(x))dx +
∫

p(x) log(p(x))dx (6)

DJ(p, q) = DKL(p, q) + DKL(q, p) (7)

As a specific case, one may consider two different Gaussian probability distributions:
p(x) ≡ N(µ1, σ1) q(x) ≡ N(µ2, σ2). Then, the KL relative entropy equals to

DKL(p, q) = log
(

σ2

σ1

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2

(8)

whereas the Jeffreys entropy is calculated as

DJ(p, q) = log
(

σ2

σ1

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

+ log
(

σ1

σ2

)
+

σ2
2 + (µ2 − µ1)

2

2σ2
1

− 1 (9)

Quite similarly, one may derive the relative entropies for two Weibull distributions
having the parameters p(x) ≡W(k1, l1) and q(x) ≡W(k2, l2)

DKL(p, q) = log
(

k1

l1k1

)
− log

(
k2

l2k2

)
+ (k1 − k2)

(
log(l1)−

γ

k1

)
+

(
l1
l2

)k2

Γ
(

k2

k1
+ 1
)
− 1 (10)

As it is seen, reliable determination of the first two probabilistic moments is necessary
to study the probabilistic divergence of two Gaussian distributions. This is the reason to
engage not only the Monte-Carlo simulation (MCS) approach but also some faster tech-
niques, such as the stochastic semi-analytical method (SAM) and the iterative stochastic
perturbation method (SPT) [31–33]. These two last methodologies enable remarkable reduc-
tion of a solution of the problems with uncertainty, whose computational effort becomes
closer to the deterministic origin rather than the MCS time consumption. A computational
implementation may be delivered with the use of the MCS approach, in which statistical
estimation usually follows the well-known statistical estimators introduced as

E[y(b)] =
1
M

M

∑
m=1

ym(b) =
1
M

M

∑
m=1

P

∑
p=0

Apbp
m (11)

Var(y(b)) =
1

M− 1

M

∑
m=1
{ym(b)− E[y(b)]}2 =

1
M− 1

M

∑
m=1

P

∑
p=0

{
Apbp

m − E[y(b)]
}2

(12)

where b is the input uncertainty source, bm means its mth random numerical realization,
and y(b) is the given structural output. Alternatively, the iterative generalized stochastic
perturbation technique is also employed. Its fundamental step is the following nth order
Taylor expansion of the same response function y(b) [31,32]:

y(b) = y0
(

b0
)
+

n

∑
i=1

εi

i!
∂iy(b)

∂bi

∣∣∣∣
b=b0

(∆b)i (13)
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It concerns the function f of the given random input parameter b about its mean value
b0 so that ∆b is the first variation of this parameter about its given mean. This expan-
sion is embedded next into the classical integral definition of the kth central probabilistic
moment as

µk(y(b)) =
+∞∫
−∞

(y(b)− E[y(b)])k pb(x)dx

=
+∞∫
−∞

{
y0(b0)+ n

∑
i=1

εi

i!
∂iy(b)

∂bi

∣∣∣
b=b0

(∆b)i − E[y(b)]
}k

pb(x)dx
(14)

Further transforms are possible after a choice of the specific PDF type as well as its
upper and lower bounds. It should be mentioned here that the perturbation method is
still frequently applied in many mathematical studies focused on dynamical systems and
nonlinear phenomena [34,35].

The semi-analytical approach directly uses the definitions of the central probabilistic
moments enriched with the polynomial bases as

µk(y(b)) =
+∞∫
−∞

(y(b)− E[y(b)])k pb(x)dx

=
+∞∫
−∞

{
N
∑

i=1
Ai
(
b0)i − E

[
N
∑

i=1
Ai
(
b0)i

]}k

pb(x)dx
(15)

The purpose of the first numerical experiment was to investigate analytically prob-
abilistic divergence for two different Gaussian distributions N1(E1, σ1) N2(E2, σ2), and
it was entirely done in the computer algebra system MAPLE 2019.2. This purpose has
been achieved by introducing two additional parameters being a difference between the
coefficients of variation of these two distributions, α1 and α2, as well as between their
expectations, accordingly

∆(α) = α2 − α1 =
σ2

E2
, ∆(E) = E2 − E1 (16)

Two different combinations of the input data have been adopted to check some initial
parametric sensitivity of both Kullback-Leibler and Jeffreys relative entropies. The first
test corresponds to the following data: E1 = 2.0 & α1 = 0.01, whereas the second one uses
E1 = 1.0 and α1 = 0.01, respectively. The resulting entropy surfaces have been collected in
Figure 1 (the first input combination) as well as in Figure 2 (the second test).
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Figure 2. Kullback-Leibler (left) versus Jeffreys (right) entropy in the second test.

The first general observation is that the Jeffreys model returns a few times larger
entropy than the Kullback-Leibler theory so a lack of symmetry matters a lot. The second
model exhibits significant sensitivity to the input data, while in the Jeffreys model, this effect
is almost negligible. The KL approach seems to be more sensitive to a difference in-between
coefficients of variation of two random inputs and then, to their expectations. Symmetrized
Jeffreys theory shows even higher changes of the entropy while modifying expectations
difference, while sensitivity to statistical scattering of the input data is either very small
or may be just postponed. Nevertheless, as one could expect, the larger the difference
in input expectations, the higher the resulting relative entropy (a distance between both
PDFs). It directly follows a deterministic case of two functions and their mean values.
Quite a different observation can be made for two input coefficients of variation–a distance
for the PDFs under consideration becomes smaller while increasing their difference. It is
because the concentration of the PDF about its mean value is smaller while increasing this
coefficient so that the PDF splashes and two different bell-shaped curves are effectively
closer. Finally, one may conclude that symmetry (and its possible lack) in the relative
entropy computations may play a very important role in applied sciences and cannot be
simply neglected.

4. Reliability Structural Analysis and Probabilistic Divergence of the Elastic Pratt
Truss Structure
4.1. Numerical Model

The next computational experiment has documented the usage of two aforementioned
relative entropies to study probabilistic divergence between the extreme (E) and admissible
(R) deformation of some civil engineering structures. This divergence is the basis of the
so-called limit function g(R,E) = R − E widely employed in the reliability theory [36]. A
specific case is investigated, where both R and E have random nature. A simple plane
steel Pratt truss with 12 segments is analyzed for this purpose (Figure 3), whose height
has been adopted as h = 1.0 m, and its span l is treated as the Gaussian variable having
the expectation equal to 18.00 m. The stochastic finite element method (SFEM) analysis
of this structure in the context of Bhattacharyya entropy has been analyzed in [37]. The
first two probabilistic moments of structural displacements have been determined here
via the series of traditional FEM experiments [38], where polynomial bases connecting
extreme deformations with the input uncertainty source have been recovered. All these
experiments have been carried out here in the civil engineering system Autodesk ROBOT,
while the probabilistic part has been completed in the computer algebra system MAPLE
2019.2. This truss FEM model has been uploaded with the constant load q redistributed
throughout the upper chord nodal points as the concentrated forces. Its characteristic value
has been set as qk = 15 kN/m, while the design load has been proposed for an illustration
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as qd = 20 kN/m; a dead load of the truss is taken into account separately. All the cross-
sections of structural components have been assumed as hot-finished square-hollow steel
profiles made of structural steel S235, whose material parameters have been assumed
according to the design code Eurocode 3 [39]. The following profiles have been found
here as the most optimal solution: (i) upper chord–SHS 140 × 140 × 8, (ii) diagonals–SHS
90 × 90 × 8, and also (iii) lower chord–SHS 120 × 120 × 8. The FEM discretization has
been completed using 49 linear two-noded truss finite elements, where horizontal and
vertical displacements have been fixed at lower left edge; a vertical displacement has been
blocked at the right lower corner. A single finite element represents here a column and a
diagonal, while upper and lower chords have been represented by the set of single finite
elements from node to node, respectively.
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Numerical experiments have been completed assuming geometrical nonlinearities and
p-delta effect in the structural behavior. The incremental Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm has been employed for this purpose with the following parameters:

• load increment number has been fixed as 5;
• maximum iteration number for a single increment equals 40;
• increment length reduction number was set as 3;
• increment length reduction factor was equal to 0.5;
• the maximum number of line searches equals 0;
• control parameter for the line search method is set as 0.5;
• the maximum number of the BFGS corrections is set as 10;
• relative tolerance for the residual forces and displacements is taken as 0.0001.

4.2. Numerical Results and Discussion

The basic results of numerical studies have been collected in Table 1 below as the func-
tions of an increasing coefficient of variation of the uncertain truss length (α(l) ∈ [0.00, 0.15]).
They are obtained with three different numerical methods described briefly in the preceding
section and they include (i) the resulting coefficient of variation of the extreme vertical
displacement α(u) obtained on the symmetry axis of the structure, (ii) Kullback-Leibler
(DKL) relative entropy, and (iii) Jeffreys probabilistic divergence (DJ). First of all, it is seen
that a lack of symmetry in probabilistic divergence measured here as a difference DJ−DKL
naturally increases together with an increase of the input coefficient α. Nevertheless, it is
rather not larger than 1% of the DJ value at the very upper end of the input α range, which
is rather negligible.

The very important result is that all three stochastic numerical methods coincide here
almost perfectly, which enables significant reduction of computational time by replacing
the MCS with SPT or SAM techniques. Further, both entropies exponentially decrease
together with a linear decrease of the input COV, which is quite an expected effect. As one
may see, particular numerical values of these entropies cannot be directly used in structural
reliability assessment as they are with a few ranges larger than the reliability indices listed
in Eurocode 0. Let us mention that some rescaling procedure has been proposed for this
purpose in [37].
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Table 1. Relative entropies versus output uncertainty in the Pratt truss structure.

Numerical Method Data Type α = 0.025 α = 0.050 α = 0.075 α = 0.100 α = 0.125 α = 0.150

Probabilistic
analytical method

α(u) 0.0914 0.1827 0.2736 0.3639 0.4533 0.5418

DKL 6369.278 1706.486 846.114 548.691 415.147 347.052

DJ 6403.883 1716.821 851.966 552.988 418.740 350.277

Stochastic
perturbation technique

α(u) 0.0914 0.1827 0.2736 0.3639 0.4533 0.5417

DKL 6369.278 1706.486 846.114 548.691 415.147 347.052

DJ 6403.884 1716.821 851.966 552.988 418.740 350.277

Monte-Carlo
simulation approach

α(u) 0.0914 0.1818 0.2722 0.3618 0.4507 0.5385

DKL 6367.928 1702.557 842.733 545.431 411.813 343.520

DJ 6402.542 1712.961 848.615 549.743 415.412 346.747

5. Probabilistic Divergence Application to the Homogenization of some
Particulate Composite
5.1. Composite Material Numerical Model

The last numerical case study was prepared to study a probabilistic divergence be-
tween the random distribution of some mechanical characteristics of the given composite
material and its homogenized characteristics. This experiment has been focused on a
particulate composite consisting of a single spherical particle centrally embedded into a
cubic matrix volume, see Figure 4. A perfect interface between the particle and the matrix is
assumed here, and initial deformation has been completely neglected. Its discretization [40]
was made in the preprocessor of the ABAQUS system and is shown in Figure 5.
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The homogenization procedure performed and analyzed here is a widely known
mathematical-numerical approach invented for both classical composite materials as well
as for some multiscale heterogeneous structures. The so-called effective characteristics
for these complex materials/structures are determined via analytical calculus or in some
FEM computer analyses. All such approximations are based upon an assumption that
the deformation energy of the real and of the homogenized media are equal to each other.
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Closed-form equations leading to these effective characteristics are derived from the specific
boundary conditions imposed on the composite representative volume element (RVE) [40].
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A composite consisting of the rubber particle embedded into the polymeric matrix
is analyzed, whose elastic parameters of the particle have been taken as Ep = 1.0 MPa,
νp = 0.4888, while for the polymer matrix as equal to Em = 4.0 GPa and νm = 0.34. Both
Young moduli of this composite have been adopted here in turn as Gaussian variables with
given expectations and some variability interval for their coefficients of variation to see an
influence of the input uncertainty (α ∈ [0.00, 0.20]). Polynomial approximating functions
relating the effective elasticity tensor components and Young moduli of the particle and
of the matrix have been recovered numerically via certain series of the FEM experiments
and the least squares method implemented in the computer algebra system MAPLE 2019.2
as before.

5.2. Numerical Results and Discussion

Numerical results of such analysis have been contained in Figures 6–8–for C(e f f )
1111 ,

C(e f f )
1122 and C(e f f )

1212 while randomizing particle Young modulus (left graphs) and, separately,
matrix Young modulus (the right column). Kullback-Leibler and Jeffreys probabilistic
divergences have been compared here, and a general observation one can make is that
a lack of symmetry is more remarkable in the right graphs, where the absolute extreme
distance of the real and homogenized characteristics is a few orders smaller. The opposite
case–particle uncertainty–shows practically the same results for two entropy models.

The next observation of a quite general character is that all relative entropies decay very
fast while increasing the input coefficient of variation; they are close to 0 for about α ∼= 0.20.
The extreme values marked on the vertical axes allow us to compare the distance of the PDF
for particle and for matrix Young moduli to the given effective tensor components. As one
may expect, the elasticity modulus of the matrix is many times closer to any component of
the tensor C(e f f )

ijkl than the elastic modulus of the rubber particle. Looking for the expected
values of the effective tensor and comparing them with Young moduli of both components,
it is seen that particle contribution to the overall elastic characteristics is marginal in this
context. It is further seen that a relative entropy could be used in composites engineering
(not only in the context of the homogenization method) to find out the most distant random
parameters from the given limit state, whose uncertainty may be simply postponed in the
model. Other parameters having especially the smallest distance to that limit state may be
decisive in reliability assessment, for instance, for the given composite material.

The last conclusion is that various relative entropies may result in totally different
numerical values; however, a general character of the function H = H(α) remains the same
(very similar to engineering reliability indices). The extreme values result in these graphs
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from the Jeffreys model, and then from the Kullback-Leibler model, entropy is almost the
same or slightly smaller for the given COV value.
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6. Concluding Remarks

Symmetrical and non-symmetrical probabilistic divergencies have been presented in
this work and contrasted with each other to check the possible lack of symmetry in relative
entropy and its possible significance in numerical simulation and specific engineering
problems. It has been found that this lack of symmetry may have a remarkable influence
on relative entropy values in some specific mathematical analyses, but it seems to be less
important in engineering analyses, especially when completed thanks to the stochastic
finite element methods. Such a conclusion may be drawn for two Gaussian distributions,
and further analyses should be provided for other distributions and their pairs having
more important and frequent applications in applied sciences and engineering.

Another important research finding reported in this work is that a lack of symmetry in
Kullback-Leibler probabilistic divergence may lead to some imprecision while analyzing the
reliability of even relatively simple engineering structures. This imprecision may be higher
for large-scale structures, and it deserves further numerical studies. The homogenization
analysis presented above shows that Kullback-Leibler divergence asymmetry may be
very large while computing a distance between the original and homogenized elastic
characteristics. This means that a definition proposed by Equation (6) returns completely
different results while counting the distance between the original and homogenized tensors
components or vice versa. Symmetric probabilistic divergence models are recommended in
this context for further studies.

It should be noted that engineering practice also welcomes time-dependent probabilis-
tic divergence analysis, where two distributions of various natures representing extreme
effort and the corresponding limit change their parameters in the exploitation time. Then,
this divergence may additionally depend on time in some unknown way, which deserves
further studies, both practical and numerical. Let us note that some interesting applications
would be a determination of the relative probabilistic entropy in conjunction with the
probability transformation method (PTM) presented in [41].

Another interesting research avenue would be to contrast the statistics of the defor-
mation computed via the SFEM models with those resulting from laboratory experiments
or some in-situ observations. Then, a relative probabilistic entropy could serve as some
calibration measure to improve numerical models and methods themselves. The same
observation concerns effective material characteristics, which can be determined also in
an experimental manner via uniaxial, and biaxial tensile tests. There is no doubt that
modern advanced engineering of solid continua, such as optical fiber [42] behavior or
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specifically coupled and uncoupled fluid flow phenomena [43,44], may need a determina-
tion of probabilistic entropy and also probabilistic divergence. Such an application may
be very attractive due to the final single graph of the relative entropy allowing for full
identification of the resulting uncertainty. An application of the methodology presented
in computer analysis of some acoustics and hydrodynamic phenomena [45] may find its
importance in biomedical engineering and it deserves further research attention.
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